Problem Sheet \#3

Problem 3.1: ip layer and lan layer forwarding
Consider the network topology shown below. The hosts A and B are connected to the bridges $B 1$ and $B 2$. The bridges are connected via the two routers $R 1$ and $R 2$. All devices use default parameter settings.

Host A uses the IPv4 address 198.51.100.3 in the 198.51.100.0/24 network and Host B uses the IPv4 address 203.0.113.4 in the 203.0.113.0/24 network.
a) Assign suitable IP addresses to the IP layer interfaces and define the forwarding table of the two routers so that they can both reach A and B.
b) Assume that A has a default route to $R 1$ and B has a default route to $R 2$. The devices just got initialized and A is now establishing a TCP connection to B. Which frames are transmitted over the segments? Produce a table like this:

no	segments	eth-src	eth-dst	ip-src	ip-dst	description

Please denote the MAC address of an interface or port i with $\operatorname{mac}(i)$ and the IP address of interface i with $i p(i)$. Use $\operatorname{mac}()$ and $i p()$ for layer two and layer three broadcast addresses.
c) Discuss the benefits and potential problems of the network configuration used in the previous step.

IP packets are forwarded by performing a longest-prefix match on the network prefixes. Forwarding tables can be represented as binary or multibit tries. Furthermore, network prefixes can sometimes be aggregated.

In this problem, prefixes are represented using a binary notation (e.g., the binary notation "10101000*" matches all addresses starting with the binary prefix "10101000" which is equivalent to the prefix 168.0.0.0/8 in dotted quad notation). Consider the following three forwarding tables F_{1}, F_{2}, and F_{3}.

F_{1}	prefix	next hop	F_{2}	prefix	next hop	F_{3}	prefix	next hop
	*	R_{1}		*	R_{2}		*	R_{1}
	00*	R_{2}		01*	R_{1}		1*	R_{3}
	10*	R_{2}		11*	R_{3}		10*	R_{2}
	11^{*}	R_{3}					110*	R_{2}

Assume that the minimum legal network prefix is 8 bit long.
a) Are the forwarding tables F_{1} and F_{2} equivalent? Why or why not?
b) Is there an equivalent forwarding table for F_{3} with less than four entries? Why or why not?

