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Outline 

-  Motivation  

-  Buzzwords From The Java “White Paper” 

-  History of Java 

-  Java Compiler 

-  Java Runtime Environment 

-  Language Features 

-  Homework  
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Motivation 

Java technology has integrated itself into people’s everyday lives 

-  There is a high demand for people with Java skills  

-  Java programs run on many devices from cell-phones to servers to clouds 

 

Some statistics (Meloan, 2012) 
-  97% of enterprise desktops run Java 

-  3 billion devices run Java 

-  5 billion Java cards in use 

-  80 million Java-enabled TV devices run Java 

-  9 million Java developers worldwide 

-  100% Blue ray disk players ship with Java 

-  89% of PC desktops run java 

-  Java is the most widely used software development language in the world 
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Motivation 

Java language positives     

-  High quality and secure execution environment 

-  Vast library (graphics, networking, databases, collections, multi-threading etc) 

-  Pleasant syntax 

-  Comprehensible semantics 
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Java language Overview 
Java language has two parts      

CORE LANGUAGE (e.g., int, arrays, objects) +  LIBRARIES                                                                                         

-  The Core Language is simple enough to run on mobile phones    

-  Large collection of standard libraries provide “off the shelf” code 
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Buzzwords 

Simple Portable 

Object Oriented Interpreted 

Network savvy High Performance 

Robust Multithreaded 

Secure Dynamic 

Architecture Neutral 

(Gosling, 1995)  
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Buzzwords 
Simple  

-  Core language is easy to program 

Object Oriented      

-  Fundamentally based on the OO notions of classes and objects 

 

Network Savvy      

-  Extensive library supporting network programming (e.g., TCP/IP, HTTP, FTP) 
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Buzzwords 
Robust  

-  Robust against unintentional errors and malicious code 

Secure  

-  Designed to prevent certain types of attacks (e.g., memory corruption) 

Architecture Neutral  

-  Java compiler generates architecture neutral object file format (bytecode) 

-  Bytecode can be run anywhere where there is a Java runtime system 
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Buzzwords 
Portable  

-  Java was designed to do “Write Once Run Anywhere” - WORA 

Interpreted  

-  The bytecode is interpreted to the target machine language 

High performance 

-  Interpretation is slow but performance is improved if JIT compiler is used to 
compile “hotspots” of program into machine language and caching it  
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Buzzwords 

Multithreaded 

-  Ease of multithreading in Java makes it attractive for server side 
development   

Dynamic  

-  Useful for adding code while program is running  
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History of Java 
1991 

-  Sun’s internal research project (code-name “Green”) to develop a language 
for intelligent consumer devices 

-  Language Oak was developed based on C++ 

-  Oak renamed to Java 

1994 

-  Java team saw potential of Java on WWW 

-  Built the “HotJava browser ” to demonstrate power of Java 

-  Inspired the current ‘Java crazy’ 

1996 

-  First version of Java (Java 1.0) was released 

-  Found to be very limited; This was followed by version 1.1, but still limited 
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History of Java 
1998 

-  Java 1.2 was released at the JavaOne conference 

-  Sun’s marketing named it  

“Java 2 Standard Edition Software Development Kit Version 1.2” 

 

-  Two other additions were introduced 
q  “Micro Edition” (Java ME) for embedded devices 
q  “Enterprise Edition” (Java EE) for server side programming 

Note: Now we have:  

-  Java Micro Edition (Java ME) 

-  Java Standard Edition (Java SE) 

-  Java Enterprise Edition (Java EE) 
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History of Java 

Evolution of Java Language 

-  Version 1.5 was called Version 5.0 

-  Version 5.0 was the first version to update Java language in a significant way 
ž  It was introduced in 2004 
ž  Generic classes, enhanced for-loop, auto-boxing, annotations 

-  Version 6 : several enhancements (library) over 5.0 version 

-  Version 7:  
ž  Released on 28 August 2011 
ž  Small language enhancements and library improvements 
ž  New I/O (asynchronous I/O) 
ž  Fork/ Join framework 
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History of Java - Summary 

Java Version #Classes Features & performance 
Java 1.02 (1st official 
release) 

250 • Slow 
• Many bugs 
• Applets the big thing 

Java 1.1 500 • A little faster 
• More capable & friendlier 
• Becoming very popular 
 

Java 2 (versions 1.2 – 1.4) 2300 • Much faster (sometimes run at native 
speeds) 
• Powerful – 3 flavors: J2ME, J2SE, J2EE 
• Language of choice for Web-based 
enterprises & mobile applications 
 

Java 5.0 (version 1.5) 
 

3500 • More power, easier to develop with 
• Major changes to language & new features 
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History of Java - Summary 

Java Version #Classes Features & performance 
Java 6 (version 1.6 ) - • Performance enhancements 

• XML SOAP-based Web Services (JAX-WS) 
• JDBC4 (enhancements) 
• Console class 
• Swing GUI improvements 

Java 7 (version 1.7 ) - • Language improvement 
• Automatic resource management 
• New file system API 
• Fork and Join Framework  
 

