
Fall Semester 2014
Lecture 12: Introduction to Network Programming

Instructor: Jürgen Schönwälder

Slides: Bendick Mahleko

320341 Programming in Java

page 2 © Jacobs University Bremen

Objectives

This lecture introduces the following

-  Basic networking concepts

-  Identifying a machine

-  Connecting to a server

-  Implementing servers

-  Sending e-mail

-  Making URL connections

page 3 © Jacobs University Bremen

Basic Concepts: Client/ Server Model

−  Clients request services from servers

−  Synchronous: clients wait for the response before they proceed with their
computation

−  Asynchronous: clients proceed with computations as the response is returned
by server

Server

Client

Client

Client

Client

page 4 © Jacobs University Bremen

Basic Concepts: Client/ Server Model

Allows bilateral information exchange between nodes (computers)
-  One acts as a server, another as a client

The server provides a specific service, for example

-  Web server: serves up web pages (the web browser is the client)

-  FTP server: serves up files (downloading via file transfer protocol)

page 5 © Jacobs University Bremen

Basic Concepts: Client/ Server Model

Clients connect to the server to access the service

-  Clients usually initiate dialog with the server

-  The server “waits” and “listens” for client connections

-  The machine on which server software runs is usually called the
host machine

page 6 © Jacobs University Bremen

Basic Concepts: Peer-to-Peer (P2P)

-  Every peer provides client and server functionality

-  Ideally avoids centralized components

-  Able to establish new (overlay) topologies dynamically

-  Requires control and coordination logic on each node

peer

peer

peer

peer

peer

page 7 © Jacobs University Bremen

Basic Concepts: Ports and Sockets

Ports and sockets are abstract concepts only and allow the programmer
to make use of communication links

Port: a logical connection to a computer that’s identified by a 2-byte
number, thus has range 0 – 65,535

Sockets: software abstraction used to represent the "terminals" of a
connection between two machines

page 8 © Jacobs University Bremen

Basic Concepts: Ports and Sockets

Port are classified into 3 categories:

-  0 – 1,023 are well-known ports (e.g., SMTP: 25, HTTP: 80, Telnet: 23)

-  1,024 – 49,151 are not assigned; however their use must be registered
to avoid duplication

-  49,152 – 65,535 are neither assigned not registered. They are so
called dynamic range and can be used by any process

For each port supplying a service, there is a server program waiting for
requests

page 9 © Jacobs University Bremen

Examples

-  smtp 25/tcp Simple Mail Transfer
-  smtp 25/udp Simple Mail Transfer
-  ftp 21/tcp File Transfer [Control]
-  ftp 21/udp File Transfer [Control]
-  http 80/tcp World Wide Web HTTP
-  http 80/udp World Wide Web HTTP

.
:

Retrieved from: http://www.iana.org/assignments/port-numbers
(Last visited: 14 November 2013)

page 10 © Jacobs University Bremen

Sockets: Basic Concepts

-  You can imagine a hypothetical “cable” running between the two
machines with each end of the "cable" plugged into a socket

-  The host identifier (IP address) and process identifier (port number)
taken together form a socket address or simply socket

-  When a client wishes to make a connection to a server, it will create a
socket at its end of the communication link

-  The corresponding server creates a new socket at its end that will be
dedicated to communication with the particular client

page 11 © Jacobs University Bremen

Basic Concepts: Internet & IP Addresses

Represent machine addresses in quad notation

-  Addresses are made up of 4 8-bit numbers, separated by dots
q  Numbers are in the decimal range 0 - 255
q  Example: 131.122.3.219 IPv4

Java was conceived with features designed specifically for
network programming

-  The features are provided in a platform-independent manner

-  IPv6 replaces IPv4
q IPv6 uses 128-bit numbers
q Provides massively more addresses than is currently possible

page 12 © Jacobs University Bremen

Java Network Programming Overview

Java provides a rich library to support network programming

Networking abstraction

-  Networking details have been abstracted away from the programmer

Handling multiple connections

-  Java’s built-in multithreading for handling multiple connections concurrently

page 13 © Jacobs University Bremen

Java Network Programming Overview

Networking programming model

-  The programming model used is that of a file (“remote files”)

-  Wrap the network connections (“sockets”) with stream objects

-  Then use the same method calls as used with all other streams

page 14 © Jacobs University Bremen

Identifying a Machine

Machines are uniquely identified by IP (Internet Protocol) addresses

IP address object

-  Need to get an stream object from the IP address

-  Use the static method InetAddress.getByName() to get an object
representing the IP address (package: java.net)

