
Fall Semester 2014
Lecture 11: Introduction to Concurrency

Instructor: Jürgen Schönwälder

Slides: Bendick Mahleko

320341 Programming in Java

page 2 © Jacobs University Bremen

Introduction

Multithreaded Programs

-  A program represents separate, independently running subtasks

-  Threads allow multiple activities to proceed concurrently

q  Example: typing data & printing at the same time in a text editor

q  Each independent task is called a Thread

-  A single program can have multiple concurrently executing threads

page 3 © Jacobs University Bremen

Introduction

Multithreaded Programs

-  Programs that run more than one thread at the same time

When to use Multithreading?

-  When part of your program is tied to a particular event or resource, you
don’t want to hang-up the whole program

-  Create a Thread to handle that part of the program

page 4 © Jacobs University Bremen

Definitions

Multitasking

-  A multitasking operating system can run more than one process at a time

-  CPU time is periodically provided to each process

 Preemptive Multitasking

-  OS interrupts programs without consulting with them to release the CPU

-  E.g., Unix/ Linux, Windows NT/ XP, Windows 9x (32-bit) and OS X

Co-operative (non-preemptive) Multitasking

-  Programs only interrupted when they are willing to yield control

-  E.g., Windows 3.x, Mac OS 9, OSs on devices like cell phones

page 5 © Jacobs University Bremen

Running Tasks in Separate Threads
Two approaches for implementing threads

1.  Implement Runnable interface (Thread class separate from main class)

2.  Inherit from Thread class (Makes the main class a Thread)

•  This approach is no longer recommended!

page 6 © Jacobs University Bremen

Running Tasks in Separate Threads

Approach 1: Implement Runnable interface (recommended approach)

public interface Runnable {
 void run();
}

class MyRunnable implements Runnable {
 public void run() {
 // task code
 }
}

Example

1. Place the code for the task into the run method of a class that
implements the Runnable interface

page 7 © Jacobs University Bremen

Running Tasks in Separate Threads

3. Construct a Thread object from the Runnable

Thread t = new Thread(r);

4. Start the Thread using the start method

t.start();

Tasks inside the run method can now be executed in parallel!

2. Construct object of your class

Runnable r = new MyRunnable();

Approach 1: Implement Runnable interface (recommended approach
continued …)

page 8 © Jacobs University Bremen

Running Tasks in Separate Threads

Example

-  Running the Thread (e.g. inside main class)

Ball b = new Ball();
 panel.add(b);
 Runnable r = new BallRunnable(b, panel);
 Thread t = new Thread(r);
 t.start();

class BallRunnable implements Runnable {
 …
 public void run()
 try {
 for (int i = 1; i <= STEPS; i++) {
 ball.move(component.getBounds());
 component.repaint();
 Thread.sleep(DELAY);
 }
 }
catch(InterruptedException e) {} }

…
 }

Independent
Thread

page 9 © Jacobs University Bremen

Running Tasks in Separate Threads

Approach 2: Inherit from Thread class (Not Recommended!)

-  Define Threads using a subclass of the Thread class

-  The Thread class has all methods necessary to create and run threads

class MyThread extends Thread {
 …
 public void run() {
 try {
 for (int i = 1; i <= STEPS; i++) {
 ball.move(component.getBounds());
 component.repaint();
 Thread.sleep(DELAY);
 } }
catch(InterruptedException e) {}
 }
 …
 }

Override the run
method to make
thread handle task

Code to be executed “simultaneously” with the other threads in the program

Thread class implements Runnable interface

page 10 © Jacobs University Bremen

Running Tasks in Separate Threads

Example

public class SimpleThread extends Thread {
 private int countDown = 5; private static int threadCount = 0;
 private int threadNumber = ++threadCount;
 public SimpleThread () { System.out.println("Making " + threadNumber);
 }
 public void run () {
 while(true) {
 System.out.println ("Thread " + threadNumber + "(" + countDown + ")");
 if(--countDown == 0) return;
 }
 }
 public static void main (String[] args) {
 for (int i = 0; i < 5; i++)
 new SimpleThread ().start();
 System.out.println ("All Threads Started");
 }
}

