
Operating Systems Lab ’2016

Jürgen Schönwälder

September 22, 2016

http://cnds.eecs.jacobs-university.de/courses/osl-2016/

Jürgen Schönwälder Operating Systems Lab ’2016

http://cnds.eecs.jacobs-university.de/courses/osl-2016/

Part: Preface

1 Course Content and Objectives

Jürgen Schönwälder Operating Systems Lab ’2016

Course Content

Essential development tools

Shells

Linking and libraries

Concurrent programming

Kernel modules

Filesystems

Device driver

Network filtering

I/O programming

Jürgen Schönwälder Operating Systems Lab ’2016

Course Objectives

Gain practical experience with systems programming above and below the
system call interface of operating systems

Learn how to write concurrent programs

Gain understanding how kernel programming differs from normal application
development

Jürgen Schönwälder Operating Systems Lab ’2016

Grading Scheme

Homework assignments (100%)

Start work on the assignment during the lab

Complete assignment at home and submit solution via jgrader

Defend your homework in an interview (random selection)

⇒ Consult the course web page for submission instructions and grading details.

Jürgen Schönwälder Operating Systems Lab ’2016

Expectations

Knowledge of C is essential (C++ does not help you here)

Basic familiarity with Unix command line tools is required

Programming and debugging via a terminal session will be needed

Jürgen Schönwälder Operating Systems Lab ’2016

Part: Introduction

2 Terminology

Jürgen Schönwälder Operating Systems Lab ’2016

Operating System

General term for the collection of software that manages the resources of a
computer including base software tools such as the shell (a command line
interpreter), file utilities, and a graphical user interface.

Example: Debian GNU/Linux

Central software that manages the computer’s resources (processor, memory,
storage devices, I/O devices).

Example: Linux kernel

The family of Unix systems provides some well-defined services to (user
space) programs.

Jürgen Schönwälder Operating Systems Lab ’2016

System Calls vs. Library Calls

An Operating System provides service points through which programs
request services from the kernel.

The so called system calls provide a well-defined and limited number of
entry-points directly into the operating system kernel.

On Unix systems, for each system call there is a function of the same name
in the C library; user space programs usually call these library functions to
invoke system calls.

Note that not all library functions are wrappers for system calls.

Jürgen Schönwälder Operating Systems Lab ’2016

System Calls vs. Library Calls

Which of the following are system calls?

printf()

write()

strcpy()

time()

From a system programmer’s point of view, there is a big distinction
between system calls and library calls

From an application programmer’s perspective, the distinction is often not
important

Knowing the system call and library interfaces well is crucial for writing
efficient code

Jürgen Schönwälder Operating Systems Lab ’2016

Program

Exists as source code (written using an editor)

Translated into native machine code (ignoring non-systems programming
languages for the moment)

Stored in a certain format in file of the a filesystem

Loaded into memory and executed when requested

Jürgen Schönwälder Operating Systems Lab ’2016

Process

A program being executed is called a process

A process has a unique identifier (of type pid_t)

A process allocates and ’owns’ various resources

Memory is divided into segments:

text: machine instructions of the program
data: static variables
heap: dynamically allocated data structures
stack: automatically allocated local variables, management of function calls

Jürgen Schönwälder Operating Systems Lab ’2016

Thread

Threads are individual control flows, typically within a process (or within a
kernel)

Multiple threads share the same address space and other resources

Fast communication between threads
Fast context switching between threads
Often used for very scalable server programs
Multiple CPUs can be used by a single process
Threads require synchronization (see later)

Linux provides thread support in the kernel

Some kernel functions are running as separate thread inside the kernel

Jürgen Schönwälder Operating Systems Lab ’2016

Shell

The Unix shell is a command interpreter that provides the traditional
Unix-like command-line user interface

The Bourne Again Shell (bash), an open-source re-implementation of the
Bourne Shell (sh), is a popular shell on Linux systems

Unless noted differently, examples assume bash as a shell

Shell scripts are sequences of shell commands stored in a file

For portability reasons, it is often recommended to stick to the commands
supported by the original Bourne Shell

