
Introduction to Computer Science

Jürgen Schönwälder

February 7, 2018

Abstract

This memo contains annotated slides for the course “Introduction to Computer Science”. The
material is inspired by the course material of Michael Kohlhase’s course “General Computer Science”,
Herbert Jaeger’s short course on “Boolean Logic”, and the online textbook “Mathematics for Computer
Science” by Eric Lehman, F. Thomson Leighton, and Albert R. Meyer.

Contents

I Introduction and Examples 2

Computer Science and Algorithms 3

Maze Generation Algorithms 7

String Search Algorithms 20

Complexity, Correctness, Engineering 31

II Discrete Mathematics 39

Propositions, Axioms, Theorems, Proofs 40

Sets 56

Relations 62

Functions 68

III Number Systems, Units, Characters, Date and Time 74

Natural Numbers 77

Integer Numbers 82

Rational and Real Numbers 87

Floating Point Numbers 90

International System of Units 97

Characters and Strings 104

Date and Time 111

IV Boolean Algebra and Logic 115

1

Elementary Boolean Operations and Functions 117

Boolean Functions and Formulas 128

Boolean Algebra Equivalence Laws 134

Normal Forms (CNF and DNF) 139

Complexity of Boolean Formulas 146

Boolean Logic and the Satisfiability Problem 152

V Computer Architecture and System Software 157

Logic Gates and Digital Circuits 158

Von Neumann Computer Architecture 166

Interpreter and Compiler 174

Operating Systems 186

VI Automata and Formal Languages 195

Finite State Machines 196

Pushdown Automata 202

Turing Machines 206

Formal Languages 212

VII Computability and Computational Complexity 223

Landau Sets and Big O Notation 224

Computability 229

2

Part I

Introduction and Examples

The aim of this part is to explain what computer science is all about. After the introduction of a few
terms, we will study two typical problems, namely the creation of mazes and the search of a pattern in
a string. We will demonstrate that it is useful to look at the problem from different perspectives in order
to find good algorithms to solve the problem.

3

Computer Science and Algorithms

4 Computer Science and Algorithms

5 Maze Generation Algorithms

6 String Search Algorithms

7 Complexity, Correctness, Engineering

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 19 / 246

4

Computer Science

• Computer science is the study of the theory, experimentation, and engineering that
form the basis for the design and use of computers

• It is the systematic study of the feasibility, structure, expression, and mechanization
of the methodical procedures (or algorithms) that underlie the acquisition,
representation, processing, storage, communication of, and access to information

• Computer science is the study of automating algorithmic processes that scale. A
computer scientist specializes in the theory of computation and the design of
computational systems

Source: [Wikipedia, accessed 2017-06-11]

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 20 / 246

Further information:

• https://en.wikipedia.org/wiki/Computer_science

5

https://en.wikipedia.org/wiki/Computer_science

Algorithm

Definition (algorithm)

In computer science, an algorithm is a self-contained sequence of actions to be
performed in order to achieve a certain task.

• If you are confronted with a problem, do the following steps:
• first think about the problem to make sure you fully understand it
• afterwards try to find an algorithm to solve the problem
• try to assess the properties of the algorithms (will it handle corner cases correctly?

how long will it run? will it always terminate?, . . .)
• consider possible alternatives that may have “better” properties
• finally, write a program to implement the most suitable algorithm you have selected

• Is the above an algorithm to find algorithms?

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 21 / 246

The notion of an algorithm is central to computer science. Computer science is all about algorithms. A
program is an implementation of an algorithm. While programs are practically important (since you can
execute them), we often focus in computer science on the algorithms and their properties and less on
the concrete implementations of the algorithms.

Another important aspect of computer science is the definition of abstractions that allow us to describe
and implement algorithms efficiently. A good education in computer science will (i) strengthen your
abstract thinking and (ii) train you in algorithmic thinking.