Thread
loop

Thread
creation

Condition to break out of loop

page 11 © Jacobs University Bremen

Running Tasks in Separate Threads

Sample Output Making 1
 Making 2
 Thread 1(5)
 Making 3
 Thread 1(4)
 Thread 2(5)
 Thread 3(5)
 Thread 1(3)
 Thread 2(4)
 Making 4
 Thread 3(4)
 Thread 1(2)
 Thread 2(3)
 Thread 3(3)
 Making 5
 Thread 4(5)

 Thread 1(1)
 Thread 2(2)
 Thread 3(2)
 All Threads Started
 Thread 5(5)
 Thread 4(4)
 Thread 2(1)
 Thread 3(1)
 Thread 5(4)
 Thread 4(3)
 Thread 5(3)
 Thread 4(2)
 Thread 5(2)
 Thread 4(1)
 Thread 5(1)

Note:

-  Each thread gets a portion of the CPU time to execute

-  Threads are not run in the order in which they were created!

page 12 © Jacobs University Bremen

Daemon Threads

Setting a thread to daemon

-  Call the Thread method setDaemon()

Provides general services in the background while the program is
running

-  The program terminates when all non-daemon threads have completed

-  Daemon threads are not part of the essence of the program

How to find if a thread is daemon

-  Call the method isDaemon() of the Thread class

-  If a thread is a daemon, all threads it creates are daemon

page 13 © Jacobs University Bremen

Daemon Threads

Example
class	 Daemon	 extends	 Thread	 {	
	 	 	 	 	 	 	 	 ...	
	 	 	 	 	 	 	 	 public	 Daemon()	 {	 	
	 	 	 	 	 	 	 	 	 	 	 setDaemon(true);	
	 	 	 	 	 	 	 	 	 	 start();	
	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 public	 void	 run()	 {	
	 	 	 	 	 	 	 while	 (true)	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 yield();	
	 	 	 	 	 	 	 	 }	
}	
	
public	 class	 Daemons	 {	
	 	 	 	 	 	 	 	 	 public	 static	 void	 main	 (String[]	 args)	 throws	 IOException	 {	
	 	 	 	 	 	 	 	 	 	 Thread	 d	 =	 new	 Daemon();	
	 	 	 	 	 	 	 	 	 	 	 	 	 System.out.println("d.isDaemon()	 =	 "	 +	 d.isDaemon());	
	 	 	 	 	 	 	 	 	 }	
}	

Sets thread to daemon

Starts thread

new thread created

page 14 © Jacobs University Bremen

Interrupting Threads

The interrupt method can be used to request termination of a thread

-  Each thread should occasionally check if it is interrupted

-  First call Thread.currentThread to get current thread

-  Next call is interrupted method

-  If the interrupted method is called on a blocked thread, the blocking call
(such as sleep or wait) is terminated by an InterruptedException

while (!Thread.currentThread().isInterrupted() && more work to do) {
 do more work
 }

page 15 © Jacobs University Bremen

Interrupting Threads

The run method has the form

public	 void	 run()	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 try	 {	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 ….	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 while	 (!	 Thread.currentThread().isInterrupted()	 &&	 more	 work	 to	 do)	 {	
	 	 	 	 	 	 	 	 	 	 do	 more	 work 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 }	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 }	 catch(InterruptedException	 e)	 { 	 	 	 	 	 	
	 	 //	 thread	 was	 interrupted	 during	 sleep	 or	 wait
	 	 	 	 	 	 	 	 	 	 	 	 }	 Hinally	 { 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 cleanup,	 if	 required	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 }	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 //	 exiting	 the	 run	 method	 terminates	 the	 thread	 	
	 	 	
}	

page 16 © Jacobs University Bremen

Example

The run method containing sleep method

public void run()
 try {
 ….
 while (more work to do) {
 do more work
 Thread.sleep(DELAY);
 }
 } catch(InterruptedException e) {
 // thread was interrupted during sleep or wait
 } finally {
 cleanup, if required
 }
 // exiting the run method
terminates the thread }

The sleep method calls InterruptedException if thread is
interrupted, so no need to check for thread interruption

page 17 © Jacobs University Bremen

Thread States
Threads can be in one of four states (New, Runnable, Blocked or Dead)

Preemptive scheduling

-  Thread is given a time-slice

Cooperative scheduling

-  Thread loses control when it
calls method like sleep or yield

Thread created with new
operator (new Thread(r)) new

runnable

dead

blocked

sleep

block on I/O

wait for lock

wait

done sleeping
I/O complete

lock available

notify

start

start run
method exit

-  A blocked thread reenters runnable state using the same route that blocked it!