Jürgen Schönwälder Operating Systems Lab ’2016

Part: Tools

3 bash

4 strace and ltrace

5 ps and top

6 lsof and watch

Jürgen Schönwälder Operating Systems Lab ’2016

bash: redirects

Every process has some standard I/O channels:

standard input (readable)
standard output (writeable)
standard error (writeable)

Unix processes refer to their I/O channels via file descriptors (small
non-negative integers)

The standard input has file descriptor 0, the standard output has file
descriptor 1, the standard error has file descriptor 2

For an interactive shell, the standard input, output, and error file descriptors
initially refer to a terminal device

The file descriptors can be changed to refer to other I/O channels (e.g.,
files) via redirection

Jürgen Schönwälder Operating Systems Lab ’2016

bash: redirects

Symbol Function
> Redirect output to a file
>> Redirect output by appending to a file
< Redirect input from a file
n> Redirect file descriptor n to a file
n>> Redirect file descriptor n by appending to a file
n< Redirect file descriptor n from a file

Jürgen Schönwälder Operating Systems Lab ’2016

bash: redirects

$ echo "a" > /tmp/file.txt

$ echo "b" 1> /tmp/file.txt

$ echo "c" >> /tmp/file.txt

$ echo "d" 1>> /tmp/file.txt

$ cat < /tmp/file.txt

$ cat 0< /tmp/file.txt

Jürgen Schönwälder Operating Systems Lab ’2016

bash: pipelines

Pipelines connect the standard output I/O channel of a process to the
standard input I/O channel of a subsequent process

The tee utility program copies standard input to standard output and copies
data to zero or more files

The less utility program allows users to page through text one screenful at
a time (less is more)

$ cat < /tmp/file.txt | less

$ cat < /tmp/file | tee /tmp/copy | less

Jürgen Schönwälder Operating Systems Lab ’2016

bash: parameters and variables

$ a=foo

$ echo $a

foo

$ echo $PATH

/home/schoenw/bin:/usr/local/bin:/usr/bin:/bin

$ echo $HOME

/home/schoenw

A parameter is an entity that stores values.

A variable is a parameter denoted by a name.

Variables can be local or be exported to the environment.

Jürgen Schönwälder Operating Systems Lab ’2016

bash: comments and quoting

$ # this is a comment

$ echo foo bar

foo bar

$ echo "foo bar"

foo bar

$ echo ’foo bar’

foo bar

$ echo ’foo "bar"’

foo "bar"

$ echo "foo ’bar’"

foo ’bar’

$ echo "$SHELL" ’$SHELL’

/bin/bash $SHELL

$ echo $?

0

Characters enclosed in single quotes are treated as a word

Characters in double quotes are teeated as a word but substitutions still
apply

Jürgen Schönwälder Operating Systems Lab ’2016

bash: pathname expansions

$ cd ~

$ pwd

/home/schoenw

$ HOME=/tmp

$ cd ~

$ pwd

/tmp

$ ls *.[ch]

The character ~ expands to the path of the home directory

Glob-style pattern matching is used to expand file names

There is a limit on the number of arguments that can be passed to a
command (see xargs if you hit the limit)

Jürgen Schönwälder Operating Systems Lab ’2016

bash: command substitution

$ d=‘date‘

$ echo $d

Wed Aug 31 16:17:53 CEST 2016

$ d=$(date)

$ echo $d

Wed Aug 31 16:21:17 CEST 2016

$ echo=echo

$ $echo $($echo $($echo $echo))

echo

$ $echo ‘$echo \‘$echo $echo\‘‘

echo

Execute a program and substitute the result (standard output)

