
Fall Semester 2015
Lecture 2: Fundamental Structures
Instructor: Jürgen Schönwälder

Slides: Bendick Mahleko

320341 Programming in Java

page 2 © Jacobs University Bremen

Outline

-  Program structure

-  Data types

-  Variables

-  Constants

-  Operators

-  Flow Control

page 3 © Jacobs University Bremen

Objectives

The objective of this lecture is to:

-  Introduce fundamental programming structures in Java

page 4 © Jacobs University Bremen

Java Basics
Java is case sensitive

By convention all Java classes are nouns that begin with a capital letter
with the first letter of each word capitalized. This is called CamelCase.

Example: SampleClassName.

A Java class name is an identifier that:

-  consists of letters, digits, underscores (_), dollar signs ($)

-  does not begin with a digit

-  does not contain empty spaces

-  has no limit on length

-  Is not a reserved word

Examples of valid identifiers: Welcome1, $value, _value, m_inputField1

page 5 © Jacobs University Bremen

Example

// Text-printing program

public class Welcome1 {
 // main method begins execution of Java application
 public static void main(String args[]) {
 System.out.println("Welcome to Java in Programming!");

 } // end method main

} // end class Welcome1

“//” means single-line comment

Source file name is name of
public class with extension .java

Every statement ends with
semi-colon

page 6 © Jacobs University Bremen

Comments

Three ways of commenting

-  // runs from // to end of line

-  /* ….. */ multiple line comments

-  /** ….. */

-  Generate documentation automatically

/* Text-printing program

 Date: 06 September, 2012

*/

public class Welcome1 { …

}

/** Text-printing program

 * Date: 06 September, 2012

 */

public class Welcome1 { …

}

// Text-printing program

public class Welcome1 { …

}

page 7 © Jacobs University Bremen

Data Types

Java is a strongly typed language

-  Each variable must have its type be declared before use

-  Example:

There are eight (8) primitive types in Java (4 integer types, 2 float types,
1 char, 1 boolean)

In Java the sizes of all numeric types are platform-independent

-  In C/C++ numeric type sizes are platform dependent

There are no unsigned types in Java

double salary;
int vacationDays;
long population;
boolean done;

page 8 © Jacobs University Bremen

Data Types: boolean and char

boolean:

-  Have only two possible values : true or false

-  Used to evaluate logical conditions

-  Size not precisely defined

char:

-  Single 16-bit Unicode character

-  Min value: ‘\u0000’; max value is ‘\uffff’ (65, 535 inclusive)

-  Use single quotes to represent character constants e.g., ‘A’

page 9 © Jacobs University Bremen

Data Types: integer types

byte:

-  8-bit signed two’s complement integer

-  Minimum value: -128 and maximum value is 127 (inclusive)

short:

-  16-bit signed two’s complement integer

-  Minimum value: -32,768 and maximum value is 32,767 (inclusive)

page 10 © Jacobs University Bremen

Data Types: integer types

int:

-  32-bit signed two’s complement integer

-  Min value: -2,147,483,648 ; max value is 2,147,483,647 (inclusive)

-  Usually the default type for storing integer numbers

long:

-  64-bit signed two’s complement integer

-  Use if the range of values to be stored is wider than that provided by int

-  Use suffix L to define long constants e.g., 100000L will be stored as long

page 11 © Jacobs University Bremen

Data Types: floating-point types

float:

-  Single precision 32-bit IEEE 754 floating point

-  Use float (instead of double) to save memory in large arrays of
floating-point numbers

-  Has limited precision, thus may not be sufficient for some applications

-  Use suffix F on constants to store them as float type (e.g., 3.14F)

double:

-  Double precision 64-bit IEEE 754 floating point

-  Use float (instead of double) to save memory in large arrays of
floating-point numbers

