
Fall Semester 2014
Lecture 7: Inheritance, Polymorphism, Abstract Classes

Instructor: Jürgen Schönwälder
Slides: Bendick Mahleko

320341 Programming in Java

page 2 © Jacobs University Bremen

Outline

-  Objectives

-  Inheritance

-  Polymorphism

-  Abstract Classes

page 3 © Jacobs University Bremen

Objectives

The objective of this lecture is to

-  Introduce inheritance and polymorphism

-  Introduce design guidelines for using inheritance and polymorphism

page 4 © Jacobs University Bremen

Reuse
Our Aim

-  We want to apply previous knowledge to the current problem

-  We want to reuse existing functionality to the current problem

We can achieve this by

-  Using Composition (sometimes called Black Box Reuse)
  obtain new functionality by using aggregation
  new object is an aggregation of existing components

-  Using Inheritance (sometimes called While Box Reuse)
  obtain new functionality by using inheritance

page 5 © Jacobs University Bremen

Forms of Inheritance
Inheritance for describing taxonomies

-  Detected by specialization

-  Detected by generation

Inheritance for reuse

-  Specification inheritance
  Sometimes called subtyping

-  Implementation inheritance (sometimes called class inheritance)
  Similar class already exists e.g., wants to implement a Stack & List
  Operations may exhibit undesired behavior

page 6 © Jacobs University Bremen

Introduction to Inheritance
‪ Create a new class as a type of an existing class (inheritance)

  The new class inherits methods and fields of an existing class
  The new methods and fields can be added to the newly created class
  The inherited methods can be adapted to new class

 The lecture focuses on inheritance

-  Inheritance is one of the cornerstones of OOP

-  The “is-a” relationship is the hallmark of inheritance

page 7 © Jacobs University Bremen

Introduction to Inheritance

The Java keyword extends is used to denote inheritance

-  Manager is a new class that derives from the Employee class

class Employee
{
// instance fields

 public String getName() {…}
public double getSalary() {…}
public Date getHireDay() {…}
public void raiseSalary(double byPercentage) {…}

}

// inherit from Employee class

class Manager extends Employee {

 public setBonus (double bonus) {
 this.bonus = bonus;

 }
private double bonus;
}

subclass,
derived class,
child class

superclass,
base class,
parent class

page 8 © Jacobs University Bremen

Introduction to Inheritance

The subclass introduced a new field and method

// inherit from Employee class

class Manager extends Employee {
 private double bonus;
 …

 public setBonus (double bonus) {
 this.bonus = bonus;
 }
 }

-  A Manager object can apply the setBonus method

-  An Employee object cannot apply the setBonus method
ž  setBonus is not among the set of methods in the Employee class

-  However a Manager object can use Employee methods

-  Methods Inherited from the superclass can be used by subclass objects

page 9 © Jacobs University Bremen

Introduction to Inheritance

Observe that:

-  A subclass normally adds its own fields and methods

-  Therefore, a subclass is more specific than its superclass

-  A subclass represents a more specialized group of objects

-  Typically a subclass exhibits the behavior of its superclass and additional
behaviors that are specific to the class

  That is why inheritance is sometimes referred to as specialization

  Superclasses tend to be “more general” and subclasses “more specific”

page 10 © Jacobs University Bremen

Introduction to Inheritance

Direct superclass

-  The superclass from which the subclass explicitly inherits

Indirect superclass

-  Any class above the direct superclass in the class hierarchy
-  In Java the class hierarchy begins with class Object (java.lang.Object)

Every class in Java directly or indirectly extends the class Object

page 11 © Jacobs University Bremen

is-a Relationship versus has-a Relationship

Is-a represents inheritance

-  An object of a class can also be treated as an object of its superclass

-  Example: a car is a vehicle

-  Superclass objects cannot be treated as objects of their subclasses

-  Ex. All cars are vehicles, but not all vehicles are cars

Has-a represents composition

-  An object contains as its members, references to other objects

-  Ex. a car has a steering wheel (and a car object has a reference to a steering
wheel object)