Backquotes indicate command substitution, but difficult to nest

The simpler syntax is the $(command) notation

Jürgen Schönwälder Operating Systems Lab ’2016

job control

$ echo hi &

[1] 8640

$ hi

$ sleep 5 &

[1] 8664

$ sleep 5 &

[2] 8667

$ jobs

[1]- Running sleep 5 &

[2]+ Running sleep 5 &

$ fg %1

$

Commands can execute as jobs in the background

Jobs are identified by a number, %n refers to job n

Background jobs can be brought back into the foreground

Jürgen Schönwälder Operating Systems Lab ’2016

strace — trace system calls

$ strace /bin/true

execve("/bin/true", ["/bin/true"], [/* 21 vars */]) = 0

brk(0) = 0xef7000

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fe138660000

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=34548, ...}) = 0

mmap(NULL, 34548, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fe138657000

close(3) = 0

Traces system calls

Very useful to quickly figure out what a program might be doing

Provides summary and timing statistics

Jürgen Schönwälder Operating Systems Lab ’2016

ltrace — trace library calls

$ ltrace /bin/true

__libc_start_main(0x401390, 1, 0x7ffcbaa25d78, 0x403e20 <unfinished ...>

exit(0 <no return ...>

+++ exited (status 0) +++

Traces library calls (and optionally also system calls)

Very useful to quickly figure out what a program might be doing

Allows to optain some timing information
(always measure, never trust your intuition)

It is possible to trace already running programs

Does not work for statically linked libraries

Jürgen Schönwälder Operating Systems Lab ’2016

ps — snapshot of the current processes

$ ps ux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

schoenw 7263 0.0 0.2 20564 2436 pts/0 R+ 15:26 0:00 ps ux

schoenw 28572 0.0 0.3 35632 3680 ? Ss 10:12 0:00 /lib/systemd/sy

schoenw 28573 0.0 0.1 58368 1572 ? S 10:12 0:00 (sd-pam)

schoenw 28575 0.0 0.4 101764 4140 ? S 10:12 0:01 sshd: schoenw@p

schoenw 28576 0.0 0.5 25668 6012 pts/0 Ss 10:12 0:00 -bash

schoenw 28708 0.0 1.5 49660 15912 pts/0 T 10:12 0:06 emacs ../mps.c

Provides a snapshot of the processes running on a system

May include information about kernel threads

Can show information about the threads of multi-threaded programs

Provides basic statistics about resource usage

Jürgen Schönwälder Operating Systems Lab ’2016

top — interactive process viewer

top - 14:50:46 up 468 days, 15:16, 2 users, load average: 0.00, 0.01, 0.05

Tasks: 78 total, 1 running, 76 sleeping, 1 stopped, 0 zombie

%Cpu(s): 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

KiB Mem: 1024468 total, 903192 used, 121276 free, 168280 buffers

KiB Swap: 2045196 total, 36412 used, 2008784 free. 572224 cached Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

3623 schoenw 20 0 25660 5892 3156 S 0.0 0.6 0:00.08 bash

3632 schoenw 20 0 27080 2808 2404 R 0.0 0.3 0:00.01 top

28572 schoenw 20 0 35632 3680 3184 S 0.0 0.4 0:00.00 systemd

28573 schoenw 20 0 58368 1572 0 S 0.0 0.2 0:00.00 (sd-pam)

28575 schoenw 20 0 101764 4140 3096 S 0.0 0.4 0:01.83 sshd

28576 schoenw 20 0 25668 6012 3172 S 0.0 0.6 0:00.48 bash

28708 schoenw 20 0 49660 15912 7268 T 0.0 1.6 0:06.95 emacs

Displays a sorted list of processes, updated periodically
The sorting order and the properties shown can be configured
Several different versions out there with slightly different features
Essential tool to quickly can an idea “why the system is slow”

Jürgen Schönwälder Operating Systems Lab ’2016

lsof — list open files

$ lsof /dev/tty

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

emacs 28708 schoenw 3u CHR 5,0 0t0 5600 /dev/tty

Shows the list of open files for a process or all processes

Shows a list of processes that have opened a certain file

Provides information about open network connections

Written to run on many platforms (not only Linux)

Jürgen Schönwälder Operating Systems Lab ’2016

watch — execute a program periodically

$ watch -d date

Every 2.0s: date Wed Aug 31 14:57:45 2016

Wed Aug 31 14:57:45 CEST 2016

Executes a command periodically

Turns simple commands into something you can “watch”

Can highlight differences between the last and the current command output

Jürgen Schönwälder Operating Systems Lab ’2016

Part: Linking

7 Linker

8 Libraries

9 Interpositioning

Jürgen Schönwälder Operating Systems Lab ’2016

C Compilation Process

C preprocessor -> expanded C code (gcc -E hello.c)

v v

C compiler -> assembler code (gcc -S hello.c)

v v

assembler -> object code (gcc -c hello.c)

v v

linker -> executable (gcc hello.c)

Compiling C source code is traditionally a four-stage process.