-  The IP address is represented by an object of type InetAddress

page 15 © Jacobs University Bremen

Example

Finding your address

public class WhoAmI {
 public static void main(String[] args)
 throws Exception {
 if (args.length != 1) {
 System.err.println("Usage: WhoAmI MachineName");
 System.exit(1);
 }
 java.net.InetAddress address = java.net.InetAddress.getByName(args[0]);
 System.out.println(address. getHostAddress());
 }
}

Finds out your network address when you're connected to the Internet

page 16 © Jacobs University Bremen

Example

Finding your address

page 17 © Jacobs University Bremen

Sockets in Java

Socket objects

1.  Create a Socket to connect to the other machine

2.  Get back an InputStream and OutputStream from the socket

-  InputStream & OutputStream :

q  This allows us to treat the connections as I/O stream objects

page 18 © Jacobs University Bremen

Sockets in Java

There are 2 main stream-based socket classes (java.net package)

1.  Socket – used by the client to initiate a connection

2.  ServerSocket – used by the server to listen to incoming connections

page 19 © Jacobs University Bremen

Sockets in Java

ServerSocket

-  Creates a physical “server” or listening socket on the host machine

-  Returns an established socket via the accept() method

Socket

-  Use to initiate a client connection

-  The constructor requires an IP address & port number of the remote
machine to connect to

page 20 © Jacobs University Bremen

Making a Connection: Server

public class JabberServer {
 public static void main(String[] args) throws IOException {
 ServerSocket s = new ServerSocket(PORT); // public static final int PORT = 8080;
 try {
 Socket socket = s.accept();
 try {
 BufferedReader in = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));
 PrintWriter out = new PrintWriter(new BufferedWriter(
 new OutputStreamWriter(socket.getOutputStream())), true);
 while (true) {
 String str = in.readLine();
 if (str.equals("END")) break;
 out.println(str);
 }
 } finally {
 socket.close();
 }
 } finally {
 s.close();
 }
 }
}

Choose a port outside of the range 0-1023

Blocks until a connection occurs

Always close the two sockets

Connection
à I/O object

page 21 © Jacobs University Bremen

Making a Connection: Client

public class JabberClient {
 public static void main(String[] args) throws IOException {
 InetAddress addr = InetAddress.getByName("localhost ");
 Socket socket = new Socket(addr, JabberServer.PORT);
 try {
 BufferedReader in = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));
 PrintWriter out = new PrintWriter(new BufferedWriter(
 new OutputStreamWriter(socket.getOutputStream())), true);
 for (int i = 0; i < 10; i ++) {
 out.println("howdy " + i);
 String str = in.readLine(); System.out.println(str);
 }
 out.println("END");
 } finally {
 socket.close();
 }
 }
}

Local machine

Guard everything in a try-finally to make sure that the socket is closed

page 22 © Jacobs University Bremen

Making a Connection: Client-Server

An Internet connection is uniquely determined by four pieces of data:

1.  ClientHost (e.g., 127.0.0.1 also the localhost)

2.  ClientPortNumber (Allocated the next available port on its machine)

3.  ServerHost (e.g., 127.0.0.1 or the localhost)

4.  ServerPortNumber (8080)

page 23 © Jacobs University Bremen

Making a Connection: Client-Server

How to Exchange Data?

-  During connection setup, the client sends a “return address” to
the server

-  Both the client and server know where to send data during data
exchange

-  Sockets produce a “dedicated” connection that persists until it is
explicitly disconnected

-  The dedicated connection can be disconnected inexplicitly if one
side, or an intermediary link of the connection crashes

page 24 © Jacobs University Bremen

Making a Connection: Client-Server

Server Side

Connection accepted: Socket[addr=/127.0.0.1,port=1047,localport=8080]

System.out.println("Connection accepted: "+ socket);

Client Side

socket = Socket[addr=localhost/127.0.0.1,port=8080,localport=1047]

System.out.println("socket = " + socket);

The server accepted a connection from 127.0.0.1 on port 1047 while
listening on its local port (8080)

The client made a connection to 127.0.0.1 on port 8080 using the local
port 1047

page 25 © Jacobs University Bremen

Serving Multiple Clients

A server supports multiple clients simultaneously using multithreading

Basic Approach

-  Make a single ServerSocket in the server

-  Call the accept() method to wait for a new connection

-  When accept() returns, take the resulting Socket object and use it to
create a new thread:
q  The new thread serves a particular client

-  Call the accept() method again to wait for a new client

Key principle:

