
Fall Semester 2015
Lecture 3: Object Oriented Programming

Instructor: Jürgen Schönwälder

Slides: Bendick Mahleko

320341 Programming in Java

page 2 © Jacobs University Bremen

Outline

Fundamental Principles

-  Abstraction

-  Encapsulation

-  Method

-  Message Passing

-  Inheritance

-  Object

-  Class

-  Polymorphism

-  Taxonomy

page 3 © Jacobs University Bremen

Objectives

Two main objectives

-  Introduce the principles of object oriented programming

-  Apply the principles to real application scenarios

page 4 © Jacobs University Bremen

Terminology

Abstraction

Encapsulation

Inheritance

Polymorphism

Object

Class

Method

Message Passing

page 5 © Jacobs University Bremen

Introduction

Object-oriented programming (OOP) has become the predominant
programming paradigm

-  Replaces structured procedural paradigms of the 1970s

-  Suitable for large and complex software

-  Based on modeling the problem domain thus problem oriented

-  More modular with code being organized into classes that intercommunicate

page 6 © Jacobs University Bremen

Abstraction

Basic Definition

-  The act of creating classes to simplify aspects of reality using distinctions
inherent to the problem

Earliest application of symbolic abstraction to programming languages was in
late 1950s with symbolic assemblers

page 7 © Jacobs University Bremen

Class

The template or blueprint from which objects are created

-  The basic element of object-oriented modeling

-  Description of the organization & actions shared by one or more similar objects

-  Creating an object from a class is called creating an instance of a class

Performs the following functions

-  During development, provides interface to interact with definition of objects

-  At runtime describes how objects behave in response to messages

-  At runtime it is a source of new objects

page 8 © Jacobs University Bremen

Class
Example

class Account {

 private String accNumber;

 private double balance;

 public double getBalance() {
 return balance;
 }
 public void deposit(double amount) {
 balance += amount;
 }
 public void withDraw(double amount) {
 if (balance >= amount)
 // execute withdrawal
 }

}

Object
state

Object
behavior

Instance fields

methods

page 9 © Jacobs University Bremen

Object

An identifiable item either real or abstract with well-defined role in
problem domain

Three key characteristics of an object

-  An object has state – represented by the object’s data model

-  An object has behavior – represented by methods you can call

-  An object has identity – used to distinguish different objects with the
same behavior and state

-  Both a data carrier & executes actions (Robson, 1981)

page 10 © Jacobs University Bremen

Object

An object is an instance of a class (classes in blue, instances in brown)

Mammal

Person Elephant

Student Female

John Jane Joan Jumbo Mary

page 11 © Jacobs University Bremen

Object

More General Definition (Armstrong, 2006)

-  An individual, identifiable item (real or abstract)

-  Contains data about itself & descriptions of its manipulations of the data

-  Example: John, Jane, Bill, Mary and Jumbo are all objects

page 12 © Jacobs University Bremen

Encapsulation

Combining data and behavior in one class and hiding implementation
details from users of the object

-  Implementation hiding + Wrapping data & methods within classes

Implementation Hiding

-  Separates things that change from things that stay the same

-  Library developers want to be able to do modifications/ improvements
such that client programmers’ code is not affected

-  Achieved by hiding implementation specific details of the library
implementation

page 13 © Jacobs University Bremen

Encapsulation

Implementation Hiding cont…

-  Access specifiers (public, private, protected, “friendly”) are used to
distinguish what’s available to client programmers and what’s not

-  Access control is usually referred to as “implementation hiding”

-  For encapsulation to work, methods should never directly access instance
fields in a class other than their own

-  Programs should interact with objects only through the object’s methods

-  Thus encapsulation gives objects “Black-Box” behavior which is key to reuse

page 14 © Jacobs University Bremen

Example

class Account {

 private String accNumber;

 private double balance;

 public double getBalance() {
 …
 return checkCredit(accNumber);
 }
 public void deposit(double amount) {
 balance += amount;
 }
 public void withDraw(double amount) {
 if (balance >= amount)
 // execute withdrawal
 }
 private double checkCredit(String accNum) {
 // check account credit
 }

}

Hidden
Method

Method used
internally

page 15 © Jacobs University Bremen

Method

A way to access, set or manipulate an object’s information

-  The fundamental element of an object-oriented program

-  Typically a method sends messages to other objects that invoke the
object’s methods

Example
class Account {

 private String accNumber;

 private double balance;

 public double getBalance() {
 return balance;
 }
 public void deposit(double amount) {
 balance += amount;
 }

}

Class
methods

page 16 © Jacobs University Bremen

Message Passing
The process by which an object sends data to another object or asks
the other object to invoke a method