-  Floating-point numbers without suffix F default to double type

page 12 © Jacobs University Bremen

Data Types: summary

-  Primitive data types are held on the stack, thus efficiently processed

Primitive Type Size Minimum Maximum Wrapper

boolean - - - Boolean

char 16-bits Unicode 0 Unicode 216-1 Character

byte 8-bits -128 +127 Byte

short 16-bits -215 +215-1 Short

int 32-bits -231 +231-1 Integer

long 64-bits -263 +263-1 Long

float 32-bits IEEE754 IEEE754 Float

double 64-bits IEEE754 IEEE754 Double

page 13 © Jacobs University Bremen

Data Types

Two classes for performing high-precision arithmetic

-  import package java.math

-  BigInteger : for arbitrary precision integer arithmetic

-  BigDecimal : for arbitrary-precision floating-point arithmetic

Example

 // c = a + b
BigInteger c = a.add(b);

// d = c*(b+2)
BigInteger d =

 c.multiply(b.add(BigInteger.valueOf(2)));

page 14 © Jacobs University Bremen

Java Basics: Variables
Instance variable

-  None static class fields to store object’s state

-  Their values are unique to each class instance or object

Class variable

-  Static class fields to store object’s state – only one copy of variable exists for entire class

-  Must be declare with the static key word

Local variable

-  Used by a method to store the temporary state

-  Declared inside a method and accessible only inside the method

Parameters

-  Used to pass values in methods

-  Treated as local variables to the method they pass values to

page 15 © Jacobs University Bremen

Java Basics: Variables

Variable names are case sensitive

Each variable must have a type in Java

-  Declaration syntax
ž  type variableName;

Example:

double salary;
int vacationDays;
long population;
boolean done;

page 16 © Jacobs University Bremen

Java Basics: Variable Names

Variable names are case sensitive

A variable name must begin with a letter, a dollar sign ($) or
underscore (_) and must be a sequence of letters or digits

A letter in Java is: ‘A’-’Z’, ‘a’-’z’, ‘_’ or any Unicode
character that denotes a letter in a language

Special symbols e.g., ‘+, -, %, ...’, are not allowed

Variable name are length unlimited

Reserved words are not allowed as variable names

By convention variable names always start with a letter, not
underscore or dollar sign

page 17 © Jacobs University Bremen

Java Basics: Choosing Variable Names

Choose full words instead of cryptic abbreviations

If one word is used, use all small letters, like:

If more than one word is used, use camelCase, like:

When declaring constant values, capitalize every letter and
separate words using underscore like:

double salary; // use full words all in small letters

int vacationDays; // use camelCase if more than one word is used

static final int DAYS_OF_WEEK = 7; // declaring constant
variable

page 18 © Jacobs University Bremen

Java Basics: Initializing Variables

Variables must be properly initialized

-  The code below results in a compile-time error since vacationDays was
not initialized:

-  Initialize the variable by assigning value:

-  Declaration can be put anywhere in your code

int vacationDays; // assume this is a local variable

System.out.println(“vacationDays“);

int vacationDays = 12;

System.out.println(“vacationDays“);

double salary = 65000.0;

System.out.println(“vacationDays“);

int vacationDays = 12; // ok to declare variable here

page 19 © Jacobs University Bremen

Constants

Use keyword final to denote a constant

-  Constant variables’ values are immutable

-  It is customary to name constants in all upper case

-  It is also customary to make constants classwide – class constants
ž  Declare as static final

public class Constants {

 public static void main(String[] args) {

 final double PI= 3.14; // use all capital for constants
declaration

 float diameter = 5;

 System.out.println(„Circumference is „+ PI*diameter);

 }

}

public class Constants {

 static final double PI = 3.14;

…….}

page 20 © Jacobs University Bremen

Operators

Arithmetic Operators

Short-cuts

Operator Description Example

+ Addition operator 10+2 =12

- Subtraction operator 10-2 =8

% Integer remainder (modulus) operator 15%2 = 1

* Multiplication operator 10*2 =20

/ Integer division if both arguments are integers,
float-point division otherwise