-  Ex. Given the classes Employee, BirthDate, TelephoneNumber we can say
an Employee has-a BirthDate and an Employee has-a TelephoneNumber

page 12 © Jacobs University Bremen

Inheritance Hierarchy

Inheritance hierarchy for university CommunityMembers

CommunityMember

Faculty Staff

Employee Student Alumnus

page 13 © Jacobs University Bremen

Method Overriding

Adapt some superclass methods to specialized needs of the subclass

This is achieved by redefining appropriate superclass methods

The technique of redefining superclass methods in the subclass is
called method overriding

 In summary, a subclass can:

1.  Add new fields

2.  Add new methods

3.  Override superclass methods

A subclass cannot take away superclass fields or methods

page 14 © Jacobs University Bremen

Method Overriding

Example class Employee {
 private String name;
 private double salary;
 private Date hireDay;
 …

 public Employee (String n, double s, int year, int month, int day) {
 …
 }
 public double getSalary() { return salary; }

}

class Manager extends Employee {
 …
 public double getSalary() {
 double baseSalary = super.getSalary();
 return baseSalary + bonus;
 }
 private double bonus;
 }

Method
getSalary()
overridden in
subclass

super calls a
superclass method

page 15 © Jacobs University Bremen

Access Modifiers

A class’s public members are accessible wherever the program has a
reference to an object of that class or one of its subclasses

A class’s private members are accessible only from within the class itself

A superclass’s private members are not inherited by its subclasses!

page 16 © Jacobs University Bremen

Access Modifiers

A class’s protected members can be accessed by

(1) members of that superclass,

(2) members of its subclasses,

(3) members of other classes in the same package

-  protected members also have package access

All public and protected superclass members retain their original access
modifier when they become members of the subclass

page 17 © Jacobs University Bremen

Access Modifiers Summary

Visible to the class only (private)

Visible to the world (public)

Visible to the package and all subclasses (protected)

Visible to the package – the (default). No modifiers are needed

page 18 © Jacobs University Bremen

Access Modifiers Summary

A subclass cannot access the private fields of its superclass

Sometimes you want to restrict a method to subclasses only

Declare the class feature as protected

protected features in Java are visible to all subclasses as well as to
all other classes in the same package!!

page 19 © Jacobs University Bremen

Superclass Constructor

The superclass constructor is called using special super syntax

-  If a superclass constructor is not called explicitly, the default (no
parameter) constructor is invoked

class Manager extends Employee {
 public Manager(String n, double s, int year, int mth, int day) {
 super(n, s, year, mth, day);
 bonus = 0;
 }
 private double bonus;
 }

  Calls the superclass constructor
  Must be the first statement in

subclass constructor

Subclass
constructor

page 20 © Jacobs University Bremen

Example

class Employee {
 public Employee (String n, double s, int year, int month, int day) {
 …
 }
 public double getSalary() {return salary;}
 …
 private String name;
 private double salary;
 private Date hireDay;

}

class Manager extends Employee {
 private double bonus;

 public Manager(String n, double s, int year, int mth, int day) {
 super(n, s, year, mth, day); bonus = 0;
 }

 public setBonus (double bonus) {
 this.bonus = bonus;

 }

}

page 21 © Jacobs University Bremen

Polymorphism

Example: populate the array with a mix of managers & employees

Manager boss = new Manager(„Carl“, 80000, 1987, 12, 15);
boss.setBonus(5000);

Employee [] staff = new Employee[3];
staff[0] = boss; // The actual type of staff[0] is Manager
staff[1] = new Employee(„Harry“, 50000, 1989, 10, 1);
staff[2] = new Employee(„Tommy“, 40000, 1990, 3, 15);

for (Employee e : staff) System.out.println
(e.getName()+“ „ +e.getSalary());

// Salary printout
Carl 85000 // base salary + bonus printed – Manager object
Harry 50000 // base salary printed – Employee object
Tommy 40000 // base salary printed – Employee object

Manager object
created

Employee objects

picks the correct
getSalary() method

page 22 © Jacobs University Bremen

Polymorphism

-  The virtual machine knows about the actual type of an object,
hence invokes the correct method

-  The ability of object variables like e to refer to multiple actual
types is called polymorphism

-  Automatically selecting appropriate method at runtime is called
dynamic binding

page 23 © Jacobs University Bremen

Polymorphism

A collection of classes extending from a common superclass is called an
inheritance hierarchy

The path from a particular class to its ancestors in the inheritance hierarchy
is called its inheritance chain

Java does not support multiple inheritance!!

