
Programming in C II, Module II Course: JTSK-320112
Jacobs University Bremen February 23th, 2017
Dr. Jürgen Schönwälder

Assignment 5 - Stacks and Queues

• The problems of this assignment must be solved in C.

• Your programs should have the input and output formatting according to the testcases
listed after the problems.

• Your programs should consider the grading rules posted on the course web page:
http://cnds.eecs.jacobs-university.de/courses/c2-2017/

Problem 5.1 A stack of integers (3 points)
Presence assignment, due by 18:30 h today
Implement a stack, which is able to hold maximum 12 integers using an array implementation.
You need to implement the functions ... push(...), ... pop(...), ... empty(...)
for emptying the stack, and ... isEmpty(...) for checking if the stack is empty.
Your program should consist of stack.h (struct definition and function declarations), stack.c
(function definitions) and teststack.c (main() function) and should use the following struct:

struct stack {
unsigned int count;
int array[12]; // Container

};

Input structure

There are several commands that manipulate the stack.
These commands are:

• s followed by a number pushes the number into the stack,

• p pops a number on the top off the stack and prints it on the standard output,

• e empties the stack by popping one element after the other and printing them on the stan-
dard output,

• q quits the execution of the program.

Output structure

If an element is popped off the stack then the element is printed. Stack underflow and overflow
should be detected and an informational message (either “Stack Overflow” or “Stack Underflow”
should be printed on the screen. In these cases no operation takes place.
You can assume that the input will be syntactically correct.

http://cnds.eecs.jacobs-university.de/courses/c2-2017/


Testcase 5.1: input

s
5
s
7
p
s
3
e
p
q

Testcase 5.1: output

Pushing 5
Pushing 7
Popping 7
Pushing 3
Emptying Stack 3 5
Popping Stack Underflow
Quit

Problem 5.2 bracket expressions (2 points)

Modify the stack implemented for Problem 5.1 such that you can use it for testing whether a
bracket expression is correct. A bracket expression is correct if each opening round bracket or
square bracket has a matching closing bracket and there are not more closing brackets than open-
ing brackets.
Upload again all files related to this problem (i.e., stack.h, stack.c and brackets.c).
You can assume that the input will be valid.

Testcase 5.2: input

()
[()]
(
()]
(]

Testcase 5.2: output

ok
ok
error: not enough closing brackets
error: too many closing brackets
error: closing bracket does not match opening bracket

Problem 5.3 A stack of strings (3 points)
Modify the struct from Problem 5.1 and write a program that tests a stack of strings (the
strings themselves will not be longer than 35 characters). Keep in mind the functions strcpy(),
strcmp() and strcat().
Use the string stack to check if a sentence (assume that the words are separated by spaces, all
letters are lowercase and no punctuation marks are contained) is palindromic by words. For
example, the sentence “dogs like cats and cats like dogs” is palindromic by words, because it
reads the same from backwards (word by word). The program should terminate its execution if
“exit” is entered.
Your program should consist of one header file and two .c files (i.e., stack.h, stack.c and
wordstack.c).
You can assume that the input will be valid.

Testcase 5.3: input

dogs like cats and cats like dogs
bob likes tomatos do not like bob
exit

Testcase 5.3: output

The sentence is palindromic by words!
The sentence is not palindromic by words!

Problem 5.4 Adding to the queue (2 points)
Download the files:
http://jgrader.de/courses/320112/c/queue.h

http://jgrader.de/courses/320112/c/queue.c

http://jgrader.de/courses/320112/c/testqueue.c

Take a look at the three files and unterstand the source code. Extend the code of queue.c by
implementing the enqueue() function. Follow the hints given in the slides (see Lecture 5 & 6,
page 16).
You can assume that the input will be valid.



Testcase 5.4: input

a
3
a
5
a
7
q

Testcase 5.4: output

add int: Putting 3 into queue
1 items in queue
Type a to add, d to delete, q to quit:
add int: Putting 5 into queue
2 items in queue
Type a to add, d to delete, q to quit:
add int: Putting 7 into queue
3 items in queue
Type a to add, d to delete, q to quit:
Bye.

How to submit your solutions
• Your source code should be properly indented and compile with gcc without any warnings. You can

use gcc -Wall -Werror -o program program.c. Insert suitable comments (not on every line
. . . ) to explain what your program does.

• Please name the programs according to the suggested filenames (they should match the description
of the problem) in Grader. Otherwise you might have problems with the inclusion of header files.
Each program must include a comment on the top like the following:
/*

JTSK-320112
a5 p1.c
Firstname Lastname
myemail@jacobs-university.de

*/

• You have to submit your solutions via Grader at
https://grader.eecs.jacobs-university.de.
If there are problems (but only then) you can submit the programs by sending mail to
j.schoenwaelder@jacobs-university.de with a subject line that begins with JTSK-320112.
It is important that you do begin your subject with the coursenumber, otherwise I might have
problems to identify your submission.

• Please note, that after the deadline it will not be possible to submit any solutions. It is useless to send
late solutions by mail, because they will not be accepted.

This assignment is due by Tuesday, February 28nd, 10:00 h.

https://grader.eecs.jacobs-university.de

