
Fall Semester 2015
Lecture 1: Introduction

Instructor: Jürgen Schönwälder
Slides: Bendick Mahleko

320341 Programming in Java

http://cnds.eecs.jacobs-university.de/courses/java-2015

page 2 © Jacobs University Bremen

Outline

-  Motivation

-  Buzzwords From The Java “White Paper”

-  History of Java

-  Java Compiler

-  Java Runtime Environment

-  Language Features

-  Homework

page 3 © Jacobs University Bremen

VOIP
Robots CAT

scans

Cable
Boxes

Printers

TVs

Motivation

Java Applications

Smart
cards

Mobile
phones

PDAs

VCRs

Desktops

Workstations
Servers

Routers

Vehicle Diagnostic
Systems (VDS) Smart Grid

Meters (SGM)

Home Security
Systems (HSS)

Blu-ray Disc
systems

Airplane
Systems

ATMs

Parking
meters e-readers

…

MRIs

page 4 © Jacobs University Bremen

Motivation

Java technology has integrated itself into people’s everyday lives

-  There is a high demand for people with Java skills

-  Java programs run on many devices from cell-phones to servers to clouds

Some statistics (Meloan, 2012)
-  97% of enterprise desktops run Java

-  3 billion devices run Java

-  5 billion Java cards in use

-  80 million Java-enabled TV devices run Java

-  9 million Java developers worldwide

-  100% Blue ray disk players ship with Java

-  89% of PC desktops run java

-  Java is the most widely used software development language in the world

page 5 © Jacobs University Bremen

Motivation

Java language positives

-  High quality and secure execution environment

-  Vast library (graphics, networking, databases, collections, multi-threading etc)

-  Pleasant syntax

-  Comprehensible semantics

page 6 © Jacobs University Bremen

Java language Overview
Java language has two parts

CORE LANGUAGE (e.g., int, arrays, objects) + LIBRARIES

-  The Core Language is simple enough to run on mobile phones

-  Large collection of standard libraries provide “off the shelf” code

page 7 © Jacobs University Bremen

Buzzwords

Simple Portable

Object Oriented Interpreted

Network savvy High Performance

Robust Multithreaded

Secure Dynamic

Architecture Neutral

(Gosling, 1995)

page 8 © Jacobs University Bremen

Buzzwords
Simple

-  Core language is easy to program

Object Oriented

-  Fundamentally based on the OO notions of classes and objects

Network Savvy

-  Extensive library supporting network programming (e.g., TCP/IP, HTTP, FTP)

page 9 © Jacobs University Bremen

Buzzwords
Robust

-  Robust against unintentional errors and malicious code

Secure

-  Designed to prevent certain types of attacks (e.g., memory corruption)

Architecture Neutral

-  Java compiler generates architecture neutral object file format (bytecode)

-  Bytecode can be run anywhere where there is a Java runtime system

page 10 © Jacobs University Bremen

Buzzwords
Portable

-  Java was designed to do “Write Once Run Anywhere” - WORA

Interpreted

-  The bytecode is interpreted to the target machine language

High performance

-  Interpretation is slow but performance is improved if JIT compiler is used to
compile “hotspots” of program into machine language and caching it

page 11 © Jacobs University Bremen

Buzzwords

Multithreaded

-  Ease of multithreading in Java makes it attractive for server side
development

Dynamic

-  Useful for adding code while program is running

page 12 © Jacobs University Bremen

History of Java
1991

-  Sun’s internal research project (code-name “Green”) to develop a language
for intelligent consumer devices

-  Language Oak was developed based on C++

-  Oak renamed to Java

1994

-  Java team saw potential of Java on WWW

-  Built the “HotJava browser ” to demonstrate power of Java

-  Inspired the current ‘Java crazy’

1996

-  First version of Java (Java 1.0) was released

-  Found to be very limited; This was followed by version 1.1, but still limited

page 13 © Jacobs University Bremen

History of Java
1998

-  Java 1.2 was released at the JavaOne conference

-  Sun’s marketing named it

“Java 2 Standard Edition Software Development Kit Version 1.2”

-  Two other additions were introduced
q  “Micro Edition” (Java ME) for embedded devices
q  “Enterprise Edition” (Java EE) for server side programming

Note: Now we have:

-  Java Micro Edition (Java ME)