Some algorithms are very old. Algorithms were used in ancient Greek, for example the Euclidean
algorithm to find the greatest common divisor of two numbers. Marks on sticks were used before
Roman numerals were invented. Later in the 11th century, HinduArabic numerals were introduced into
Europe that we still use today.

The word algorithm goes back to Muhammad ibn Musa al-Khwarizmi, a Persian mathematician, who
wrote a document in Arabic language that got translated into Latin as “Algoritmi de numero Indorum”.
The Latin word was later altered to algorithmus, leading to the corresponding English term ’algorithm’.

For further information:

• https://en.wikipedia.org/wiki/Algorithm

6

https://en.wikipedia.org/wiki/Algorithm

Algorithmic Thinking

Algorithmic thinking is a collection of abilities that are essential for constructing and
understanding algorithms:

• the ability to analyze given problems

• the ability to specify a problem precisely

• the ability to find the basic actions that are adequate to the given problem

• the ability to construct a correct algorithm using the basic actions

• the ability to think about all possible special and normal cases of a problem

• the ability to assess and improve the efficiency of an algorithm

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 22 / 246

We will train you in algorithmic thinking. This is going to change how you look at the world. You will start
to enjoy (hopefully) the beauty of well designed abstract theories and elegant algorithms. You will start
to appreciate systems that have a clean and pure logical structure.

But beware that the real world is to a large extend not based on pure concepts. Human natural lan-
guage is very imprecise, sentences often have different interpretations in different contexts, and the real
meaning of a statement often requires to know who made the statement and in which context. Making
computers comprehend natural language is still a hard problem to be solved.

Example: Consider the following problem: Implement a function that returns the square root of a number
(on a system that does not have a math library). At first sight, this looks like a reasonably clear definition
of the problem. However, on second thought, we discover a number of questions that need further
clarification.

• What is the input domain of the function? Is the function defined for natural numbers, integer
numbers, real numbers (or an approximate representation of real numbers), complex numbers?

• Are we expected to always return the principal square root, i.e., the positive square root?

• What happens if the function is called with a negative number? Shall we return a complex number
or indicate a runtime exception? In the later case, how exactly is the runtime exception signaled?

• In general, square roots can not be calculated and represented precisely (recall that
√

2 is irra-
tional). Hence, what is the precision that needs to be achieved?

While thinking about a problem, it is generally useful to go through a number of examples. The examples
should cover regular cases and corner cases. It is useful to write the examples down since they may
serve later as test cases for an implementation of an algorithm that has been selected to solve the
problem.

For further information:

• https://doi.org/10.1007/11915355_15

7

https://doi.org/10.1007/11915355_15

Maze Generation Algorithms

4 Computer Science and Algorithms

5 Maze Generation Algorithms

6 String Search Algorithms

7 Complexity, Correctness, Engineering

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 23 / 246

8

Maze (33 x 11)

[] []

[] [] [] [] [] []

[] [] [][][][][][][] [] [][][] [][][][][] [][][] [] [] []

[] [] [] [] [] [] [] [] [] []

[][][][][][][] [] [] [] [] [][][][][] [] [] [][][][][] []

[] [] [] [] [] [] [] [] [] [] [] []

[] [] [] [][][] [][][][][] [] [] [] [][][] [] [] [][][]

[] [] [] [] [] [] [] [] [] []

[] [][][][][][][][][][][][][][][] [][][][][] [][][] [] [] []

[] [] []

[] []

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 24 / 246

This is a simple 33x11 maze. How do you find a path through the maze from the entry (left top) to the
exit (bottom right)?

We are not going to explore maze solving algorithms here. Instead we look at the generation of mazes.

For further information:

• https://en.wikipedia.org/wiki/Maze_solving_algorithm

9

https://en.wikipedia.org/wiki/Maze_solving_algorithm

Problem Statement

Problem:

• Write a program to generate mazes.

• Every maze should be solvable, i.e., it should have a
path from the entrance to the exit.

