
Fall Semester 2014
Lecture 10: The Java I/O System

Instructor: Jürgen Schönwälder
Slides: Bendick Mahleko

320341 Programming in Java

page 2 © Jacobs University Bremen

Objectives

This lecture introduces the following

-  Java Streams

-  Object Serialization in Java
-  File Management

page 3 © Jacobs University Bremen

Introduction

Storage of data in variables and collections is temporary

-  Data is lost when a local variables goes out of scope or when the program
terminates

-  Computers use files for long term retention of large amounts of data

-  Data that is maintained in files is called persistent data

-  Computers store files on secondary storage devices such as hard disks

page 4 © Jacobs University Bremen

Introduction

Java I/O provides communication with devices

-  Example devices are files, console, networks, memory blocks etc.

There are various types of communication

-  Examples include: sequential, random-access, binary, char, lines,
words, objects, ...

 Java provides a "mix and match" solution based on:

-  Byte-oriented I/O streams (ordered sequences of bytes)

-  Character-oriented I/O streams (ordered sequences of characters)

page 5 © Jacobs University Bremen

Introduction

Input stream

-  An object from which a sequence of bytes can be read (InputStream)

Output stream

-  An object to which a sequence of bytes can be written (OutputStream)

Example

-  System streams System.in (out & err) are available to all Java programs

-  System.in is an instance of the BufferedInputStream class

-  System.out is an instance of PrintStream class

I/O involves creating appropriate stream objects for your task

page 6 © Jacobs University Bremen

Reading Bytes

Streams read and write 8-bit values to/from various data sources:

Examples of streams: Files, Network connections, Memory Blocks

There are more than 60 different stream types

Generality of Processing

-  Files, network connections, memory blocks, etc are handled in the same way

page 7 © Jacobs University Bremen

Byte-Oriented vs Unicode-Oriented

Streams that input and output bytes to files are called byte-oriented
streams

-  The int value 5 would be stored using the binary format of 5:
00000000 00000000 00000000 00000101

-  The numeric value can be used as an int in calculations

-  Files created using byte-oriented streams are called binary files

-  Binary files are read by a program that converts the data to a
human-readable format

page 8 © Jacobs University Bremen

Bytes-Oriented vs Unicode-Oriented

Streams that input and output characters to files are called character-
oriented (Unicode-oriented) streams

-  Ex. value 5 would be stored using the binary format of character 5
or 00000000 00110101 (character 5 in Unicode character set)

-  The character 5 is a character that can be used in a string

-  Files created using character-oriented streams are called text files

-  Text files can be read by text editors

page 9 © Jacobs University Bremen

Bytes-Oriented vs Unicode-Oriented

Byte-oriented streams versus Unicode-oriented characters

-  Byte-oriented streams are inconvenient for processing Unicode data

-  Classes inheriting from Reader and Writer abstract classes are used for
processing Unicode data

Byte-Oriented Streams Processing Unicode-Character Oriented Processing

InputStream Reader

OutputStream Writer

The Java I/O system is based on these four classes

-  A zoo of classes inherit from the four abstract classes

page 10 © Jacobs University Bremen

InputStream and OutputStream Classes

The InputStream class has an abstract method

abstract int read() throws IOException

Returns one byte, or -1 if end of input source is encountered

-  The OutputStream class also has an abstract method

abstract void write(int b) throws IOException

Writes one byte to an output location

page 11 © Jacobs University Bremen

Reader and Writer Classes

Basic methods are similar to ones for the InputStream & OutputStream

abstract int read() throws IOException

Returns a Unicode code unit, or -1 if end of input source is encountered

-  The Writer class has an abstract method

abstract void write(int b) throws IOException

Writes one Unicode code unit to an output location

page 12 © Jacobs University Bremen

Basic File Processing

The typical pattern for processing a file is:

1.  Open a file

2.  Check if the file is opened

3.  If the file is opened, read/write from/to the file

4.  Close the file

-  Input & output streams have close() method (output also uses flush())