15/2 =7
15.0/2 =7.5

Assignment Expression Equivalent Representation

x = x+2 x += 2

x = x-2 x -= 2

x = x*2 x *= 2

x = x/2 x /= 2

x = x % 2 x %= 2

page 21 © Jacobs University Bremen

Operators

Increment/ Decrement Operators

-  Applied only to variables, not constants e.g., 4++ is illegal

-  There is also the prefix form of operators

-  Difference appears when used in expressions

Operator Description Example

++ increment by one unit int n = 12;
n++; // changes n to 13

-- decrement by one unit int n = 12;
n--; // changes n to 11

int m = 7;

int n = 7;

int a = 2 * ++m; // now a is 16, m is 8

int b = 2 * n++; // now b is 14, n is 8

page 22 © Jacobs University Bremen

Operators

Relational Operators

Op Description Example

== Equivalent (equal to) 3 == 7 is false

!= Not Equivalent (not equal to) 3 != 7 is true

< Less Than 3 < 7 is true

> Greater Than 3 > 7 is false

<= Less or Equal to 3 <= 7 is true

>= Greater or Equal to 3 >= 7 is false

page 23 © Jacobs University Bremen

Operators

&& and || are evaluated in a short “circuit fashion”

-  The second argument is not evaluated if the result is already determined
by the first argument.

Op Description Example

&& Logical AND (3<7) && (7<10) is true

|| Logical OR (3 != 7) || (3 >7) is true

! Logical NEGATION !(3 < 7) is false

Logical Operators

page 24 © Jacobs University Bremen

Operators

Ternary (?:) Operator

-  The ternary operator has the following syntax:

condition ? exp1 : exp2

-  Evaluates to exp1 if condition is true; evaluates to exp2 otherwise

-  Example:

x < y ? x : y; // gives the smaller value of x and y

page 25 © Jacobs University Bremen

Operators

Bitwise Operators

-  Allow the manipulation of individual bits in integral primitive data types

-  Allow to perform boolean algebra on corresponding bits

Operator Description Example

& Bitwise AND 1111 & 1101 is 1101

| Bitwise OR 1111 | 1101 is 1111

^ Bitwise EXCLUSIVE OR 1111 ^ 1101 is 0010

~ Bitwise NOT (ONE’s COMPLEMENT) ~1101 is 0010

<< LEFT SHIFT 1111 << 1 is 11110

>> RIGHT SHIFT 1111 >> 1 is 0111

>>> UNSIGNED RIGHT SHIFT 1111 >>> 1 is 0111

page 26 © Jacobs University Bremen

Mathematical Functions and Constants

Function Meaning Example

Math.sqrt(x) Square root double y = Math.sqrt(4.0); // y = 2.0

Math.pow(x,a) Power double y = Math.pow(4.0, 2.0); // 4.02.0 =
16.0

Math.sin(x) Sine double y = Math.sin(45.0); // y =
0.8509035245341184

Math.cos(x) Cosine double y = Math.cos(30.0); // y =
0.15425144988758405

Math.tan(x) Tangent double y = Math.tan(45.0); // y =
1.5485777614681775

Math.E Approx to E 2.718281828459045 // Constant value

page 27 © Jacobs University Bremen

Mathematical Functions and Constants

Function Meaning? Example

Math.atan(x) Arc tangent double y = Math.atan(45.0); // y =
1.5485777614681775

Math.exp(x) Exponent double y = Math.exp(2.0); // y =
7.38905609893065

Math.log(x) Natural
logarithm

double y = Math.log(4.0); // y =
1.3862943611198906

Math.log10(x) Decimal
logarithm

double y = Math.log10(100.0); // y =
2.0

Math.PI Approx to PI 3.141592653589793 // Constant value

page 28 © Jacobs University Bremen

Mathematical Functions and Constants

Avoid the Math prefix by adding import line:
import static java.lang.Math.*;

Example:

import static java.lang.Math.*;

System.out.println(„The square root of \u03C0 is “ + sqrt(PI));

page 29 © Jacobs University Bremen

Conversions between Numeric Types

Solid line ➾ no loss in precision
Dotted line ➾ possible loss in precision

byte short int

char

long

float double

§  Explain the loss in precision when converting from long to double yet
both types use 64 bits?