-  Online simulation: http://courses.cs.vt.edu/~csonline/OS/Lessons/Processes/index.html

page 18 © Jacobs University Bremen

Dead Threads

A thread is dead for two reasons

1.  Dies a natural death when the run method exits normally

2.  Dies abruptly because an uncaught exception terminates the run

Find out if a thread is alive (in runnable or blocked state)

-  Call isAlive method – returns true if thread is in runnable or blocked state

page 19 © Jacobs University Bremen

Thread Properties

Thread Priorities

-  Every Thread has a priority

-  By default, a Thread inherits the priority of its parent thread
-  Increase priority of a thread by using setPriority method

-  Priority values (defined in Thread class)
q MIN_PRIORITY
q MAX_PRIORITY
q NORM_PRIORITY

-  Thread priorities are system dependent (e.g., in Sun JVM for Linux,
priorities are ignored)

page 20 © Jacobs University Bremen

Thread Groups

Thread Groups make it possible to work with a group of threads

-  Threads are categorized according to functionality

Constructing a Thread Group

String groupName = . . .;
ThreadGroup g = new ThreadGroup (groupName)

Must be unique
Add threads to the Group

Thread t = new Thread (g, threadName)

Thread belongs to the group g

page 21 © Jacobs University Bremen

Thread Groups

Find out if any threads of a particular group are still runnable

if (g.activeCount() == 0) {
 // all threads in the group g have stopped
}

Interrupt all threads in a group

g.interrupt(); // interrupts all threads in group g

page 22 © Jacobs University Bremen

Synchronization

Race condition

-  When two or more threads share access to the same object and if each
calls a method that modifies the state of the object, corrupted objects can
result

Synchronization Approaches in Java

-  Exclusion synchronization

-  Condition synchronization

page 23 © Jacobs University Bremen

Synchronization

Exclusion synchronization

-  Synchronization by mutual exclusion

Condition synchronization

-  Synchronization by cooperating threads

-  Makes use of exclusion synchronization

page 24 © Jacobs University Bremen

Synchronization

get-modify-set sequence on shared
Resources must be synchronized

Example: Suppose you want to perform the steps below using threads

-  Fetch bank balance

-  Increase balance by deposit amount

-  Write results back to account record

page 25 © Jacobs University Bremen

Synchronization

bal = a.getBalance();

bal += deposit;

a.setBalance(bal);

bal = a.getBalance();

bal += deposit;

a.setBalance(bal);

Race Condition

-  Thread #1 and thread #2 can modify bal in an interleaved way

-  How to prevent 2 threads from simultaneously writing & reading same object?

Thread #1 Thread #2

page 26 © Jacobs University Bremen

Synchronization

Synchronization is required for reliable communication between threads

as well as for mutual exclusion

Java uses 2 mechanisms to protect code block from concurrent access
-  Use synchronized keyword OR

-  ReentrantLock (JDK 5.0)

page 27 © Jacobs University Bremen

ReentrantLock

Basic outline for protecting code block

myLock.lock(); // a ReentrantLock object
try {
 critical section
} finally {
 myLock.unlock(); // make sure the lock is unlocked even if an exception is thrown
}

Guarantees that only one thread can enter the critical section (Exclusive synchronization)

Other threads are blocked until the 1st thread unlocks the lock object

-  The lock is called reentrant because a thread can repeatedly acquire a lock
it already owns

-  The thread has to call unlock for every call to lock, in order to relinquish lock

page 28 © Jacobs University Bremen

ReentrantLock

Example: Money Transfer in a Bank
public class Bank {
 private Lock bankLock = new ReentrantLock();
 . . .
 public void transfer(int from, int to, int amount) {
 bankLock.lock();
 try {
 if (accounts[from] < amount) return;
 System.out.print(Thread.currentThread());
 accounts[from] -= amount;
 System.out.printf(" %10.2f from %d to %d", amount, from, to);
 accounts[to] += amount;
 System.out.printf(" Total Balance: %10.2f%n", getTotalBalance());
 } finally {
 bankLock.unlock();
 }
 }

}

ReentrantLock implements Lock interface

S
erialized
access

page 29 © Jacobs University Bremen

ReentrantLock

Which Code Blocks to Protect?

