
Fall Semester 2015
Lecture 5: Packages

Instructor: Jürgen Schönwälder

Slides: Bendick Mahleko

320341 Programming in Java

page 2 © Jacobs University Bremen

Objectives

The objective of this lecture is to

-  Introduce packages in Java

page 3 © Jacobs University Bremen

The Package: The library unit
Package (Java keyword package)

-  Bundles together components into a cohesive library unit

-  Help in organizing your work

-  Separate your work from code libraries provided by others

-  Packages guarantee the uniqueness of class names

Example

-  The standard Java library is distributed over a number of packages

-  Ex: java.lang, java.util, java.net and so on

-  The standard Java library is hierarchically organized

-  Standard Java packages are inside the java and javax package hierarchies

page 4 © Jacobs University Bremen

Naming Packages

Use domain name written in reverse

-  Ex: de.jacobs_university

-  The package can then be further subdivided into subpackages

-  Ex: de.jacobs_university.eecs

From a compiler’s viewpoint, nested packages not related

-  de.jacobs_university and de.jacobs_university.eecs
packages have nothing to do with each other

-  Each has its own independent collection of classes

page 5 © Jacobs University Bremen

Class Importation

A class can use all classes from its own package and all public classes
from other packages

Public classes in other packages can be accessed in two ways:

1.  Add full package name in front of every class name

2.  Use the import statement to refer to classes in the imported package
-  You can import the whole package or specific classes

-  Place the import statement at the top of the source file, but below
the package statement

java.util.Date today = new java.util.Date();

page 6 © Jacobs University Bremen

Example

Import all classes in java.util package as follows:

then use:

without a package prefix

Importing a specific class

-  The java.util.* is less tedious
-  It has no negative effect on code size

Date today = new Date();

import java.util.*;

import java.util.Date;

page 7 © Jacobs University Bremen

Importation Issues

-  The * notation is used only to import a single package

-  You can’t use java.* or java.*.* to import all packages with java prefix

import java.util.*;
import java.sql.*;
...

Date today; // Error message

page 8 © Jacobs University Bremen

Static Imports

Static import allows importing of static methods and fields, not just
classes (since JDK 5.0)

-  Now you can use static methods & fields of the System class

-  You can also import a specific method

-  Applications: (1) Mathematical functions (2) Cumbersome constants

out.println(„Goodbye, World“); // System.out
exit(0); // System.exit

import static java.lang.System.*;

import static java.lang.System.out;

sqrt(pow(x, 2)) + pow(y, 2) clearer than
Math.sqrt(Math.pow(x, 2)) + Math.pow(y, 2)

page 9 © Jacobs University Bremen

Adding a Class to a Package

Put the name of the package at the top of source file

-  Example

package com.horstmann.corejava;

// import statements

public class Employee {
 …
}

page 10 © Jacobs University Bremen

Declaration Order

A Java source code file must have the following order:

1.  A package declaration (if any)

2.  Import declarations (if any) and

3.  Class declarations

-  Only one of the class declarations in a particular file can be public

-  Non-public classes are in a package to support the reusable classes in
the package

page 11 © Jacobs University Bremen

Default Package

If no package is declared, then classes in the source file belong to the
default package

The default package has no package name

-  Place files in a package into subdirectory matching the full package name

-  Files in the package name

com.horstmann.corejava

-  should be stored in a directory

com/horstmann/corejava in Unix or

com\horstmann\corejava in Windows

page 12 © Jacobs University Bremen

Compilation and Execution

Compile & run classes from the base directory

-  javac com/mycompany/PayrollApp.java
-  java com.mycompany.PayrollApp

. (base directory)
com/

 horstmann/
 corejava/

 Employee.java

 mycompany/

 PayrollApp.java

page 13 © Jacobs University Bremen

Classpaths

The search order is as follows:

1.  The Java class loader first searches the standard Java classes

2.  The class loader then searches optional packages

3.  The class loader searches the classpath
-  The classpath contains a list of locations in which classes are stored,

each separated by a folder separator (;) on Windows and (:) on Unix/
Linux/ Mac OS X

-  By default the classpath consists only of the current directory

-  You can change the default by providing a
-classpath option to the javac compiler or

-  Setting the CLASSPATH environment variable