Modern compilers often integrate stages for efficiency reasons.

Jürgen Schönwälder Operating Systems Lab ’2016

Reasons for using a Linker

Modularity

Programs can be we written as a collection of small files
Building a collection of easily reusable functions

Efficiency

Separate compilation of a subset of small files saves time on large projects
Smaller executables by linking only functions that are actually used

Jürgen Schönwälder Operating Systems Lab ’2016

What does a Linker do?

Symbol resolution

Programs define and reference symbols (variables or functions)
Symbol definitions and references are stored in object files
Linker associates each symbol reference with exactly one symbol definition

Relocation

Merge separate code and data sections into combined sections
Relocate symbols from relative locations to their final absolute locations
Update all references to these symbols to reflect their new positions

Jürgen Schönwälder Operating Systems Lab ’2016

Object Code Files Types

Relocatable object files (.o files)

Contains code and data in a form that can be combined with other
relocatable object files

Executable object files

Contains code and data in a form that can be loaded directly into memory

Shared object files (.so files)

Special type of relocatable object file that can be loaded into memory and
linked dynamically at either load time or runtime

Jürgen Schönwälder Operating Systems Lab ’2016

Executable and Linkable Format

Standard unified binary format for all object files

ELF header provides basic information (word size, endianess, machine
architecture, . . .)

Program header table describss zero or more segments used at runtime

Section header table provides information about zero or more sections

Separate sections for .text, .rodata, .data, .bss, .symtab, .rel.text,
.rel.data, .debug and many more

The readelf tool can be used to read ELF format

The tool objdump can process ELF formatted object files

Jürgen Schönwälder Operating Systems Lab ’2016

Linker Symbols

Global symbols

Symbols defined by a module that can be referenced by other modules

External symbols

Global symbols that are referenced by a module but defined by some other
module

Local symbols

Symbols that are defined and referenced exclusively by a single module

Tools:

The traditional tool nm displays the (symbol table) of object files in a
traditional format
The newer tool objdump -t does the same for ELF object files

Jürgen Schönwälder Operating Systems Lab ’2016

Strong and Weak Symbols and Linker Rules

Strong Symbols

Functions and initialized global variables

Weak Symbols

Uninitialized global variables

Linker Rules:

Rule 1: Multiple strong symbols are not allowed
Rule 2: Given a strong symbol and multiple weak symbols, choose the
strong symbol
Rule 3: If there are multiple weak symbols, pick an arbitrary one

Jürgen Schönwälder Operating Systems Lab ’2016

Linker Puzzles

Link time error due to two definitions of p1:

a.c: int x; p1() {}

b.c: p1() {}

Reference to the same uninitialized variable x:

a.c: int x; p1() {}

b.c: int x; p2() {}

Reference to the same initialized variable x:

a.c: int x=1; p1() {}

b.c: int x; p2() {}

Writes to the double x likely overwrite y:

a.c: int x; int y; p1() {}

b.c: double x; p2() {}

Jürgen Schönwälder Operating Systems Lab ’2016

Static Libraries

Collect related relocatable object files into a single file with an index (called
an archive)

Enhance linker so that it tries to resolve external references by looking for
symbols in one more more archives

If an archive member file resolves a reference, link the archive member file
into the executable (which may produce additional references)

Archive format allows incremental updates

Example:

ar -rs libfoo.a foo.o bar.o

Jürgen Schönwälder Operating Systems Lab ’2016

Shared Libraries

Static linking duplicates library code by copying it into executables

Bug fixes in libraries require to re-link all executables

Solution: Delay the linking until program start and then link against the
most recent matching versions of the required libraries