The operations to serve a particular client are moved inside a thread

page 26 © Jacobs University Bremen

Serving Multiple Clients

Example
public class MultiJabberServer {
 static final int PORT = 8080;
 public static void main(String[] args) throws IOException {
 ServerSocket s = new ServerSocket(PORT);
 System.out.println("Server Started");
 try {
 while(true) {
 Socket socket = s.accept();
 try {
 new ServeOneJabber(socket);
 } catch(IOException e) {
 socket.close();
 }
 }
 } finally {
 s.close();
 }
 }
}

Blocks until a connection occurs

Thread to service
client requests

Creates listener

Close socket

page 27 © Jacobs University Bremen

Serving Multiple Clients
class ServeOneJabber implements Runnable {
 private Socket socket; private BufferedReader in; private PrintWriter out;
 public ServeOneJabber(Socket s) throws IOException {
 socket = s;
 in = new BufferedReader(new InputStreamReader(socket.getInputStream()));
 out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(
 socket.getOutputStream())), true);
 start(); // Calls run()
 }
 public void run() {
 try { while (true) {
 String str = in.readLine();
 if (str.equals("END")) break;
 out.println(str);
 }
 } catch (IOException e) { System.err.println("IO Exception");
 } finally {
 try { socket.close(); }
 catch (IOException e) {
 System.err.println("Socket not closed");
 }
 }
 }
}

new

Example

Socket cleanup

Echoing back

Init reader/ writer
and calling start

page 28 © Jacobs University Bremen

Socket Programming Example

Sending e-mail using Simple Mail Transport Protocol (SMTP)

1.  Make a socket connection to port 25 (SMTP port)
q  SMTP describes the format for e-mail messages
q  On UNIX machines SMTP is implemented using the sendmail daemon
q  The SMTP server must be willing to accept your request

2.  Send a mail header (in SMTP format), followed by email message:
q  Lines must be terminated with \r followed by \n (SMTP specification)
q  You can supply any sender you like (fake messages can be created!)

page 29 © Jacobs University Bremen

Socket Programming Example

HELO sending host
MAIL FROM: <sender e-mail address>
RCPT TO: <>recipient e-mail address>
DATA
mail message
(any number of lines)
.
QUIT

Sending e-mail steps:

1.  Open a socket to your host
q  Socket s = new Socket("mail.yourserver.com", 25);// 25 is SMTP

q  PrintWriter out = new PrintWriter(s.getOutputStream());

2.  Send the following information to the print stream:

page 30 © Jacobs University Bremen

Socket Programming Example

Email Program (Core Java Vol. II, Horstmann and Cornell)

Use JavaMail API (standard Java extension) for sending Emails

page 31 © Jacobs University Bremen

URLs/ URIs

URI: Syntactical construct specifying the format of a string specifying a
web resource

q  Is not a locator. Such URIs are called URN (Uniform Resource Name)

URL: Special kind of URI with sufficient information to locate a web
resource

q  Can open a stream to a URL
q  Works with schemes that Java library knows how to handle
q  [http, https, ftp, local file system file:, and JAR files jar:]

mailto:b.mahleko@jacobs-university.de

page 32 © Jacobs University Bremen

URI Specification

Syntax:

q  The schemeSpecificPart of a URI has the structure

q  For server-based URIs, the authority has the form:

Examples:
q  http://maps.yahoo.com/py/maps.py?Cupertino+CA
q  http://docs.mycompany.com/api/java/net/Socket.html#Socket()
q  ftp://username:password@ftp.yourserver.com/pub/file.txt

[scheme:]schemeSpecificPart[#fragment]

[//authority:][path][?query]

[user-info@][host][:port]

page 33 © Jacobs University Bremen

Locating Resources

URL and URLConnection classes

-  Encapsulate much of the complexity of retrieving info from a remote site

-  Construct a URL object from a String

URL url = new URL(urlString);

Fetch contents of a resource

-  Open a Stream using the openStream method of the URL class

-  Use standard I/O operations to read data

InputStream inStream = url.openStream();
BufferedReader in = new BufferedReader(new InputStreamReader(inStream);

page 34 © Jacobs University Bremen

Locating Resources

The URLConnection class

Basic steps:

1.  Obtain a URLConnection object
q  Call openConnection method of the URL class

-  To get additional information about a Web resource:
q Use the URLConnection class