Closing a File

-  Closing a file releases system resources

-  Closing a file also flushes the buffer to the output stream

page 13 © Jacobs University Bremen

I/O Class Hierarchy

Java I/O system is based on four abstract classes

-  InputStream, OutputStream, Reader, Writer

Audio
InputStream

File
InputStream

ByteArray
InputStream

Filter
InputStream

Object
InputStream

InputStream

…

Buffered
InputStream

Data
InputStream

…

FileInputStream represents an input stream that is attached to a disk file

page 14 © Jacobs University Bremen

I/O Class Hierarchy

FileOutputStream represents an output stream that is attached to a
disk file

ByteArray
OutputStream

Filter
OutputStream

File
OutputStream

Object
OutputStream

OutputStream

Piped
OutputStream

Buffered
OutputStream PrintStream Data

OutputStream
…

page 15 © Jacobs University Bremen

Example 1

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
/** souce: The Java tutorial textbook, 5th edition */
public class CopyBytes {
 public static void main(String [] argv) throws IOException {
 FileInputStream in = null;
 FileOutputStream out = null;

 try {
 in = new FileInputStream(“xanadu.txt”);
 out = new FileOutputStream(“Outagain.txt”);
 int c;
 while ((c = in.read()) != -1)
 out.write(c);
 } finally {
 if (in != null) in.close();
 if (out != null) out.close();
 } // end of finally
 } // end of main

} // end of CopyBytes

page 16 © Jacobs University Bremen

I/O Class Hierarchy

Reader Hierarchy

Buffered
Reader

Filter
Reader

CharArray
Reader StringReader

Reader

InputStream
Reader PipedReader

FileReader

page 17 © Jacobs University Bremen

I/O Class Hierarchy

Writer Hierarchy

Buffered
Writer

Filter
Writer

CharArray
Writer StringWriter

Writer

OutputStream
Writer PrintWriter PipedWriter

FileWriter

page 18 © Jacobs University Bremen

Example 2

import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
/** souce: The Java tutorial textbook, 5th edition */
public class CopyCharacter {
 public static void main(String [] argv) throws IOException {
 FileReader inputStream = null;
 FileWriter outputStream = null;

 try {
 inputStream = new FileReader(“xanadu.txt”);
 outputStream = new FileWriter(“Characteroutput.txt”);
 int c;
 while ((c = inputStream.read()) != -1)
 outputStream.write(c);
 } finally {
 if (inputStream != null) inputStream.close();
 if (outputStream != null) outputStream.close();
 } // end of finally
 } // end of main

} // end of CopyCharacter

page 19 © Jacobs University Bremen

File Stream Processing

FileInputStream and FileOutputStream give I/O streams attached
to a disk file

Audio
InputStream

File
InputStream

ByteArray
InputStream

StringBuffer
InputStream

Object
InputStream

InputStream

…

FileInputStream fin = new FileInputStream("employee.dat");

Give the filename or full path name of the file in a constructor

-  Use the constant string File.separator as a file separator

-  OR

File f = new File("employee.dat");
FileInputStream fin = new FileInputStream(f);

page 20 © Jacobs University Bremen

Buffered Streams

Unbuffered I/O is inefficient because:

•  Each read/write is handled directly by the operating system

•  Each request triggers disk access, network activity etc which is expensive

-  Java implements buffered I/O streams to read data from a buffer

With buffered I/O

-  The native API is called only when the buffer is full (writing) or the buffer is
flushed or the buffered stream is closed

-  The native API is called only when the buffer is empty (reading)

page 21 © Jacobs University Bremen

Example 3

import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
/** souce: The Java tutorial textbook, 5th edition */
public class CopyBytesBuffered {
 public static void main(String [] argv) throws IOException {
 FileInputStream in = null;
 FileOutputStream out = null;

 try {
 in = new BufferedInputStream
 new (FileInputStream (“xanadu.txt”));
 out = new BufferedOutputStream (
 new FileOutputStream (“Characteroutput.txt”));
 int c;
 while ((c = in.read()) != -1)
 out.write(c);
 } finally {
 if (in != null) in.close();
 if (out != null) out.close();
 } // end of finally
 } // end of main

} // end of CopyBytesBuffered

page 22 © Jacobs University Bremen

Example 4

import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
/** souce: The Java tutorial textbook, 5th edition */
public class CopyCharacterBuffered {
 public static void main(String [] argv) throws IOException {
 FileReader inputStream = null;
 FileWriter outputStream = null;

 try {
 inputStream = new BufferedReader
 new (FileReader(“xanadu.txt”));
 outputStream = new BufferedWriter(
 new FileWriter(“Characteroutput.txt”));
 int c;
 while ((c = inputStream.read()) != -1)
 outputStream.write(c);
 } finally {
 if (inputStream != null) inputStream.close();
 if (outputStream != null) outputStream.close();
 } // end of finally
 } // end of main

} // end of CopyCharacterBuffered

page 23 © Jacobs University Bremen

Filtered Streams

Java’s IO package is built on the principal that

-  Each class should have a very focused responsibility (cohesion)