At traditional link time, an executable file is prepared for dynamic linking
(i.e., information is stored which shared libraries are needed) while the final
linking takes place when an executable is loaded into memory

First nice side effect: Library code can be stored in memory shared by
multiple processes

Second nice side effect: Programs can load additional code dynamically
while the program is running

Caveat: Loading untrusted libraries can lead to real surprises

Jürgen Schönwälder Operating Systems Lab ’2016

Interpositioning

Intercept library calls for fun and profit

Examples:

Debugging: tracing memory allocations / leaks
Profiling: study typical function arguments
Sandboxing: emulate a restricted view on a filesystem
Hardening: simulate failures to test program robustness
Privacy: add encryption into I/O calls
Hacking: give a program an illusion to run in a different context
Spying: oops

Jürgen Schönwälder Operating Systems Lab ’2016

Compile-time Interpositioning

Change symbols are compile to so that library calls can be intercepted

Typically done in C using #define pre-processor substitutions, sometimes
contained in special header files

This technique is restricted to situations where source code is available

Example:

#define malloc(size) dbg_malloc(size, __FILE__, __LINE__)

#define free(ptr) dbg_free(ptr, __FILE__, __LINE__)

void *dbg_malloc(size_t size, char *file, int line);

void dbg_free(void *ptr, char *file, int line);

Jürgen Schönwälder Operating Systems Lab ’2016

Link-time Interpositioning

Tell the linker to change the way symbols are matched

The GNU linker supports the option --wrap=symbol, which causes
references to symbol to be resolved to wrap symbol while the real symbol
remains accessible as real symbol.

The GNU compiler allows to pass linker options using the -Wl option.

Example:

/* gcc -Wl,--wrap=malloc -Wl,--wrap=free */

void * __wrap_malloc (size_t c)

{

printf("malloc called with %zu\n", c);

return __real_malloc (c);

}

Jürgen Schönwälder Operating Systems Lab ’2016

Load-time Interpositioning

The dynamic linker can be used to pre-load shared libraries

This may be controlled via setting the LD PRELOAD environment variable

Example:

LD_PRELOAD=./libmymalloc.so vim

Jürgen Schönwälder Operating Systems Lab ’2016

Load-time Interpositioning Example 1/2

/*

* gcc -Wall -fPIC -DPIC -c datehack.c

* ld -shared -o datehack.so datehack.o -ldl (Linux)

* ld -dylib -o datehack.dylib datehack.o -ldl (MacOS)

*

* LD_PRELOAD=./datehack.so date (Linux)

* DYLD_INSERT_LIBRARIES=./datehack.dylib date (MacOS)

*

* See fakeroot <http://freecode.com/projects/fakeroot> for a project

* making use of LD_PRELOAD for good reasons.

*

* http://hackerboss.com/overriding-system-functions-for-fun-and-profit/

*/

#define _GNU_SOURCE

#include <time.h>

#include <dlfcn.h>

#include <unistd.h>

#include <sys/types.h>

Jürgen Schönwälder Operating Systems Lab ’2016

Load-time Interpositioning Example 2/2

struct tm *(*orig_localtime)(const time_t *timep);

struct tm *localtime(const time_t *timep)

{

time_t t = *timep - 60 * 60 * 24;

return orig_localtime(&t);

}

void

_init(void)

{

orig_localtime = dlsym(RTLD_NEXT, "localtime");

}

Jürgen Schönwälder Operating Systems Lab ’2016

Part: Threads

10 Concurrency

11 Posix Threads

12 Linux Kernel API

Jürgen Schönwälder Operating Systems Lab ’2016

Concurrency

Increasing processor clock speed increases the heat produced

Hence, it is not possible to clock processors arbitrarily fast

To achieve further speed improvements, it is necessary to use multiple
processors

Concurrent programs that can take advantage of multiple processors

Writing concurrent programs is difficult (synchronization and coordination
problems)

Even with concurrent programs and multiple processors, there are limits on
the speed that can be achieved

Jürgen Schönwälder Operating Systems Lab ’2016

Speedup and Efficiency and Amdahl’s Law

Let Tn be the execution time of a task with n processors.

