
Operating Systems Course: 320202
Jacobs University Bremen Date: 2015-04-24
Dr. Jürgen Schönwälder Deadline: 2015-05-01

Problem Sheet1 #5

Problem 5.1: Ricart-Agrawala algorithm (distributed synchronization) (10 points)

In a distributed system, it is sometimes necessary to synchronize between processes that do not
share memory. One mutual exclusion algorithm that does not need shared memory was proposed
by Ricart and Agrawala [1]:

• When process pi wants to enter its critical section, it generates a new timestamp, ti, and
sends a request message containing < pi, ti > to all other processes in the system.

• When process pj receives a request message, it may reply immediately or it may defer
sending a reply back. The decision whether process pj replies immediately to a request
message containing < pi, ti > or defers its reply is based on three factors:

1. If pj is in its critical section, then it defers its reply to pi.
2. If pj did not request itself to enter its critical section, then it sends a reply immediately

to pi.
3. If pj wants to enter its critical section but has not yet entered it, then it compares its own

request timestamp tj with the timestamp ti:
– If its own request timestamp tj is greater than ti, then it sends a reply immediately

to pi (pi asked first).
– Otherwise, the reply is deferred until pj leaves the requested critical section.

• Once process pi has received a reply message from all other processes in the system, it can
enter its critical section.

• Upon exiting its critical section, the process pi sends reply messages to all its deferred re-
quests.

An example message exchange without contention:

a b c

request <b, t1>

request <b, t1>

reply <b, t1>

reply <b, t1>

b enters critical section

b leaves critical section

An example message exchange with contention:

a b c

request <b, t1>

request <b, t1>

reply <b, t1>

reply <b, t1>

b enters critical section

request <a, t2>

request <a, t2>

reply <a, t2>

request <c, t3>

request <c, t3>

b leaves critical section

reply <a, t2>

reply <c, t3>

a enters critical section

a leaves critical section

reply <c, t3>

c enters critical section

c leaves critical section

1See the course web page for submission instructions and grading details.

http://cnds.eecs.jacobs-university.de/courses/os-2015/

Write a C or C++ program that implements this algorithm. The main part of the program should
conceptually execute this loop:

while (1) {

enter_critical()

sleep(2)

leave_critical()

sleep(5)

}

The main loop shown above is conceptual. For the assignment, it is sufficient to implement things
in a purely event-driven way (e.g, by using libevent. This makes it easy to receive and process
messages from peers while sleeping since sleeping can be simply implemented by scheduling a
timer event at wakeup time.

Note that the programs that are involved need to startup and connect to each other before the
main loop starts. This can be achieved as follows (the -l option specifies the listening endpoint
and any remaining arguments the existing endpoints to connect to).

$./raa -l 1234

$./raa -l 1235 localhost:1234

$./raa -l 1236 localhost:1234 localhost:1235

To keep things simple, you can assume a fixed number of processes. The number of processes
may be passed as another option (e.g., -n) to the processes.

References

[1] G. Ricart and A. K. Agrawala. An Optimal Algorithm for Mutual Exclusion in Computer Net-
works. Communications of the ACM, 21(2):9–17, 1981.