-  FileInputStream interacts with files: its job is to get bytes, not to analyze them

page 24 © Jacobs University Bremen

Filtered Streams

-  To read numbers, strings, objects etc., combine FileInputStream with other
classes whose responsibility is to group bytes or characters together

-  The combination is done by feeding an existing stream into the
constructor of another to get the additional functionality

-  The combined streams are called filtered streams

page 25 © Jacobs University Bremen

Filtered Streams

We have seen examples in previous slides, here are more:

-  To be able to read numbers from a file, first create a FileInputStream

-  Pass the FileInputStream reference to the constructor of a DataInputStream

FileInputStream fin = new FileInputStream("employee.dat");
DataInputStream din = new DataInputStream(fin);
double s = din.readDouble();

New stream with more capable interface

DataInputStream/ DataOutputStream

-  Has interface that allows to read/write all the basic Java types

page 26 © Jacobs University Bremen

Filtered Streams

Filtered Streams Cont…

ByteArray
OutputStream

Filter
OutputStream

File
OutputStream

Object
OutputStream

OutputStream

Piped
OutputStream

Buffered
OutputStream PrintStream Data

OutputStream
…

Audio
InputStream

File
InputStream

ByteArray
InputStream

Filter
InputStream

Object
InputStream

InputStream

…

Buffered
InputStream

Data
InputStream …

Superclasses of several classes that
add various functionality to process data

Virtual input streams

Virtual output
streams

Decorator (Filter or Wrapper) design
pattern

page 27 © Jacobs University Bremen

Filtered Streams

Filtered Streams Example

-  To support buffering and data input methods when reading files

DataInputStream din = new DataInputStream(
 new BufferedInputStream(
 new FileInputStream("employee.dat"))); Obtain stream

Buffer stream
Data input methods

Reading numbers from compressed zip file

ZipInputStream zin = new ZipInputStream(
 new FileInputStream("employee.zip"));

DataInputStream din = new DataInputStream(zin);

page 28 © Jacobs University Bremen

Data Streams

DataInput/ DataOutput interface

-  Data streams support binary I/O of primitive data values in Java

-  Data streams implement the DataInput and DataOutput interfaces

-  DataInputStream and DataOutputStream are the most widely used
implementations of the DataInput and DataOutput interfaces respectively

DataInput interface DataOutput interface

readDouble writeDouble

readShort writeShort

readInt writeInt

readLong writeLong

readFloat writeFloat

readBoolean writeBoolean

readChar writeChar

page 29 © Jacobs University Bremen

Text Streams

We have so far looked at binary I/O

-  It is fast and efficient, but is not easily readable by humans

-  Humans can better comprehend text I/O

Unicode

-  Java uses Unicode code units to represent texts

-  Local systems use their own encoding

-  Java provides stream filters that bridge the gap between local system and
Unicode

-  The Unicode processing classes all inherit from abstract classes
  Reader and Writer classes

page 30 © Jacobs University Bremen

Text Streams

InputStreamReader in = new InputStreamReader(System.in);

Example

-  An input reader that reads keystrokes from the console & converts to
Unicode

FileWriter out = new FileWriter("output.txt")

FileReader and FileWriter

-  Convenience classes for processing text strings from a file

-  Is equivalent to

FileWriter out = new FileWriter(new FileOutputStream("output.txt"));

page 31 © Jacobs University Bremen

Text Streams

The PrintWriter class

-  The class is used for text output

-  A print writer can print strings and numbers in text format

-  A print write must be combined with a destination writer

page 32 © Jacobs University Bremen

Text Streams

Writing to a PrintWriter

-  Use print and println used with System.out

String name = "Harry Hacker";
double salary = 75000;
out.print(name);
out.print(' ');
out.println(salary);

Harry Hacker 75000

PrintWriter out = new PrintWriter(new FileWriter("employee.txt"));

page 33 © Jacobs University Bremen

Text Streams

Reading Text Input

BufferedReader in = new BufferedReader(new FileReader("employee.txt"));
String line;

while ((line = in.readLine()) != null) {
 do something with line

}

-  Use the BufferedReader class and its readLine method to read data

-  Use the Scanner class to read text data

BufferedReader Example

page 34 © Jacobs University Bremen

Use of Streams

Writing Delimited Output

-  Delimited format imply each record is stored in a separate line

-  Instance fields are separated by delimiters

#Here is a sample set of records (firstname lastname|salary|year|month|day):