Java 8 (version 1.8 ) • Support for Lambda expressions (closures) 
• Add bulk data operations for Collections 
• Add new date, time, and calendar API 
• Add parallel sorting of arrays 
• new API for Base64 encoding and decoding 
•  …  
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Java Compiler 
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Java Compiler 
Compiling Java sources 
-  Source code for each class is saved in a .java file 

-  Compile each class to produce a .class file 

-  Multiple classes can be packed together in a .zip or .jar archive file 

-  The Java compiler is called “javac” 

-  To compile all programs in a directory use “javac *.java” 

Bytecode 
-  A compiled class is stored in a .class or .jar archive file 

-  It is machine neutral object and file executable on any machine 
with a virtual machine 



page 19   © Jacobs University Bremen 

Java Compiler 
Compiling Java sources 

Java source code 
(.java file) 

Java program Platform independent  
intermediate representation 

Java bytecode 
(.class file) Executable code 

Java 
compiler 

JVM 

java javac 



page 20   © Jacobs University Bremen 

Java Architecture 
The Java architecture consists of four components 

1.  Java Programming Language 

2.  Java Class File format 

3.  Java API (Application Programming Interface) 
q   Prewritten code that is organized into packages 
q  Java API is divided into three main platforms 

a)  Java 2 Platform, Standard Edition (J2SE now called Java SE) 
b)  Java 2 Platform, Enterprise Edition (J2EE now called Java EE) 
c)  Java 2 Platform, Micro Edition (J2ME now called Java ME) 

4.  Java Virtual Machine (JVM): an abstract computing machine that interprets 
compiled Java programs 
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Java Architecture 

Linux Box PC Running  
Windows NT Toaster  TV Set 

Java Platform 
for Linux 

Java Platform for  
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Java Platform  
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Java Program Java Program Java Program Java Program 

-  Java platform = Java API + JVM   è Java Runtime Environment 

… 
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Java Architecture 
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Java Virtual Machine 
JVM is an abstract computing machine that interprets compiled Java 
programs 

JVM specification describes features that every VM should have 

JVM loads class files and executes bytecodes they contain 

Operating System (Windows, Unix, etc.) 

JVM 
 
 
 
 
 

Class Loader 
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Class Files 
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Java Virtual Machine 

The implementation of an execution engine (EE) varies 

-  Interpret bytecode one at a time (slow) 

-  Just in time (JIT) compiler (faster, but requires more memory) 

-  Adaptive optimizer (VM monitors “hotspots” compiles them to native code) 

-  VM built on top of a chip (exec bytecode natively – EE embedded in chip) 
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JVM needs memory to store temporary data related to code execution  

The following components are provided (Spell, 2005)  
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JVM Runtime Data Areas 

Heap 

-  Region of free memory often used for dynamic or temporary allocation 

-  Provides memory for class and array objects 

-  Heap memory is reclaimed when reference to an object or array no longer 
exist – collected by a garbage collector 

-  Programmer maybe allowed to specify initial size of heap (use –mx on Win32 
and Solaris) 

-  OutOfMemoryError exception is generated if the heap runs out of memory 

(Spell, 2005) 

 



page 27   © Jacobs University Bremen 

JVM Runtime Data Areas 

Stack 

-  The Stack frame stores the state of method invocations 

-  Includes data and partial results, local variables and operand stack 

-  Operand stack stores parameters and return values for most bytecode instr 

-  Frames makeup JVM stack & store partial results, data and return values  

-  A Frame is created when a method is invoked and destroyed when a method 
exists 

-  StackOverflowError exception generated if a computation requires larger 
stack than provided (Spell, 2005)  
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JVM Runtime Data Areas 

Method Area 

-  Common storage area shared among all JVM threads 

-  Stores: method data, field data, bytecode for methods and constructors 

Registers 

-  Reflect current state of machine and updated as bytecode is executed 

-  Primary register is program counter (pc register) 

Runtime Constant Pool 

-  Contains constants including numeric literals and field constants 

-  Constructed when JVM loads the class file (Spell, 2005)  
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Java Runtime Environment 
Class Loader 

-  There can be more than one class loader inside JVM 

-  Two types of class loaders 
q  Bootstrap class loader (There is only one!) 
q  User-defined class loader 

 

Bootstrap class loader 

User-defined  
class loader User-defined  

class loader 

User-defined  
class loader 

User-defined  
class loader 
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Java Runtime Environment 

Bootstrap Class Loader 

-  The Bootstrap Class Loader is part of the JVM implementation 

-  It is also called primordial class loader, system class loader, default 
class loader 

-  It is the default class loader (loads the Java API classes) 
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Java Runtime Environment 

Bootstrap Class Loader 

-  The Bootstrap Class Loader is part of the JVM implementation 

-  It is also called primordial class loader, system class loader, default 
class loader 

-  It is the default class loader (loads the Java API classes) 
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Source: http://javapapers.com/core-java/differentiate-jvm-jre-jdk-jit/   
 

JRE as an implementation of JVM 
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Questions? 
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