Employee

Manager Secretary Programmer

Executive

Inheritance
Hierarchy

page 24 © Jacobs University Bremen

Polymorphism

How do we determine if inheritance is the correct design tool?

-  The “is-a” rules states that every object of the subclass is an object of
the superclass

-  You can also apply the substitution principle which states:

-  “You can use a subclass object whenever the program expects
superclass object”

Example:

Employee emp;

emp = new Employee(…); // Employee object expected

emp = new Manager(…); // OK, Manager can e used as well.

page 25 © Jacobs University Bremen

 Object variables are polymorphic

-  A variable of type Employee can refer to objects of type Employee or to
an object of any subclass of the Employee class i.e., Manager,
Executive, Secretary, etc.

-  It is illegal in Java to assign a superclass reference to a subclass variable

Polymorphism

Manager m = staff[i]; // ERROR – not all employees are managers

page 26 © Jacobs University Bremen

Dynamic Binding: The Principle
When a method call is applied to an object, the compiler:

-  Enumerates all class methods plus superclass public methods with the
same name

-  Performs overloading resolution by finding methods with matching
signatures

page 27 © Jacobs University Bremen

Dynamic Binding: The Principle

-  If the method is private, static, final or a constructor, the compiler
knows exactly which method to call (static binding);

-  otherwise dynamic binding (late binding, run-time binding) is used

-  When using dynamic binding, the VM must use the version of the
method appropriate for the actual type of the referred to object

page 28 © Jacobs University Bremen

Example

-  Employee class inherits from Object class; we’ve ignored these methods

-  Method e.getSalary() is resolved at runtime as follows:

Employee: {(getName(), Employee.getName());
 (getSalary(), Employee.getSalary());
 (getHireDay(), Employee.getHireDay()); (raiseSalary

(double), Employee.raiseSalary(double)) }
Manager: {(getName(), Employee.getName());

 (getSalary(), Manager.getSalary());
 (getHireDay(), Employee.getHireDay()); (raiseSalary

(double), Employee.raiseSalary(double)), (setBonus(double),
Manager.setBonus(double)) }

determine actual
type of e

look-up defining class
for getSalary() signature VM call the method

page 29 © Jacobs University Bremen

Final Classes and Methods
Preventing Inheritance

-  Use keyword final to prevent a class from being extended

Preventing a method from being overridden

-  Use final modifier to prevent a method from being overridden

final class Executive extends Manager {
 …..
 }

class Employee {
 …..
 public final String getName() {
 return name;
 }
 …
 }

page 30 © Jacobs University Bremen

Final Classes and Methods

Note:

-  A final field cannot be changed after the object is created

-  If a class is declared final, only the methods, not the fields are
automatically final

Why define final methods and class?

-  Semantics preservation of class and methods

-  Example getTime and setTime methods of Calender class are final

-  The String class is a final class

page 31 © Jacobs University Bremen

Object Class

The ultimate ancestor – Every class in Java extends the Object class

-  Use a variable of type Object to refer to objects of any type

Services offered by the Object class

 Object obj = new Employee(„Harry Hacker“, 35000);

Method Description

equals Tests if one object references are identical

getClass Returns the class of an object

hashCode Returns an integer derived from the object

toString Returns a String representation of an object

clone Creates a clone of an object

page 32 © Jacobs University Bremen

Casting

Forcing conversion from one type to another is casting

Converts value of expression x into an int, discarding the fractional
part

Converting object reference from one class to another

-  Cast in order to use an object in its full capacity after its actual type is
temporarily forgotten

double x = 3.405;
int nx = (int) x;

Manager boss = (Manager) staff[0];

page 33 © Jacobs University Bremen

Upcasting
Upcasting is always safe

-  The superclass cannot have a bigger interface than the subclass

Every message sent through superclass interface is guaranteed to be
accepted. Why?