§  Explain also the loss in precision when converting from int to float

page 30 © Jacobs University Bremen

The following conversions take place when evaluating expressions:

-  If either operand is double, the other is also converted to double

-  Otherwise if either operand is float, the other is also converted to float

-  Otherwise if either operand is long, the other is also converted to long

-  Otherwise if both operands will be converted to int

Conversions between Numeric Types

page 31 © Jacobs University Bremen

Casting
-  Forces one data type to another, but information may be lost

-  Example

-  nx has value 9, the fraction is discarded

Round

-  Use Math.round() to round a floating point number to nearest integer

-  Example

Conversions between Numeric Types

double x = 9.997;

int nx = (int) x; // nx is 9. 0.997 is lost

double x = 9.997;

int nx = (int) Math.round(x); // nx is 10.

page 32 © Jacobs University Bremen

Parenthesis and Operator Precedence

Operators Associativity

[] . () method call Left to right

! ~ ++ -- + (unary) – (unary) () (cast) new Right to left

* / % Left to right

+ - Left to right

<< >> >>> Left to right

< <= > >= instance of Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

?: Right to left

= += -= *= /= %= &= |= ^= <<= >>= >>>= Right to left

page 33 © Jacobs University Bremen

Enumerated Types

Contain a finite number of named values

Example:

enum Size {SMALL, MEDIM, LARGE, EXTRA_LARGE};

Declare variables of this type and assign values

Size s = Size.MEDIUM;

A variable of type Size holds only one of the listed values or special value
null indicating that the variable is not set

page 34 © Jacobs University Bremen

Input and Output

Use the Scanner (java.util.Scanner) class for reading data

-  First, import java.util.Scanner as follows

-  Next, construct a Scanner attached the “standard input stream” as follows:

The following methods from the Scanner class are used to read data:

import java.util.Scanner;

Scanner Method Description

next() Reads single word delimited by white space

nextLine() Reads a line of input

next[PrimitiveType](),
except char

nextByte(), nextShort(), nextInt(),
nextLong(), nextFloat(), nextDouble(),
nextBoolean()

Scanner in = new Scanner(System.in);

page 35 © Jacobs University Bremen

Example

Scanner in = new Scanner(System.in);
System.out.println(„What is your name? “);

String name = in.nextLine(); // reads line of input

String firstname = in.next(); // reads a single word

System.out.println(„How old are you? “);

int age = in.nextInt(); // reads an integer value

String firstname = in.next(); // reads a single word

System.out.println(„How old are you? “);

int age = in.nextInt(); // reads an integer value

page 36 © Jacobs University Bremen

Example

import java.util.Scanner;

class DataInTest {

 public static void main (String [] args) {

 Scanner in = new Scanner(System.in); // Create a Scanner attached

 System.out.println ("Enter your first name: ");

 String firstName = in.nextLine(); // read entire line

 System.out.println ("Enter your last name: ");

 String lastName = in.nextLine(); // read entire line;

 System.out.println ("Enter your age: ");

 int age = in.nextInt(); // reads an int value

 System.out.println ("Hallo " + firstName + " " + lastName + ".");

 System.out.println("You are "+ age + " years old now.");

 }

}

page 37 © Jacobs University Bremen

Formatting output

 We can format our output using format specifiers & conversion
characters

-  Formatted System.out.printf()

-  We can supply multiple parameters to printf

double x = 10000.0/3.0;
System.out.print(x); // prints 3333.3333333333335
System.out.printf(“%8.2f“,x); // prints 3333.33

prints x with field width of 8 and precision of 2 characters

page 38 © Jacobs University Bremen

Formatting output

Commonly used conversion characters

Conversion
character

Type Example

d Decimal integer 120

x Hexadecimal integer 78

o Octal integer 170

f Fixed point floating point 120.00

e Exponential floating point 1.200000e+02

s String Hello World

c Character A

page 39 © Jacobs University Bremen

Formatting output

Commonly used Flags

Flag Purpose Example
+ Prints positive/ negative numbers +3333.33

0 Adds leading zero 003333.33

- Left justified |3333.33 |

, Adds group separators 3,333.33

… … …

page 40 © Jacobs University Bremen

Formatting output

Common date conversions

Conversion Type Example
c Complete date and time Mon Feb 09 18:30:45

PST 2004

F ISO 8601 date 2004-02-09

D US formatted date (mm/dd/yy) 02/09/2004

T 24-hours time 18:05:19

R 24-hour time, no seconds 18:05

Y Four digit year 2004

Z Time zone PST

… … …

page 41 © Jacobs University Bremen

Sequence Statements
Statements are executed in the order in which they are given

Block /Compound Statement

-  Simple statements surrounded by a pair of braces

-  Define the scope of variables

-  Can be nested inside other blocks

-  Example

public static void main(String [] args) {

 int n;