Harry Hacker|35500|1989|10|1
Carl Cracker|75000|1987|12|15
Tony Tester|38000|1990|3|15

page 35 © Jacobs University Bremen

Use of Streams

Write records using PrintWriter class

public void writeData(PrintWriter out) throws IOException {

 GregorianCalendar calendar = new GregorianCalendar();
 calendar.setTime(hireDay);
 out.println(name + "|"
 + salary + "|"
 + calendar.get(Calendar.YEAR) + "|"
 + (calendar.get(Calendar.MONTH) + 1) + "|"
 + calendar.get(Calendar.DAY_OF_MONTH));
}

page 36 © Jacobs University Bremen

Example

Reading Delimited Input

-  Read-in a line of text using the readLine method of BufferedReader

public void readData(BufferedReader in) throws IOException {

 String s = in.readLine();
 StringTokenizer t = new StringTokenizer(s, "|");

 String name = t.nextToken();
 double = salary = Double.parseDouble(t.nextToken());
 int y = Integer.parseInt(t.nextToken());
 int m = Integer.parseInt(t.nextToken());
 int d = Integer.parseInt(t.nextToken());

 GregorianCalendar calendar = new GregorianCalendar(y, m - 1, d);
hireDay = calendar.getTime();

}

page 37 © Jacobs University Bremen

Object Serialization

Object serialization:

-  An object is represented as a sequence of bytes

-  The serialized representation includes the object’s data as well as object
type information and the types of data stored in the object

A serialized object can be written to a file or send over a network

Object deserialization:

-  After a serialized object has been written to a file, it can be read from the
file and be deserialized

-  The type information and bytes that represent the object and its data can be
used to recreate the object in memory

page 38 © Jacobs University Bremen

Object Serialization

ObjectInputStream

-  Enables an entire objects to be read from a stream (e.g., file)

-  Implements the ObjectInput interface which contains a method
readObject

-  The method readObject reads and returns an Object from an
InputStream

-  Use the FileInputStream class to read from files

page 39 © Jacobs University Bremen

Object Serialization

ObjectOutputStream

-  Enables entire objects to be written to a stream (e.g., file)

-  Implements the ObjectOutput interface which contains a method
writeObject

-  The method writeObject takes an Object as parameter and writes
its information to an OutputStream

-  Use FileOutputStream to write serialized objects to files

page 40 © Jacobs University Bremen

Object Serialization

Serialization Process:

1.  A class must implement the Serializable interface to be serialized

2.  Open an ObjectOutputStream

3.  Call the writeObject method of ObjectOutputStream to save the
object

page 41 © Jacobs University Bremen

Object Serialization
Example: Saving an object

// The class to be saved must implement the Serializable interface
// The Serializable interface has no methods to be implemented

class Employee implements Serializable { … }

// first open an ObjectOutputStream object
ObjectOutputStream out = new ObjectOutputStream(

 new FileOutputStream(“employee.dat”));
//create the objects
Employee harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);
Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);

//save the objects by calling writeObject method
out.writeObject(harry);
out.writeObject(boss);

page 42 © Jacobs University Bremen

Object Serialization

To read the objects back

1.  First get an ObjectInputStream object

2.  Retrieve the objects in the order in which they were written

ObjectInputStream in = new ObjectInputStream(
 new FileInputStream("employee.dat"));

Employee e1 = (Employee) in.readObject(); //
Employee e2 = (Employee) in.readObject();

Note that saving a network of objects is a challenge see textbook,
(Horstmann & Cornell, 2013, Core Java, Vol II, 9th edition, Chapter 1)

page 43 © Jacobs University Bremen

File Management

The File class

-  A File can represent either a file or a directory

-  Example File constructors

// associates name of file or directory to File object
// name can contain path info – absolute or relative
public File (String name)
// example
File file = new File("test.txt");

public File (String pathToName, String name) // locates directory

// uses existing File object directory to locate file or directory
public File (File directory, String name)

public File (URI uri) // uses URI object to locate a file

page 44 © Jacobs University Bremen

File Management

Method Description

boolean exists() True if name specified as argument to File constructor is a file or
directory; false otherwise

boolean isFile() True if name specified as argument to File constructor is a file;.
false otherwise

boolean isDirectory() True if name specified as argument to File constructor is a
directory;. false otherwise

String getAbsolutePath() Returns absolute path of file or directory

String getName() Returns name of file or directory

String getPath() Returns path of file or directory

String getParent() Returns parent directory of file or directory

long length() Returns length of file in bytes; 0 returned if object represents dir

String[] list() Returns array of strings representing the contents of a directory

Common File methods (see API for complete listing)

page 45 © Jacobs University Bremen

Reading Assignment

-  Core Java, Volume II, Chapter 1. Streams and Files by Horstmann and
Cornell, 2013.