The speedup Sn is defined as Sn = T1/Tn.

The efficiency En is defined as En = Sn/n.

Let p the portion of a program that can benefit from multiple processors and
1− p the portion of a program that is strictly sequential.

The expected speedup Ŝ for a task is given by:

Ŝ =
1

(1− p) + p
n

A consequence of Amdahl’s law is that there is limit for the expected speedup,
i.e., after reaching the certain point, adding more processors does not improve
the speedup significantly anymore.

Jürgen Schönwälder Operating Systems Lab ’2016

POSIX API (pthreads)

#include <pthread.h>

typedef ... pthread_t;

typedef ... pthread_attr_t;

int pthread_create(pthread_t *thread,

pthread_attr_t *attr,

void * (*start) (void *),

void *arg);

void pthread_exit(void *retval);

int pthread_cancel(pthread_t thread);

int pthread_join(pthread_t thread, void **retvalp);

int pthread_cleanup_push(void (*func)(void *), void *arg)

int pthread_cleanup_pop(int execute)

Jürgen Schönwälder Operating Systems Lab ’2016

POSIX Mutex Locks

#include <pthread.h>

typedef ... pthread_mutex_t;

typedef ... pthread_mutexattr_t;

int pthread_mutex_init(pthread_mutex_t *mutex,

pthread_mutexattr_t *mutexattr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_timedlock(pthread_mutex_t *mutex,

struct timespec *abstime);

Mutex locks are a simple mechanism to achieve mutual exclusion in critical
sections

Jürgen Schönwälder Operating Systems Lab ’2016

POSIX Condition Variables

#include <pthread.h>

typedef ... pthread_cond_t;

typedef ... pthread_condattr_t;

int pthread_cond_init(pthread_cond_t *cond,

pthread_condattr_t *condattr);

int pthread_cond_destroy(pthread_cond_t *cond);

int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_timedwait(pthread_cond_t *cond,

pthread_mutex_t *mutex,

struct timespec *abstime);

Condition variables can be used to bind the entrance into a critical section
protected by a mutex to a condition

Jürgen Schönwälder Operating Systems Lab ’2016

POSIX Barriers

#include <pthread.h>

typedef ... pthread_barrier_t;

typedef ... pthread_barrierattr_t;

int pthread_barrier_init(pthread_barrier_t *barrier,

pthread_barrierattr_t *barrierattr,

unsigned count);

int pthread_barrier_destroy(pthread_barrier_t *barrier);

int pthread_barrier_wait(pthread_barrier_t *barrier);

Barriers block threads until the required number of threads have called
pthread barrier wait()

Jürgen Schönwälder Operating Systems Lab ’2016

POSIX Message Queues

#include <mqueue.h>

typedef ... mqd_t;

mqd_t mq_open(const char *name, int oflag);

mqd_t mq_open(const char *name, int oflag, mode_t mode,

struct mq_attr *attr);

int mq_getattr(mqd_t mqdes, struct mq_attr *attr);

int mq_setattr(mqd_t mqdes, const struct mq_attr *newattr,

struct mq_attr *oldattr);

int mq_close(mqd_t mqdes);

int mq_unlink(const char *name);

Message queues can be used to exchange messages between threads and
processes running on the same system efficiently

Jürgen Schönwälder Operating Systems Lab ’2016

POSIX Message Queues

#include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr,

size_t msg_len, unsigned int msg_prio);

int mq_timedsend(mqd_t mqdes, const char *msg_ptr,

size_t msg_len, unsigned int msg_prio,

const struct timespec *abs_timeout);

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr,

size_t msg_len, unsigned int *msg_prio);

ssize_t mq_timedreceive(mqd_t mqdes, char *msg_ptr,

size_t msg_len, unsigned int *msg_prio,

const struct timespec *abs_timeout);

int mq_notify(mqd_t mqdes, const struct sigevent *sevp);