Example

class Account {

 static private String accNumber = “001“;

 static private double balance = 200.0;

 public static double getBalance() {
 return balance;
 }

}

public class Client {

 public static void main(String[] args) {

 double bal = Account.getBalance();

 System.out.println("Balance is "+bal);

 }

}

Message
passing

page 17 © Jacobs University Bremen

Inheritance
Introduced in 1967 in Simula programming language

-  Mechanism that allows data and behaviour of one class to be included in or
used as the basis for another class

Example

-  Mammal: Person & Elephant subclasses

-  Person: Mammal as superclass

-  Person: Student & Female subclasses

page 18 © Jacobs University Bremen

Example

-  Expresses classification, specialization, generalization, approximation

-  It captures some form of abstraction called super-abstraction

CommunityMember

Administrator Teacher

Faculty Staff

Employee Student Alumnus

page 19 © Jacobs University Bremen

Polymorphism

General concept

-  The ability of different objects to respond to the same message and
each implement the method appropriately

page 20 © Jacobs University Bremen

Polymorphism

Basic Concept

-  Separates interface from implementation (decouples what from how)

-  Ability to hide different implementations behind a common interface

-  Ability of different objects to respond to the same message and invoke
different responses

-  In some literature, polymorphism liked to dynamic binding, late binding
or run-time binding

page 21 © Jacobs University Bremen

Taxonomy

Construct Concept Definition

Structure Abstraction Create classes to simply aspects of reality in problem domain

Class Description about types of objects (data + operations)

Encapsulation Hide internal structure & behavior to limit receivable messages

Inheritance One class is included in / used as the basis for another class

Object Identifiable item (real or abstract) containing data & operations

Behavior Message
Passing

Object sends data to another object /asks another object to
invoke a method

Method A way to access, set or manipulate an object’ information

Polymorphism Different classes respond to the same message and each
implement it appropriately

page 22 © Jacobs University Bremen

OO Design

Two steps
-  First find classes (abstraction); add methods to each class

-  Find relationships between classes

Rule of thumb
-  Classes correspond to nouns in the problem analysis; methods

correspond to verbs

-  Note that some classes are implicit

page 23 © Jacobs University Bremen

Example

In an order processing system, some of the nouns are

-  Item, Order, Shipping address, Payment and Account

The nouns may lead to classes Item, Order, etc

Consider verbs

-  Items are added to orders, Orders are shipped or cancelled, payments are
applied to orders

 Identify which object has major responsibility to carry out the task
q  Ex: new item is added to an order implies order object in charge
q  add should be a method of Order class; it takes an Item as parameter

page 24 © Jacobs University Bremen

Relationships

The most common relationships between classes are

-  Dependence (“uses-a”)

-  Aggregation (“has-a”)

-  Inheritance (“is-a”)

page 25 © Jacobs University Bremen

Relationships

Depends-on or “uses-a” relationship

-  The most obvious & most general e.g., Order class uses the Account class

-  A class depends on another class if its methods use or manipulate
objects of that class

-  Goal is to minimize coupling between classes

 Aggregation or “has-a” relationship

-  A very concrete relationship

-  Ex: an Order object contains Item objects

-  Containment means that objects of class A contain objects of class B

page 26 © Jacobs University Bremen

Relationships

Inheritance or “is-a” relationship

-  Expresses the relationship between more specialized and more general
class

-  Ex: an RushOrder class inherits from an Order class

-  The specialized RushOrder class has special methods for priority handling
and a different method for computing charges

-  Its other methods like adding items & billing are inherited from the Order class

-  In general, if class A extends class B, class A inherits methods from class B but
has more capabilities

page 27 © Jacobs University Bremen

Class Diagrams

UML (Unified modeling Language) is used to draw class diagrams

-  Class diagram

page 28 © Jacobs University Bremen

Defining Classes

Format

-  Use constructors to construct new objects from classes

-  Constructor: special method to create & initialize objects

-  Note that fields are declared outside method bodies

class ClassName {

 contructor1
 constructor2

 ...

 method1
 method2
 …

 field1 field2
 …

 }
Class Fields

Methods

Constructor

page 29 © Jacobs University Bremen

Example

class Employee {

 // constructor

 public Employee (String n, double s, int year, int month, int day) {
 name = n; ….