-  Java Standard Edition (Java SE)

-  Java Enterprise Edition (Java EE)

page 14 © Jacobs University Bremen

History of Java

Evolution of Java Language

-  Version 1.5 was called Version 5.0

-  Version 5.0 was the first version to update Java language in a significant way
ž  It was introduced in 2004
ž  Generic classes, enhanced for-loop, auto-boxing, annotations

-  Version 6 : several enhancements (library) over 5.0 version

-  Version 7:
ž  Released on 28 August 2011
ž  Small language enhancements and library improvements
ž  New I/O (asynchronous I/O)
ž  Fork/ Join framework

page 15 © Jacobs University Bremen

History of Java - Summary

Java Version #Classes Features & performance
Java 1.02 (1st official
release)

250 • Slow
• Many bugs
• Applets the big thing

Java 1.1 500 • A little faster
• More capable & friendlier
• Becoming very popular

Java 2 (versions 1.2 – 1.4) 2300 • Much faster (sometimes run at native
speeds)
• Powerful – 3 flavors: J2ME, J2SE, J2EE
• Language of choice for Web-based
enterprises & mobile applications

Java 5.0 (version 1.5)

3500 • More power, easier to develop with
• Major changes to language & new features

page 16 © Jacobs University Bremen

History of Java - Summary

Java Version #Classes Features & performance
Java 6 (version 1.6) - • Performance enhancements

• XML SOAP-based Web Services (JAX-WS)
• JDBC4 (enhancements)
• Console class
• Swing GUI improvements

Java 7 (version 1.7) - • Language improvement
• Automatic resource management
• New file system API
• Fork and Join Framework

Java 8 (version 1.8) • Support for Lambda expressions (closures)
• Add bulk data operations for Collections
• Add new date, time, and calendar API
• Add parallel sorting of arrays
• new API for Base64 encoding and decoding
•  …

page 17 © Jacobs University Bremen

Java Compiler

MS-Windows
Machine

Java program (source code)

Linux
Machine

Solaris
Sun Machine

MacIntosh
Apple Machine

Test.java

Java compiler
compiles prog.java

javac Test.java

Test.class JVM Bytecode
Execute Test.class
on any platform

 java Test

page 18 © Jacobs University Bremen

Java Compiler
Compiling Java sources
-  Source code for each class is saved in a .java file

-  Compile each class to produce a .class file

-  Multiple classes can be packed together in a .zip or .jar archive file

-  The Java compiler is called “javac”

-  To compile all programs in a directory use “javac *.java”

Bytecode
-  A compiled class is stored in a .class or .jar archive file

-  It is machine neutral object and file executable on any machine
with a virtual machine

page 19 © Jacobs University Bremen

Java Compiler
Compiling Java sources

Java source code
(.java file)

Java program Platform independent
intermediate representation

Java bytecode
(.class file) Executable code

Java
compiler

JVM

java javac

page 20 © Jacobs University Bremen

Java Architecture
The Java architecture consists of four components

1.  Java Programming Language

2.  Java Class File format

3.  Java API (Application Programming Interface)
q  Prewritten code that is organized into packages
q  Java API is divided into three main platforms

a)  Java 2 Platform, Standard Edition (J2SE now called Java SE)
b)  Java 2 Platform, Enterprise Edition (J2EE now called Java EE)
c)  Java 2 Platform, Micro Edition (J2ME now called Java ME)

4.  Java Virtual Machine (JVM): an abstract computing machine that interprets
compiled Java programs

page 21 © Jacobs University Bremen

Java Architecture

Linux Box PC Running
Windows NT Toaster TV Set

Java Platform
for Linux

Java Platform for
Windows NT

Java Platform
for Toaster

Java Platform
for TV Set

Java Program Java Program Java Program Java Program

-  Java platform = Java API + JVM è Java Runtime Environment

…

page 22 © Jacobs University Bremen

Java Architecture

Operating System (Windows, Unix, etc.)

Java Runtime Environment

Java API

Java Virtual Machine

Application

Java Programming Language

Java Class Files

 Hardware

page 23 © Jacobs University Bremen

Java Virtual Machine
JVM is an abstract computing machine that interprets compiled Java
programs

JVM specification describes features that every VM should have

JVM loads class files and executes bytecodes they contain

Operating System (Windows, Unix, etc.)