Notifications about message arrivals can be delivered in different ways, e.g.,
as signals or in a thread-like fashion

Jürgen Schönwälder Operating Systems Lab ’2016

POSIX Semaphores

#include <semaphore.h>

typedef ... sem_t;

int sem_init(sem_t *sem, int pshared, unsigned int value);

int sem_destroy(sem_t *sem);

int sem_wait(sem_t *sem);

int sem_post(sem_t *sem);

int sem_trywait(sem_t *sem);

int sem_getvalue(sem_t *sem, int *sval);

sem_t* sem_open(const char *name, int oflag);

sem_t* sem_open(const char *name, int oflag, mode_t mode, unsigned int value);

int int sem_close(sem_t *sem);

int sem_unlink(const char *name);

Unnamed semaphores are created with (sem_init())

Named semaphores are created with (sem_open())

Jürgen Schönwälder Operating Systems Lab ’2016

Atomic Operations in Linux (2.6.x)

struct ... atomic_t;

int atomic_read(atomic_t *v);

void atomic_set(atomic_t *v, int i);

void atomic_add(int i, atomic_t *v);

void atomic_sub(int i, atomic_t *v);

void atomic_inc(atomic_t *v);

void atomic_dec(atomic_t *v);

int atomic_add_negative(int i, atomic_t *v);

int atomic_sub_and_test(int i, atomic_t *v);

int atomic_inc_and_test(atomic_t *v)

int atomic_dec_and_test(atomic_t *v);

The atomic t is essentially 24 bit wide since some processors use the
remaining 8 bits of a 32 bit word for locking purposes

Jürgen Schönwälder Operating Systems Lab ’2016

Atomic Operations in Linux (2.6.x)

void set_bit(int nr, unsigned long *addr);

void clear_bit(int nr, unsigned long *addr);

void change_bit(int nr, unsigned long *addr);

int test_and_set_bit(int nr, unsigned long *addr);

int test_and_clear_bit(int nr, unsigned long *addr);

int test_and_change_bit(int nr, unsigned long *addr);

int test_bit(int nr, unsigned long *addr);

The kernel provides similar bit operations that are not atomic (prefixed with
two underscores)

The bit operations are the only portable way to set bits

On some processors, the non-atomic versions might be faster

Jürgen Schönwälder Operating Systems Lab ’2016

Spin Locks in Linux (2.6.x)

typedef ... spinlock_t;

void spin_lock(spinlock_t *l);

void spin_unlock(spinlock_t *l);

void spin_unlock_wait(spinlock_t *l);

void spin_lock_init(spinlock_t *l);

int spin_trylock(spinlock_t *l)

int spin_is_locked(spinlock_t *l);

typedef ... rwlock_t;

void read_lock(rwlock_t *rw);

void read_unlock(rwlock_t *rw);

void write_lock(rwlock_t *rw);

void write_unlock(rwlock_t *rw);

void rwlock_init(rwlock_t *rw);

int write_trylock(rwlock_t *rw);

int rwlock_is_locked(rwlock_t *rw);

Jürgen Schönwälder Operating Systems Lab ’2016

Semaphores in Linux (2.6.x)

struct ... semaphore;

void sema_init(struct semaphore *sem, int val);

void init_MUTEX(struct semaphore *sem);

void init_MUTEX_LOCKED(struct semaphore *sem);

void down(struct semaphore *sem);

int down_interruptible(struct semaphore *sem);

int down_trylock(struct semaphore *sem);

void up(struct semaphore *sem);

Linux kernel semaphores are counting semaphores

init MUTEX(s) equals sema init(s, 1)

init MUTEX LOCKED(s) equals sema init(s, 0)

Jürgen Schönwälder Operating Systems Lab ’2016

	Preface
	Course Content and Objectives
	Terminology

	Tools
	bash
	strace and ltrace
	ps and top
	lsof and watch

	Linking
	Linker
	Libraries
	Interpositioning

	Threads
	Concurrency
	Posix Threads
	Linux Kernel API