Example

Manager boss = (Manager) staff[0]; // OK

page 34 © Jacobs University Bremen

Downcasting

Might promise too much in a downcast

The virtual machine checks every cast operation

-  ClassCastException at run-time if cast operation is not type-safe

Example

Use instanceof to check if cast will succeed

Manager boss = (Manager) staff[1]; // ERROR. WHY?

if (staff[1] instanceof Manager) // always check if cast will succeed
boss = (Manager) staff[1];

page 35 © Jacobs University Bremen

Casting Notes

Compiler error if no chance that the cast will succeed

Cast Notes

-  Can cast only within inheritance hierarchy

-  Use instanceof to check before casting from superclass to a
subclass

-  Its usually not a good idea to convert object types using casting

-  Correct methods are automatically located using dynamic binding

Date c = (Date) staff[1]; // Compile-time error : Date not a subclass of Employee

page 36 © Jacobs University Bremen

Abstract Classes

totalReceipts
collectMoney()
makeChange()
dispenseItem()

VendingMaschine

numberOfCups
coffeeMix
heatWater()
addSugar()
addCreamer()
dispenseItem()

CoffeeMachine

cansOfBeer
cansOfCola
chill()
dispenseItem()

SodaMachine

bagsofChips
numberOfCandyBars
dispenseItem()

CandyMachine

dispenseItem()
dispenseItem() must be
implemented in each subclass.

(Bruegge & Dutoit, 2003)

page 37 © Jacobs University Bremen

Abstract Classes

Classes become more general up the inheritance hierarchy

Abstract class

-  An abstract method has no implementation inside the class of declaration

-  A class with one or more abstract methods must itself be declared abstract

-  abstract classes can have concrete data and methods

Person

Employee Student

abstract class Person {
 …..
 public abstract

String getDescription() ; }

- General class
- Basis for other classes

page 38 © Jacobs University Bremen

Abstract Classes

‪ Abstract method:

-  A method with a signature but without an implementation. Also called abstract
operation

‪ Abstract class:

-  A class which contains at least one abstract method is called abstract class

page 39 © Jacobs University Bremen

Abstract Classes

Example

abstract class Person {
 private String name;

 public Person (String aName) {
 name = aName;
 }
 public abstract String getDescription();

 public String getName() { return name; }

}

-  The getDescription() method has no implementation so it must be declared
abstract

-  The Person class must also be declared abstract since it contains an abstract
method getDescription()

page 40 © Jacobs University Bremen

Abstract Classes

‪ Abstract methods are placeholders for methods to be implemented in
subclass

‪ We make abstract classes concrete by extending them

‪ If some or all abstract methods are not defined, then tag the subclass
as abstract

page 41 © Jacobs University Bremen

Abstract Classes

Note: A class can be declared abstract though it has no abstract
methods

Abstract classes cannot be instantiated

We can create object variables of abstract classes

page 42 © Jacobs University Bremen

Abstract Classes

Examples

-  You cannot create objects from an abstract class

new Person(“Vince Vu“); // Error

page 43 © Jacobs University Bremen

Abstract Classes

Examples

-  p is a variable of the abstract type Person that refers to an instance of a
nonabstract subclass Student

-  All methods in Student class are concrete, thus the class is no longer abstract

Person p = new Student(“Vince Vu“, „Economics“); // OK

class Student extends Person {
 public Student (String aName, String aMajor) {
 super(aName);
 major = aMajor;
 }
 public String getDescription() {return „a student majoring in “+major;}
 private String major;
 }

page 44 © Jacobs University Bremen

Abstract Classes

Example

-  The variable p does not refer to a Person object

-  p refers to an object of a concrete class such as Employee or Student

-  For these objects, the method getDescription is defined

Person[] person = new Person[2];
people[0] = new Employee(…);
people[1] = new Student(…);

// print names and descriptions of these objects

for (Person p : person)
 System.out.println(p.getName() + „, “ + p.getDescription());

Person

Employee Student

page 45 © Jacobs University Bremen

Design Hints

Hints

-  Place common operations and fields in the superclass

-  Don’t use protected fields if you can? WHY?

-  Use inheritance to model the “is-a” relationship

-  Don’t use inheritance unless all inherited methods make sense

-  Don’t change expected behavior when you override a method

-  Use polymorphism, not type information

page 46 © Jacobs University Bremen

Reading Assignment

Core Java 2 Volume I, Chapter 5. Inheritance by Horstmann and Cornell

Bruegge, B. & Dutoit, A. (2003) Object Oriented Software Engineering: Using
UML, Patterns and Java. Prentice Hall .