URLConnection connection = url.openConnection();

page 35 © Jacobs University Bremen

Locating Resources

2.  Set any request properties. Use

setDoInput Default yielding an input stream to read data
setDoOutput Set connection to get an output stream
setIfModifiedSince Only interested in data modified after date
setUseCaches Used inside applets (1st check cache)
setAllowUserInteraction Used inside applets (Applet pops-up Dialog Box)
setRequestProperty Sets name/ value pairs for a protocol (e.g. HTTP)
setConnectTimeout Sets connection timeout
setReadTimeout Sets read timeout

connection.connect();

3.  Connect to the remote resource by calling the connect method

page 36 © Jacobs University Bremen

Locating Resources
4.  Query the header information if needed

5.  Access the resource data (use getInputStream to get a stream)

getContentType
getContentLength
getContentEncoding
getDate
getExpiration
getLastModified

page 37 © Jacobs University Bremen

Locating Resources

Examples

-  Access a password protected Web page as follows:

// 1. concatenate username, a colon, and a password
String input = username + “:” + password;

// 2. compute base64 encoding (bytes to ASCII characters) of the resulting string
String encoding = base64Encode(input);

// 3. call setRequestProperty method with “Authorization” value of “Basic ”
plus // encoding
Connection.setRequestProperty(“Authorization”, “Basic ” + encoding);

-  Access a password protected file by FTP:

// construct a URL of the form
ftp://username:password@ftp.yourserver.com/pub/file.txt

page 38 © Jacobs University Bremen

Locating Resources

Reading HTTP Headers

-  Use the getHeaderFields method to get a list of headers

Map<String, List<String>> headerFields = connection.getHeaderFields();

-  HTTP Header Fields from typical HTTP request

Date: Wed, 29 Aug 2004 00:15:48 GMT
Server: Apache/1.3.31 (Unix)
Last-Modified: Sun, 24 Jun 2004 20:53:38 GMT
Accept-Ranges: bytes
Content-Length: 4813
Connection: close
Content-Type: text/html

page 39 © Jacobs University Bremen

Locating Resources

Reading HTTP Headers cont …

-  Convenient methods

Key Name Method Name Return Type

Date getDate long

Expires getExpiration long

Last-Modified getLastModified long

Content-Length getContentLength int

Content-Type getContentType String

Content-Encoding getContentEncoding String

page 40 © Jacobs University Bremen

Locating Resources

 …
 URL url = new URL(urlName);
 URLConnection connection = url.openConnection();
 // set username, password if specified on command line
 if (args.length > 2) {
 String username = args[1];
 String password = args[2];
 String input = username + ":" + password;
 String encoding = base64Encode(input);
 connection.setRequestProperty("Authorization", "Basic " + encoding);
 }
 connection.connect();
 // print header fields
 Map<String, List<String>> headers = connection.getHeaderFields();
 for (Map.Entry<String, List<String>> entry : headers.entrySet()) {
 String key = entry.getKey();
 for (String value : entry.getValue())
 System.out.println(key + ": " + value);
 }

Example: accessing Web page with username and password

page 41 © Jacobs University Bremen

Locating Resources

Posting form data

-  Several technologies exist to enable servers to invoke programs

-  Java Servlets, JavaServer Faces, Microsoft ASP (Active Server
Pages), CGI (Common Gateway Interface)

-  Two commands are commonly used to send information to Web server
q  GET
q  POST

page 42 © Jacobs University Bremen

Locating Resources

GET command

-  Simply attach parameters to the end of the URL

-  URL has form:

-  Use the following scheme:
q  Replace spaces with ‘+’
q  Separate parameters by ‘&’
q  Replace nonalphanumeric characters with ‘%’ followed by hexadecimal number
q  Encoding called URL encoding

-  Ex:

http://host/script?parameters

-  Problem: Browsers limit the number of characters in a GET request

http://maps.yahoo.com/py/maps.py?addr=1+Infinite+Loop&cz=Cupertino+CA

page 43 © Jacobs University Bremen

Locating Resources

Using the POST command

-  Do not attach parameters to URL

-  Get output stream from URLConnection:
q  Write name/ value pairs to the output stream

-  Input HTML form to find out the parameters

PrintWriter out = new PrintWriter(connection.getOutputStream());

// Send data to the server:
out.print(name1 + "=" + URLEncoder.encode(value1, "UTF-8") + "&");
out.print(name2 + "=" + URLEncoder.encode(value2, "UTF-8"));

// Close the output stream.
out.close();

// Finally, call getInputStream and read the server response.

page 44 © Jacobs University Bremen

Reading Assignment

-  Core Java 2 Volume II, Chapter 3. Networking by Horstmann and
Cornell

-  Deitel, P. & Deitel, H. (2012) Java™: How to Program, 9th Edition.
Prentice Hall. Chapter 27.

