Course: 320301 Date: 2015-10-15 Due: 2015-10-22

Problem Sheet #3

Problem 3.1: ip layer and lan layer forwarding

(2+3+1 = 6 points)

Consider the network topology shown below. The hosts A and B are connected to the bridges B1 and B2. The bridges are connected via the two routers R1 and R2. All devices use default parameter settings.

Host A uses the IPv4 address 198.51.100.3 in the 198.51.100.0/24 network and Host B uses the IPv4 address 203.0.113.4 in the 203.0.113.0/24 network.

- a) Assign suitable IP addresses to the IP layer interfaces and define the forwarding table of the two routers so that they can both reach A and B.
- b) Assume that *A* has a default route to R1 and *B* has a default route to R2. The devices just got initialized and *A* is now establishing a TCP connection to *B*. Which frames are transmitted over the segments? Produce a table like this:

no	segments	eth-src	eth-dst	ip-src	ip-dst	description

Please denote the MAC address of an interface or port *i* with mac(i) and the IP address of interface *i* with ip(i). Use mac() and ip() for layer two and layer three broadcast addresses.

c) Discuss the benefits and potential problems of the network configuration used in the previous step.

Problem 3.2: longest-prefix match forwarding

IP packets are forwarded by performing a longest-prefix match on the network prefixes. Forwarding tables can be represented as binary or multibit tries. Furthermore, network prefixes can sometimes be aggregated.

In this problem, prefixes are represented using a binary notation (e.g., the binary notation "10101000*" matches all addresses starting with the binary prefix "10101000" which is equivalent to the prefix 168.0.0.0/8 in dotted quad notation). Consider the following three forwarding tables F_1 , F_2 , and F_3 .

$F_1 \mid prefix$	next hop	F_2	prefix	next hop	_	F_3	prefix	next hop
*	R_1		*	R_2			*	R_1
00*	R_2		01*	R_1			1*	R_3
10*	R_2		11*	R_3			10*	R_2
11*	R_3		1	I			110*	R_2

Assume that the minimum legal network prefix is 8 bit long.

- a) Are the forwarding tables F_1 and F_2 equivalent? Why or why not?
- b) Is there an equivalent forwarding table for F_3 with less than four entries? Why or why not?