-  Code blocks that require multiple operations to update or inspect a data
structure

Lock class package

-  java.util.concurrent.locks

page 30 © Jacobs University Bremen

Condition Objects

-  While the thread is waiting for its condition to be fulfilled, no other thread can
access the lock

Use Condition objects to manage threads that have acquired a lock
but cannot do useful work

-  Condition objects are also called Condition variables
public void transfer(int from, int to, int amount) {
 bankLock.lock();
 try {
 while (accounts[from] < amount) {
 // wait
 . . .
 }
 // transfer funds
 . . .
 } finally {
 bankLock.unlock();
 }
}

If condition not met,
thread must wait

page 31 © Jacobs University Bremen

Condition Objects

-  If the transfer method finds that the sufficient funds are not available, it calls
sufficientFunds.await()

-  The current thread is deactivated and gives up the lock
q  Enters the wait set for that condition
q  Remains deactivated until another thread calls signalAll on the same

condition

A lock object can have one or more associated condition objects

-  Obtain a condition object with the newCondition method

class Bank {
 private Condition sufficientFunds;
 ….

 public Bank() {
 ….

 sufficientFunds = bankLock.newCondition();
 }

}

page 32 © Jacobs University Bremen

Condition Objects Example

-  Call to signalAll() does not immediately activate a waiting thread

-  It only makes it available to compete

Call signalAll() after finishing transferring the money

public void transfer(int from, int to, int amount) {
 bankLock.lock();
 try {
 while (accounts[from] < amount) {
 sufficientFunds.await();
 // transfer funds
 . . .

 sufficientFunds.signallAll();

 }
 } finally {
 bankLock.unlock();
 }
}

page 33 © Jacobs University Bremen

Reentrant/ Condition Objects Summary

A Lock protects sections of code

-  Allows only one Thread to execute the code at a time

A Lock manages threads that enter a protected segment

A Lock can have one or more associated Condition objects

Each Condition object manages threads that have entered a
protected code section but that cannot proceed

page 34 © Jacobs University Bremen

The synchronized Keyword

Used to implement exclusive synchronization prior to JDK 5.0

All Java objects have potential for exclusion synchronization

-  Every Java object has a monitor and a monitor lock (or intrinsic lock)

-  The monitor ensures that its object’s monitor lock is held by a max of only
one thread at any time

-  Monitors and monitor locks are used to enforce mutual exclusion

Threads are synchronized by locking objects before accessing critical
section

page 35 © Jacobs University Bremen

The synchronized Keyword

Java implements synchronization with synchronized keyword in two
ways

-  Through synchronized methods

-  Through synchronized statement

page 36 © Jacobs University Bremen

The synchronized Keyword

An object is locked by calling the object‘s synchronized method
Acquire lock

Release lock

Synchronized
method

Waiting to acquire lock

Acquire lock

Synchronized
method

Release lock

Another Thread invoking a synchronized method on the same object
must wait until the lock is released

Exclusion synchronization forces execution of two threads to be
mutually exclusive in time

Time

page 37 © Jacobs University Bremen

The synchronized Keyword

Example

class Bank {
 public synchronized void transfer(int from, int to, int amount)

 throws InterruptedException {
 while (accounts[from] < amount)
 wait(); // wait on object lock's single condition
 accounts[from] -= amount;
 accounts[to] += amount;
 notifyAll(); // notify all threads waiting on the condition
 }
 public synchronized double getTotalBalance() { . . . }
 private double accounts[];
}

-  The implicit object lock has a single associated condition

-  The wait method adds a Thread to the wait set
-  notifyAll / notify methods unblock waiting threads

page 38 © Jacobs University Bremen

Lock / Condition or Synchronized methods?