 …

 {

 int k;

 } // k is only defined upto here

}

Nested Block

page 42 © Jacobs University Bremen

Selection Statements
if (condition) statement

-  Executes one or more statements if a certain condition is true

-  Example

The statements inside the block are executed only if the condition
evaluates to true; otherwise the next statement is executed

if (sales >= target) {

 performance = "Satisfactory " ;
 bonus = 100;
 }

page 43 © Jacobs University Bremen

Selection Statements
if (condition) statement1 else statement2

-  Executes statement1 if condition is true, statement2 otherwise

The statements in the first block (the if part) are executed if the
condition is true; the second block (else part) is executed otherwise

if (sales >= target)
{

 performance = "Satisfactory";
 bonus = 100 + 0.01 * (sales -

target);
}
else {

 performance = "Unsatisfactory";
 bonus =

0;
}

page 44 © Jacobs University Bremen

Selection Statements

Multiple Branches

An else groups with the closest if
-  Example

-  The else belongs to the third if

if (condition1) // first if statement
 ……

if (condition2) // second if statement

 ……

if (condition3) // third if statement
 ……

else
 ……

page 45 © Jacobs University Bremen

Selection Statements

Multiple branches are common

An else groups with the closest if
-  Example

-  Only one branch can be followed

if (condition1) // first if statement
 ……

else if (condition2) // second if statement

 ……

else if (condition3) // third if statement
 ……

else if (condition4) // fourth if statement
 ……

else
 ……

page 46 © Jacobs University Bremen

Selection Statements

Example

if (sales >= 2 * target) {

 performance = "Excellent";

 bonus = 1000;

} else if (sales >= 1.5 * target) {

 performance = "Fine";

 bonus = 500;

} else if (sales >= target) {

 performance = "Satisfactory";

 bonus = 100;

}

page 47 © Jacobs University Bremen

Multiple Selections

The switch statement is used for multiple selections
-  Provides implementation for multi-way selection based on integral expression

switch (selector) {
 case selector-value1: statement;

 break;

 case selector-value2: statement;

 break;
 case selector-value3: statement;
 break;
 case selector-value4: statement;
 break;
 default: statement;

}

page 48 © Jacobs University Bremen

Multiple Selections

A case selector can be:
-  An expression of type char, byte, short, int or their wrapper classes

-  An enumerated constant

-  A String literal (as of Java SE 7)

The selection is made according to the following rules:

-  Results of the selector are compared to each selector-value

-  If a match is found, the corresponding statement is executed

-  If no match is found the default statement executes

-  The break statement causes execution to jump to the end of the switch body

page 49 © Jacobs University Bremen

Example

Selects an option from four possible options

Scanner in = new Scanner(System.in);
System.out.println("Select an option (1, 2, 3 or 4)");
 int
choice = in.nextInt();

switch (choice) {

 case 1: menu 1 statement; break;
 case 2: menu 2 statement; break;
 case 3: menu 3 statement; break;
 case 4: menu 4 statement; break;
 default: default statement;

}

page 50 © Jacobs University Bremen

Iteration (Loops)

The following looping control flow constructs will be presented:

-  while (condition) statement

-  do statement while (condition)

-  for (initialValues; condition; incrementValues) statement

-  for (variable: collection) statement

-  break statement

-  continue statement

page 51 © Jacobs University Bremen

Iteration – (while) Statement

Executes the statement /statement block as long as the condition is
true

The general form is:

-  The statements are repeated until the condition evaluates to false

-  The while loop will never execute if the condition is false on the outset

while (condition) {
 statement1;
 . . .

 statementn;

}

page 52 © Jacobs University Bremen

Example

The loop is executed as long as balance < goal is true

-  The condition says “keep doing this loop until balance < goal is false

while (balance < goal) {
 balance += payment;
 double interest = balance * interestRate / 100;
 balance += interest;
 years++;
}

System.out.println(years + " years.");

loop condition

page 53 © Jacobs University Bremen

Iteration – (do- while) Statement

A while loop tests at the top; the code block may never be executed

The do – while guarantees that the loop is executed at least once

The general form is:

-  The loop executes the code block and only then tests the condition

-  It then repeats the statement and retests the condition, and so on.

do {
 statement1;
 . . .

 statementn;

} while (condition);

page 54 © Jacobs University Bremen

Example

Code segment to calculate retirement

-  The do – while guarantees that the loop is executed at least once

-  The loop is repeated as long as the user types “N” as input

do {
 balance += payment;
 double interest = balance * interestRate / 100;

 balance += interest;
 year++;
 // print current balance
 . . .
 // ask if ready to retire

and get input
 . . .
 } while

(input.equals(“ N “));

page 55 © Jacobs University Bremen

Iteration (for loop)

An example of a determinate loop

The iteration is controlled by a counter which is updated in each iteration

1.  The counter is initialized before each iteration

2.  A condition is tested to determine if code should be executed

3.  The counter is updated

page 56 © Jacobs University Bremen

Iteration (for loop)

 The general form for the for loop is:

for (initialization; condition; step) {
 statement1;
 . . .

 statementn;

}

-  Any of the statements (initialization, condition, and step) can be empty

-  Note that any expression is allowed at the various slots of the for loop

page 57 © Jacobs University Bremen

Example

Simple for loop that prints numbers from 1 upto 10

Simple for loop that prints numbers from 10 downto 1

for (int i = 1; i <= 10; i++)
 System.out.println(i);

for (int i = 10; i > 0; i--)
 System.out.println(“counting

down . . . “ +i); System.out.println(“Blastoff!
“);

page 58 © Jacobs University Bremen

Example

Defining multiple variables within a for loop

-  Multiple variables defined within the for loop must be of same type

Testing Equality of Floats

-  Loop may never end due to round-off errors (no exact binary representation
for 0.1)

for (double x = 0, x != 10; x +=0.1)
 System.out.println(“x = “ +x);

for (int i = 0, j = 1; i < 10 && j != 11; i++, j++)
 System.out.println(“i = “ +i+ “, j= “ +j);

page 59 © Jacobs University Bremen

Iteration (for loop)

Variable Scope

-  Variables declared inside a for loop slot are visible until end of loop body

-  For example, i is not visible outside the loop

for (int i = 1; i <= 10; i++)
System.out.println(i);

// i no longer defined here

int i;
for (i = 1; i <= 10; i++)

System.out.println(i);
// i still defined here

page 60 © Jacobs University Bremen

Iteration (for each loop)

Introduced in JDK 5.0

Allows to loop through elements of collections (arrays, sets, etc)

General Form

-  Sets the variable to each element of the collection, then executes code block

-  Collection expression must be an array or object of a Collection class (e.g.,
Set)

for (variable: collection) {
 statement1;
 . . .

 statementn;

}

page 61 © Jacobs University Bremen

Example

Defining multiple variables within a for loop

-  Prints each element of the array a on a separate line

-  The loop is read as “for each element in a”

-  The loop traverses elements of the array, not the index

for (int element: a)
 System.out.println(element);

page 62 © Jacobs University Bremen

break

The break statement is used to break-out of a loop

-  Example

-  The loop is exited if the loop condition is true or if balance >= goal at the
middle of the loop

while (years <= 100) {
 balance += payment;
 double interest = balance * interestRate/ 100;
 balance += interest;
 if (balance >= goal) break;
 years++;

}

page 63 © Jacobs University Bremen

break

Labeled break

-  Allows to break from nested loops

label1:
outer-iteration
{

 inner-iteration {
 // . . .
 break

label1;
 }

}

page 64 © Jacobs University Bremen

continue

Transfers program control to header of innermost enclosing loop

-  Example

-  There is also a labeled continue statement much similar to labeled break

Scanner in = new Scanner(System.in);

while (sum < goal) {

 System.out.println(“ Enter a number: “);

 n = in.nextInt();
 if (n < 0) continue;
 sum += n; // not executed if n <

0 }

page 65 © Jacobs University Bremen

References

 Cay S. Horstmann and Gary Cornell, Core Java(TM) 2. Vol. I. 9th Ed.
Prentice Hall, 9th Edition. 2013. Chapters 3.