JVM

Class Loader

Execution Engine

Native methods

Java API
Class Files

Your
Class Files

Byte Code

page 24 © Jacobs University Bremen

Java Virtual Machine

The implementation of an execution engine (EE) varies

-  Interpret bytecode one at a time (slow)

-  Just in time (JIT) compiler (faster, but requires more memory)

-  Adaptive optimizer (VM monitors “hotspots” compiles them to native code)

-  VM built on top of a chip (exec bytecode natively – EE embedded in chip)

page 25 © Jacobs University Bremen

Runtime data areas

Java Runtime Environment

Execution Engine

Method
Area

Class Loader

Heap Stack Registers Constant
pool

JVM needs memory to store temporary data related to code execution

The following components are provided (Spell, 2005)

page 26 © Jacobs University Bremen

JVM Runtime Data Areas

Heap

-  Region of free memory often used for dynamic or temporary allocation

-  Provides memory for class and array objects

-  Heap memory is reclaimed when reference to an object or array no longer
exist – collected by a garbage collector

-  Programmer maybe allowed to specify initial size of heap (use –mx on Win32
and Solaris)

-  OutOfMemoryError exception is generated if the heap runs out of memory

(Spell, 2005)

page 27 © Jacobs University Bremen

JVM Runtime Data Areas

Stack

-  The Stack frame stores the state of method invocations

-  Includes data and partial results, local variables and operand stack

-  Operand stack stores parameters and return values for most bytecode instr

-  Frames makeup JVM stack & store partial results, data and return values

-  A Frame is created when a method is invoked and destroyed when a method
exists

-  StackOverflowError exception generated if a computation requires larger
stack than provided (Spell, 2005)

page 28 © Jacobs University Bremen

JVM Runtime Data Areas

Method Area

-  Common storage area shared among all JVM threads

-  Stores: method data, field data, bytecode for methods and constructors

Registers

-  Reflect current state of machine and updated as bytecode is executed

-  Primary register is program counter (pc register)

Runtime Constant Pool

-  Contains constants including numeric literals and field constants

-  Constructed when JVM loads the class file (Spell, 2005)

page 29 © Jacobs University Bremen

Java Runtime Environment
Class Loader

-  There can be more than one class loader inside JVM

-  Two types of class loaders
q  Bootstrap class loader (There is only one!)
q  User-defined class loader

Bootstrap class loader

User-defined
class loader User-defined

class loader

User-defined
class loader

User-defined
class loader

page 30 © Jacobs University Bremen

Java Runtime Environment

Bootstrap Class Loader

-  The Bootstrap Class Loader is part of the JVM implementation

-  It is also called primordial class loader, system class loader, default
class loader

-  It is the default class loader (loads the Java API classes)

page 31 © Jacobs University Bremen

Java Runtime Environment

Bootstrap Class Loader

-  The Bootstrap Class Loader is part of the JVM implementation

-  It is also called primordial class loader, system class loader, default
class loader

-  It is the default class loader (loads the Java API classes)

page 32 © Jacobs University Bremen

Source: http://javapapers.com/core-java/differentiate-jvm-jre-jdk-jit/

JRE as an implementation of JVM

page 33 © Jacobs University Bremen

Questions?

page 34 © Jacobs University Bremen

Reading Material

Radhakrishnan, R., Vijaykrishnan, N., John, L. K., Sivasubramaniam, A., Rubio, J. and
Sabarinathan, J.: Java Runtime Systems: Characterization and Architectural Implications.
IEEE Transactions on Computers, 50(2), 2001.

Java Products [Online] Available from: http://www.oracle.com/technetwork/java/index.html
(Last accessed: 6th September 2012)

Gosling, J. (1995) Java: an Overview [Online] Available from: http://
www.cs.dartmouth.edu/~mckeeman/cs118/references/OriginalJavaWhitepaper.pdf (Last
Accessed: 6th September 2012).

Java. APress. Available at:
http://www.maspick.co.il/Ddd/Apress%20-%20Pro%20Java%20Programming,%202nd
%20Edition.pdf

Meloan, S.(2012) JavaOne 2012 Review: Make the Future Java. Retrieved 14 August
2013 from
http://www.oracle.com/technetwork/articles/java/javaone12review-1863742.html.