-  Prefer the synchronized keyword – write less code

-  Use Lock/ Condition if you specifically need the additional power

page 39 © Jacobs University Bremen

Static Synchronized Methods

Static methods can be declared synchronized

-  Acquire a lock on the Class object for the class

-  Two threads cannot execute static synchronized methods of the same
class at the same time

If static data is shared between threads, then access to it must
be protected using static synchronized methods

No effect on objects of the class

Only other static synchronized methods are blocked

page 40 © Jacobs University Bremen

Synchronized Statements

Allows to execute synchronized code that acquires the lock of any object

Allows to synchronously execute block of code within a method

A synchronized statement has two parts:

-  An object whose lock is to be acquired

-  A statement block to execute when the lock is obtained

page 41 © Jacobs University Bremen

Synchronized Statements

General form

-  expression must evaluate to an object reference

-  Statement block to execute when lock on referenced object is obtained

synchronized (expression) {
 statement block
}

page 42 © Jacobs University Bremen

Synchronized Statements

Example

/* make all elements in the array non-negative */
public static void abs (int [] values) {
 synchronized (values) {
 for (int i=0; i< values.length; i++)
{ if
(values[i]<0)

 values[i] = -1 * values[i];
 }
 }
}

-  The values array contains elements to be modified and has been
synchronized

-  Guaranteed that the loop can execute without values being modified

-  This kind of synchronization sometimes called client-side
synchronization

Exclusive access to code block

page 43 © Jacobs University Bremen

Nested Critical Sections

Critical sections can be nested

-  Block B executes with exclusive access to both wo and current instance of V

-  Call a synchronized method inside another synchronized method

 class V ... {
 synchronized void m() {
 synchronized (wo) {
 statement block B

 }
 }
}

-  Useful for coordinating updates e.g., between say objects z, x and y given:
q  A method m on z must also update x and y to maintain consistency
q  m can contain nested blocks synchronized with respect to x and y
q  Innermost block provides exclusive access to x, y and z

page 44 © Jacobs University Bremen

Multiple Locks on Object

We can nest methods and blocks that are synchronized with respect
to the same object

Assume:

-  Thread t calls o.m and that m is synchronized

-  Let t call another synchronized method on o from within m; t gets an
additional lock on o

-  Each time t exits a critical section, its releases a lock

-  Thus t keeps o locked until it exits its outermost critical section wrt o

-  Excessive multiple locks can result in performance degradation

page 45 © Jacobs University Bremen

Volatile Fields

The volatile keyword offers a lock-free mechanism for synchronizing
access to an instance field

If a field is declared as volatile, the compiler and the virtual machine
take into account that the field may be concurrently updated by
another thread

 private volatile boolean done;

Forces the VM not to cache the instance field

Accessing volatile variables is slower than accessing regular variables

page 46 © Jacobs University Bremen

Deadlocks

Multi-threading and synchronization create the danger of deadlock

Deadlock: a circular dependency on a pair of synchronized objects

Suppose that:

-  One thread locks object X

-  Another thread locks object Y

-  The first thread tries to call a synchronized method on object Y

-  The second thread tries to call a synchronized method on object X

The result: the threads wait forever – deadlock

page 47 © Jacobs University Bremen

Deadlocks

class Bank {
 public synchronized void transfer(int from, int to, int amount) throws

 InterruptedException {
 while (accounts[from] < amount)
 wait(); // wait on object lock's single condition
 accounts[from] -= amount;
 accounts[to] += amount;
 notifyAll(); // notify all threads waiting on the condition
 }
 public synchronized double getTotalBalance() { . . . }
 private double accounts[];
}

Example

-  Bank Application - Money transfer

A transfer is possible if sufficient funds are available, otherwise the thread
must wait

page 48 © Jacobs University Bremen

Deadlocks

Example cont …

-  Account 1: $2,000

-  Account 2: $3,000

-  Thread 1: Transfer $3,000 from Account 1 to Account 2

-  Thread 2: Transfer $4,000 from Account 2 to Account 1
Thread 1 Thread 2

bank.transfer(1, 2, 3000)
bank.wait()

bank.transfer(2, 1, 4000)
bank.wait()

Thread 1 blocked Thread 2 blocked

-  Thread 1 & Thread 2 are deadlocked!

page 49 © Jacobs University Bremen

Deadlocks
There is nothing in the Java programming language to avoid or break
deadlocks