 } // end of constructor

 // a method
 public String getName() {
 return name;
 }
// more methods
 ……

 // instance fields
 private String name;
 private double salary;
 private Date hireDay;

}
Class Fields

Methods

Constructor

page 30 © Jacobs University Bremen

How to Creating Objects

Objects are created from classes using the new operator

-  The new operator allocates storage for the new object on the memory heap

-  In the code segment, “staff” is a reference to the Employee object

Method Invocation

Employee staff; // staff is a reference to an object of type Employee (initially null)

staff = new Employee(„Harry Hacker“, 2000, 2005, 7, 1); // creates the Employee object

Employee

staff

String name = staff.getName(); // This is how you call a method of the object

page 31 © Jacobs University Bremen

Example
// EmployeeTest.java

public class EmployeeTest { // only one public class in a source file

 public static void main() {…}
 …

}

 class Employee
{ //
constructor
 public Employee (String n, double s, int year, int month, int day)
{ …}

public String getName() {…}
public double getSalary() {…}
public Date getHireDay() {…}
public void raiseSalary(double byPercentage) {…}

 // instance fields
 private String name;
 private double salary;
 private Date hireDay;

}

public class
- has main method

-  one per source file

nonpublic class
- 0 or more

page 32 © Jacobs University Bremen

Defining Classes

 class Employee
{ //
constructor
 public Employee (String n, double s, int year, int month, int day)
{ …}

public String getName() {…}
public double getSalary() {…}
public Date getHireDay() {…}
public void raiseSalary(double byPercentage) {…}

 // instance fields
 private String name; // accessed by Employee class methods only
 private double salary; // accessed by Employee class methods only
 private Date hireDay; // accessed by Employee class methods only

}

public methods
à any method in
any class can call
these methods

private fields
à no outside
method can read or
write these fields

Two fields are themselves object references : ‘name’ and ‘hireDate’

-  A class can have fields of class type

page 33 © Jacobs University Bremen

Constructors

-  A constructor method is called during object creation

-  Sets instance fields for the Employee object referenced by emp as follows

 class Employee
{ //
constructor
 public Employee (String n, double s, int year, int month, int day) {
 name = n;
 salary = s;
 GregorianCalender calendar = new GregorianCalender(year, month-1, day);
 hireDay = calender.getTime();

 }
…

}

Employee emp = new Employee(„James Bond“, 100000, 1950, 1, 1);

name = „ James Bond“;
salary = 100000;
hireDay = January 1, 1950;

page 34 © Jacobs University Bremen

Constructors

Constructor Properties

-  A constructor is always called with the new operator

-  A constructor has the same name as its class

-  A class can have more than one constructor

-  A constructor takes zero or more parameters

-  A constructor has no return value

page 35 © Jacobs University Bremen

Implicit Parameter (this)

Using this

-  Helps to distinguish between local variables and instance fields

 public void raiseSalary(double byPercent)
{ double raise =
this.salary * byPercent / 100;
 this.salary += raise;

 }

page 36 © Jacobs University Bremen

Static Fields and Methods

When an instance field is defined as final

-  The field must be initialized during object construction

-  The field may not be modified after object creation

-  Example

-  For mutable objects, final will not change the object reference, but the
object itself is not constant

class Employee
{
 …
 private final String name;

 }

page 37 © Jacobs University Bremen

Static Fields and Methods

Static Fields

-  There will be only one field per class

-  Static fields belong to the class, not individual objects (class-wide)

-  Example

-  Each employee object has its own id field

-  Only one nextId field that’s shared by all objects

-  Called as follows

class Employee
{
 …
 private int id;
 private static int nextId = 1;

 }

ClassName.staticFieldName;

Employee.nextId; // for Example
Employee.nextId

page 38 © Jacobs University Bremen

Static Fields and Methods

Constants

-  Static constants are commonly used

-  Static constants declaration preceded by static final

-  Example

-  The constant is called like Math.PI

-  Class fields should be declared private, but public constants are OK

-  Other examples of public constants

public class Math
{
 …
 public static final double PI = 3.14159; }

public class System
{
 …
 public static final PrintStream out = …; }

page 39 © Jacobs University Bremen

Static Fields and Methods

Static Methods

-  Class methods that don’t operate on objects

-  Example

-  Does not use any Math object to carry its task

-  Static methods don’t operate on objects
ž  Can’t access instance fields from a static method
ž  Static methods can access static fields within their class

-  Static methods are invoked by supplying the name of the class

Math.pow(x, a) // xa

public static int getNextId() {
 return nextId; // return static fields
 }

public static int getNextId() {
 return nextId; // return static fields

}

int n = Employee.getNextId();

page 40 © Jacobs University Bremen

Parameter Passing

Call by Value

-  Methods get the value that the caller provides

-  A method cannot modify the stored value of the variable

Call by Reference

-  Methods get the location of the variable that the caller provides

-  A method can modify the stored value of the variable

The Java Programming Language always uses call by value

-  A method gets a copy of all parameter values

-  A method cannot modify the contents of parameter variables passed to it

page 41 © Jacobs University Bremen

Example

There are two kinds of parameters

-  Primitive types (parameter values are not modified)

