
Fall Semester 2014
Lecture 16: Introduction to Database Programming

Instructor: Jürgen Schönwälder

Slides: Bendick Mahleko

320341 Programming in Java

page 2 © Jacobs University Bremen

Objectives

This lecture introduces the following

-  Basic JDBC programming concepts

-  Query execution

-  Transactions

-  Connection management

page 3 © Jacobs University Bremen

Overview

First version of Java Database Connectivity (JDBC) in 1996

-  De facto industry standard for database-independent connectivity between
the Java programming language and a wide range of databases for example
Microsoft SQL Server, Oracle, Informix, MySQL etc

-  Allows Java program access to any database using standard SQL
statements

-  Java programs communicate with databases and manipulate their data using
the JDBCTM API

-  A JDBC Driver enables Java applications to connect to a database in a
particular DBMS and allows to manipulate the database using JDBC API

page 4 © Jacobs University Bremen

Overview

Several JDBC versions have been released
-  Current specification: JDBC 4.0

-  JDBC 3.0 is included in JDK 1.4, 5.0, 6.0 & 7.0

JDBC API

-  Pure Java API for SQL access for application programmers

-  JDBC 3.0 includes 2 packages: java.sql & javax.sql(server side)

JDBC Driver API

-  Third party drivers to connect to specific databases

-  You can locate rivers for your DBMS from the vendor

page 5 © Jacobs University Bremen

DB examples

JDK comes with a pure-Java RDBMS called Java DB

Other examples of relational DBMS are:

-  Microsoft SQL Server

-  Oracle

-  Sybase

-  IBM DB2

-  Informix

-  PostgreSQL

-  MySQL

 (source: Deitel etc., “Java: how to program”, 9th edition)

page 6 © Jacobs University Bremen

JDBC to Database

Java application

JDBC Driver Manager

JDBC/ODBC
bridge

JDBC driver

ODBC

Database Database

JDBC API

JDBC Driver API

Rely on
ODBC

page 7 © Jacobs University Bremen

Typical Architecture

Client
(application/

Browser-based)

(Application)
Logic Layer JD
B

C

Database
server

HTTP, RMI, etc Database protocol

page 8 © Jacobs University Bremen

Structured Query Language (SQL)

JDBC lets you communicate with databases using SQL

-  SQL is the command language for most modern relational databases

-  JDBC package can be regarded as an API for communicating SQL
statements to databases

page 9 © Jacobs University Bremen

Structured Query Language (SQL)

 Database URLs

-  Specify a data source when connecting to a database

-  JDBC uses syntax similar to ordinary URLs to describe data sources

-  Ex: Specify local Derby database & a PostgreSQL database named
COREJAVA

jdbc:derby://localhost:1527/COREJAVA;create=true
jdbc:postgresql:COREJAVA

jdbc:subprotocol:other stuff

Selects specific driver for connecting to database

page 10 © Jacobs University Bremen

Structured Query Language (SQL)

 Connecting to database

-  Find the names of classes used by vendor (download JAR file)

Find the library in which the driver is located e.g., mkjdbc.jar

-  Launch your programs with –classpath command line argument OR

-  Copy the database library into the jre/lib/ext directory

page 11 © Jacobs University Bremen

Structured Query Language (SQL)

Java application

JDBC Driver Manager

JDBC driver

Database

 The DriverManager [package java.sql]

-  Selects database drivers & creates new database connections

page 12 © Jacobs University Bremen

Structured Query Language (SQL)

Registering Drivers

-  A driver must be registered before the drive manager can activate it

-  There are two methods

-  or set a system property with the call

-  Supply multiple drivers, separated with colons

-  org.postgresql.Driver:com.mckoi.JDBCDriver

java –Djdbc.drivers=org.postgresql.Driver MyProg

System.setProperty(“jdbc.drivers”,”org.postgresql.Driver
”

page 13 © Jacobs University Bremen

Open Connection

After registering drivers open a connection

String url = “jdbc:postgresql:COREJAVA”;
String username = “dbuser”;
String password = “secret”;

Connection conn = DriverManager.getConnection(url, username, password);

Example

The driver manager iterates over the registered drivers to find the driver
which can be used by the specified subprotocol in the database URL

page 14 © Jacobs University Bremen

Open Connection

The driver manager iterates over available drivers until it finds a
matching subprotocol

You can use a property file to specify the URL, user name etc

jdbc.drivers=org.postgresql.Driver
jdbc.url=jdbc:postgresql:COREJAVA
jdbc.username=dbuser
jdbc.password=secret

The Connection object returned by the getConnection method is used
to execute SQL statements

page 15 © Jacobs University Bremen

Executing SQL Commands

First, create a statement object

-  Use the Connection object from the call to DriverManager.getConnection

Next, place the statement you want to execute into a string e.g.