Design your program to ensure that a deadlock situation cannot occur

page 50 © Jacobs University Bremen

Fairness

Lock fairLock = new ReentrantLock (true);

A fair locking policy can cause a drag on performance

Also, no guarantee that the thread scheduler will be fair

Fair Locking Policy

-  Favors a Thread that has been waiting the longest

How to specify a fair locking policy?

page 51 © Jacobs University Bremen

Lock Testing

A Thread blocks indefinitely when it calls lock method when the lock is
owned by another Thread

Use the tryLock method to try and acquire the lock when its available,
and do something if its not

-  If the lock is available when the call is made, the current thread gets it,
even if another thread has been waiting to lock it

if (myLock.tryLock())
 // now the thread owns the lock
 try {
 . . .
 } finally {
 myLock.unlock();
 }
else // do something else

page 52 © Jacobs University Bremen

Read/ Write Locks

Two lock classes in java.util.concurrent.locks package

-  ReentrantLock

-  ReentrantReadWriteLock

The ReentrantReadWriteLock class is useful when more reads
than writes occur in a data structure

-  Allow shared access for readers

-  Writers must still have exclusive access

page 53 © Jacobs University Bremen

Read/ Write Locks

Steps for using ReentrantReadWriteLock object

1. Construct a ReentrantReadWriteLock object

2. Extract Read and Write locks

private ReentrantReadWriteLock rw1 = new
 ReentrantReadWriteLock();

private Lock readLock = rwl.readLock();
private Lock writeLock = rwl.writeLock();

page 54 © Jacobs University Bremen

Read/ Write Locks

3. Use the read lock in all accessors

4. Use write locks in all mutators

public double getTotalBalance() {
 readLock.lock();
 try { . . . }
 finally { readLock.unlock(); }
}

public void transfer(. . .) {
 writeLock.lock();
 try { . . . }
 finally { writeLock.unlock(); }
}

page 55 © Jacobs University Bremen

Producer/ Consumer Problem

Blocking queues are useful for coordinating multiple threads

-  Producer threads/ consumer threads
-  http://courses.cs.vt.edu/~csonline/OS/Lessons/Synchronization/index.html

The producer/ consumer problem is characterized as follows:

-  Producer generates data and stores it in a shared buffer

-  The consumer read data from shared buffer

The following property must be preserved

-  If the buffer is not full, the producer may continue to produce, otherwise it
must wait for the consumer to “consume” to create space in the buffer

-  If the buffer is not empty, the consumer may continue to consume,
otherwise it must wait for the producer to “produce” and add to the buffer

page 56 © Jacobs University Bremen

Blocking Queues

A Queue has two fundamental operations

-  Adds a data element to the tail of the queue

-  Removes a data element from the head of the queue

A queue is blocking if

-  It causes a Thread to block if an add operation is invoked when the queue
is full

-  It causes a Thread to block when a remove operation is invoked when
queue is empty

page 57 © Jacobs University Bremen

Blocking Queues

Example: Producer Thread
 class FileEnumerationTask implements Runnable {
 ...
 public void run() {
 try {
 enumerate(startingDirectory);
 queue.put(DUMMY);
 } catch (InterruptedException e) {}
 }

 public void enumerate(File directory) throws InterruptedException {
 File[] files = directory.listFiles();
 for (File file : files) {
 if (file.isDirectory()) enumerate(file);
 else queue.put(file);
 }
 }
 public static File DUMMY = new File("");
 private BlockingQueue<File> queue;
 private File startingDirectory;
 }

puts elements
into queue

Recursively
puts elements
into queue

page 58 © Jacobs University Bremen

Blocking Queues

Example: Consumer Thread
 class SearchTask implements Runnable {
 …
 public void run() {
 try {
 boolean done = false;
 while (!done) {
 File file = queue.take();
 if (file == FileEnumerationTask.DUMMY) { queue.put(file); done = true; }
 else search(file);
 }
 }
 catch (IOException e) { e.printStackTrace(); }
 catch (InterruptedException e) {}
 }
 public void search(File file) throws IOException {
 …
 }
 private BlockingQueue<File> queue;
 private String keyword;
 }

re
m

ov
es

el

em
en

ts
 fr

om

th
e

qu
eu

e

page 59 © Jacobs University Bremen

Thread-Safe Collections

Use thread-safe collections for multi-threaded usage

-  ConcurrentHashMap

-  ConcurrentLinkedQueue

ConcurrentHashMap

-  Efficiently supports large number of readers & fixed number of writers

-  Default – 16 simultaneous writers

-  Uses sophisticated algorithms that never locks entire table

-  Atomic insertion and removal operations

cache.putIfAbsent(key, value);

cache.replace(key, oldValue, newValue);

cache.remove(key, value);

page 60 © Jacobs University Bremen

Older Thread-Safe Collections

Vector and Hashtable classes provided thread-safe implementations of
a dynamic array and a hash table