-  Object references (parameter value can be modified)

-  After a call to raiseSalary, the value of percent remains 10

-  The method cannot change a primitive type parameter

double percent = 10;
harry.raiseSalary(percent);

page 42 © Jacobs University Bremen

Example

Calling

-  Result – the salary has been tripled in the original object

-  Object references are passed by value in Java

public static void tripleSalary(Employee x) {

 x.raiseSalary(200); }

harry = new Employee(…);
tripleSalary(harry);

Employee

harry =

X =

copy reference salary tripled

page 43 © Jacobs University Bremen

Parameter Passing Summary

-  Primitive parameters are not modified

-  The state of an object parameter can be changed

-  A method cannot make an object parameter refer to a new object

page 44 © Jacobs University Bremen

Class Initialization
Overloading

-  Occurs if several methods have the same name, but different parameters

-  The compiler distinguishes overloaded methods by their signature

-  A method signature is a combination of:
q  A method’s name
q  The number of parameters
q  The type of parameters and
q  The order of parameters

-  A method call cannot be distinguished by return types

-  In Java, any method (including constructors) can be overloaded

page 45 © Jacobs University Bremen

Example

The String class has four public methods called indexOf

indexOf(int)
indexOf(int, int)
indexOf(String)
indexOf(String, int)

page 46 © Jacobs University Bremen

Default Field Initialization

If a class provides at least one constructor, its illegal to construct objects
without construction parameters

When no constructor is given, default values for fields are set

-  Fields are automatically set to default values as follows
q  Numbers are set to 0
q  Boolean are set to false
q  Object references are set to null

page 47 © Jacobs University Bremen

Default Field Initialization

Default Constructors

-  A constructor with no parameters

public Employee()
{
 name = „“;
 salary = 0;

 hireDay = new Date();

}

page 48 © Jacobs University Bremen

Explicit Initialization

Values are assigned to fields as part of the declaration

-  Fields can be assigned values during the class definition

-  The assignment is carried out before the constructor executes

class Employee
{
 …
 private String name = „“;

}

page 49 © Jacobs University Bremen

Initialization Blocks

This is a third way to initialize fields in a class

-  Block of code that is executed whenever an object of a class is executed

-  Example

 class Employee
{
 public Employee (String n, double s, int year, int month, int day) {
 …

 }
 public Employee() {} {…}
 private static int nextId;
 private int id;
 private String name;
 private double salary;

 // object initialization block
 {
 id = nextId;
 nextId++;
 }

}

Block runs first
before any
constructor

page 50 © Jacobs University Bremen

Parameter Names

Parameter Names

1.  Prefix each parameter with an “a”

public Employee (String aName, double aSalary)
{
 name = aName;
 salary = aSalary;

}

public Employee (String name, double salary)
{
 this.name = name;
 this.salary = salary;

}

2.  Use instance variables with the same name as corresponding field
name, and this to distinguish them in method body

page 51 © Jacobs University Bremen

Object Destruction

There is no explicit destructor methods to reclaim unused memory

Java relies on automatic garbage collection to reclaim memory

However some objects use non-Java resources which must be
reclaimed prior to garbage collection (e.g., files, handles, etc)

page 52 © Jacobs University Bremen

Object Destruction

The finalize method is invoked before the object is swept away and when the
VM exits

protected void finalize()
{
 super.finalize();
 …
}

-  The finalize method guarantees that certain actions are performed before
an object is garbage collected or before the VM exits

-  Objects that allocate external resources should provide a finalize method

page 53 © Jacobs University Bremen

Example

 public class ProcessFile {
 private Stream file;
 public ProcessFile (String path) {
 file = new Stream(path);

 }

 public void close() {
 if (file != null) {
 file.close();
 file = null;
 }
 }

 protected void finalize() throws Exception {
 super.finalize();
 close();
 }
 }

page 54 © Jacobs University Bremen

Class Design Hints

-  Always keep data private

-  Always initialize data

-  Not all fields need individual field accessors and mutators

page 55 © Jacobs University Bremen

Class Design Hints

-  Use standard form for class definitions

-  Break-up classes with too many responsibilities

-  Let names of classes and methods reflect their responsibilities
q  Names – nouns
q  Methods - verbs

-  accessor methods begin with get (e.g., getSalary)
-  Mutator methods begin with set (setSalary)

page 56 © Jacobs University Bremen

Reading Assignment

 Horstmann, C. & Cornell, G. (2013) Core Java, Volume I-Fundamentals, 9th
Edition. Prentice Hall. Chapter 4.