Statement stat = conn.createStatement();

String command = “Update Books” +
 “ SET Price = Price – 5.00” +
 “ WHERE Title NOT LIKE ‘%Introduction%’”;

Then call the executeUpdate method of the Statement class

stat.executeUpdate(command)

The executeUpdate method returns a count on the rows affected by
the SQL command

page 16 © Jacobs University Bremen

Executing SQL Commands

The executeUpdate method

-  Can execute actions such as INSERT, UPDATE, and DELETE

-  Can execute data definition commands such as CREATE TABLE and
DROP TABLE

ResultSet rs = stat.executeQuery(“SELECT * FROM Books");

 The executeQuery method

-  Use executeQuery to execute SELECT queries

-  Returns an object of type ResultSet

-  Use ResultSet to walk through results row by row

page 17 © Jacobs University Bremen

Executing SQL Commands

Basic loop for analyzing results:

ResultSet rs = stat.executeQuery(“SELECT * FROM Books");

while (rs.next()) {
 look at a row of the result set
}

String isbn = rs.getString(1);
double price = rs.getDouble(“Price”);

Reading fields:
-  Accessor methods are supplied to read field information

-  Each accessor has two forms: takes numeric argument & takes string
argument

page 18 © Jacobs University Bremen

Managing Connections

Every Connection object can create one or more Statement objects

-  We can use the same statement for multiple unrelated commands & queries

-  A statement has at most one open result set

-  If you issue multiple queries whose results you analyze concurrently, then
you need multiple Statement objects

page 19 © Jacobs University Bremen

Managing Connections

Freeing resources

-  When done using a ResultSet, Statement or Connection, call
close method immediately

-  close method of Statement object automatically closes associated
result set if one exists

-  close method of Connection class closes all statements of the
connection

page 20 © Jacobs University Bremen

Managing Connections

Ensure that the connection object does not remain open

Image cat = getImage(getCodeBase(), "images/cat.gif");
AudioClip meow = getAudioClip(getCodeBase(), "audio/meow.au");
Image cat = getImage(getCodeBase(), "images/cat.gif");
AudioClip meow = getAudioClip(getCodeBase(), "audio/meow.au");
Connection conn = …;

try {
 Statement stat = conn.createStatement();
 ResultSet result = stat.executeQuery(queryString);
 process query result
} finally {
 conn.close();
}

page 21 © Jacobs University Bremen

Transactions

Group a number of statements into a transaction

-  A transaction can be committed if all has gone well

-  The transaction can be rolled back if an error has occurred

-  The purpose is to ensure database integrity

-  Can’t be rolled back

-  Turn off autocommit

conn.setAutoCommit(false);

Default, every SQL command is committed to database after execution

page 22 © Jacobs University Bremen

Transactions

-  Now create a statement object as usual

Call executeUpdate any number of times

Statement stat = conn.createStatement();

Stat.executeUpdate(command1);
Stat.executeUpdate(command2);
Stat.executeUpdate(command3);
…

Then call commit when all commands executed successfully

conn.commit();

Otherwise, rollback if error occurred
conn.rollback();

page 23 © Jacobs University Bremen

Reading Assignment

-  Horstmann, C. S. & Cornell, G. (2008) Core Java 2, Volume II, 8th Ed.
Ch. 4., Prentice Hall.

-  Oracle (n.d.) JDBC Overview.
http://www.oracle.com/technetwork/java/overview-141217.html (Last
visited 23 November 2012).

-  Oracle (n. d.) JDBC Introduction [online]. Available from:
http://download.oracle.com/javase/tutorial/jdbc/overview/index.html
(Last visited 23 November 2012).