-  Vector now replaced by ArrayList (not thread safe)

-  Hashtable now replaced by HashMap (not thread safe)

List synchArrayList = Collections.synchronizedList(new ArrayList());
Map synchHashMap = Collections.synchronizedMap(new HashMap());

Make a collection thread-safe by using synchronization wrapper

Must use synchronized block to iterate over the collection

synchronized (synchHashMap) {
 Iterator iter = synchHashMap.keySet().iterator();
 while (iter.hasNext()) . . .;
}

page 61 © Jacobs University Bremen

Callable and Futures

Callable interface

-  Encapsulates a task that runs asynchronously, but returns a value

-  The Callable interface is similar to the Runnable interface, save for
returning a value

public interface Callable<V> {
 V call() throws Exception;
}

page 62 © Jacobs University Bremen

Callable and Futures

Future interface

-  Represents the results of an asynchronous computation

-  Provides methods
ž  To check if the computation is complete (isDone)
ž  To check if the computation is complete (using timeout)
ž  To retrieve the result of computation (get)

public interface Future<V> {
 V get() throws . . .;
 V get(long timeout, TimeUnit unit) throws . . .;
 void cancel(boolean mayInterrupt);
 boolean isCancelled();
 boolean isDone();
}

Blocks until the computation is complete

page 63 © Jacobs University Bremen

Callable and Futures

FutureTask

-  A wrapper class that implements both the Future and Runnable interfaces

page 64 © Jacobs University Bremen

Callable and Futures: Example

 class MatchCounter implements Callable<Integer> {
 public Integer call() {
 try {
 File[] files = directory.listFiles();
 ArrayList<Future<Integer>> results = new ArrayList<Future<Integer>>();
 for (File file : files)
 if (file.isDirectory()) {
 MatchCounter counter = new MatchCounter(file, keyword);
 FutureTask<Integer> task = new FutureTask<Integer>(counter);
 results.add(task);
 Thread t = new Thread(task);
 t.start();
 } else { if (search(file)) count++; }
 for (Future<Integer> result : results)
 try { count += result.get();
 } catch (ExecutionException e) {
 e.printStackTrace();
 }
 } catch (InterruptedException e) {}
 return count;
 } …}

Similar to implements Runnable
Array to store
task results

Future task object to

store tasks

Results are read only through the get method;
Each call to get blocks until result is available

page 65 © Jacobs University Bremen

Guidelines

If an action takes a long time, fire up a new thread to do the work

If an action can block on I/O, fire up a new thread to do the work

If you need to wait for a specific amount of time, don't sleep in the
event dispatch a thread - use timer events

page 66 © Jacobs University Bremen

Threads and Swing

Swing is not thread safe

-  Avoid manipulating IU elements from multiple threads

Work done in threads cannot touch the UI

Read any information from the UI before launching threads

Launch them and then update the UI from the event dispatching thread
once the threads have completed

-  This is often called “single thread rule for Swing programming”

page 67 © Jacobs University Bremen

Reading Assignment

-  Horstmann, C. S. & Cornell, G. (2013) Core Java(TM) 2 (Vol. I),
Prentice Hall, 9th Edition. Chapter 14.

-  Deitel, P. J. & Deitel, H. M (2012) Java How to Program. 9th Ed.
Pearson Education International. Chapter 23.

page 68 © Jacobs University Bremen

Practice Task

  There is a one-way bridge that can hold up to three cars. Cars arrive at
one end of the bridge and exit the bridge at the other end. Traffic is
allowed only in the one, available, direction. Describe a solution to this
synchronization problem. Write a Java program to solve the problem.