• We want maze solutions to be unique.

• We want every “room” to be reachable.

Questions:

• How do we approach this problem?

• Are there other properties that make a maze a “good”
or a “challenging” maze?

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 25 / 246

It is quite common that problem statements are not very precise. A customer might ask for “good” mazes
or “challenging” mazes or mazes with a certain “difficulty level” without being able to say precisely what
this means. As a computer scientist, we appreciate well defined requirements but what we usually get
is imprecise and leaves room for interpretation.

What still too often happens is that the computer scientist discovers that the problem is under-specified
and then decides to go ahead to produce a program that, according to his understanding of the problem,
seems to close the gaps in a reasonable way. The customer then later sees the result and is often
disappointed by the result. It is thus crucial to reach out to the customer if the problem definition is not
precise enough.

10

Hacking. . .

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 26 / 246

While hacking can be fun, it is often far more effective to think first before opening the editor and starting
to code. It usually also extremely helps to discuss the problem with others. Even coding together in
pairs has been found to lead to better programs. Despite common believes, computer science in practice
usually means a lot of team work and requires a great deal of communication.

11

Problem Formalization (1/3)

• Think of a maze as a (two-dimensional) grid of rooms
separated by walls.

• Each room can be given a name.

• Initially, every room is surrounded by four walls

• General idea:
• Randomly knock out walls until we get a good maze.
• How do we ensure there is a solution?
• How do we ensure there is a unique solution?
• How do we ensure every room is reachable?

h

a b c d

m

i

e

n

j

f

o

k

g

p

l

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 27 / 246

Thinking of a maze as a (two-dimensional) grid seems natural, probably because we are used to two-
dimensional mazes appearing since childhood.

But what about one-dimensional mazes? Are they useful?

What about higher-dimensional mazes? Should we generalize the problem to consider arbitrary n-
dimensional mazes? Quite surprisingly, generalizations sometimes lead to simpler solutions.

12

Problem Formalization (2/3)

Lets try to formalize the problem in mathematical terms:

• We have a set V of rooms.

• We have a set E of pairs (x , y) with x ∈ V and y ∈ V
of adjacent rooms that have an open wall between them.

In the example, we have

• V = {a, b, c , d , e, f , g , h, i , j , k , l ,m, n, o, p}
• (a, b) ∈ E and (g , k) ∈ E and (a, c) /∈ E and (e, f) /∈ E

Abstractly speaking, this is a mathematical structure called a
graph consisting of a set of vertices (also called nodes) and a
set of edges (also called links).

h

a b c d

m

i

e

n

j

f

o

k

g

p

l

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 28 / 246

Graphs are very fundamental in computer science. Many real-world structures and problems have a
graph representation. Relatively obvious are graphs representing the structure of relationships in social
networks or graphs representing the structure of communication networks. Perhaps less obvious is that
compilers internally often represent source code as graphs.

Note: What is missing in this problem formalization is how we represent (or determine) that two rooms
are adjacent.

For further information:

• https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

13

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

Why use a mathematical formalization?

• Data structures are typically defined as mathematical structures

• Mathematics can be used to reason about the correctness and efficiency of data
structures and algorithms

• Mathematical structures make it easier to think — to abstract away from
unnecessary details and to avoid “hacking”

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 29 / 246

Formalizing a problem requires us to think abstractly about what needs to be done. It requires us to
identify clearly

• what our input is,

• what our output is, and

• what the task is that needs to be achieved.

Formalization also leads to a well-defined terminology that can be used to talk about the problem.
Having a well-defined terminology is crucial for any teamwork. Without it, a lot of time is wasted because
people talk past each other, often without discovering it. Keep in mind that larger programs are almost
always the result of group work.

14

Problem Formalization (3/3)

Definition:

• A maze is a graph G = (V ,E) with two special nodes,
the start node S and the exit node X .

Interpretation:

• Each graph node x ∈ V represents a room

• An edge (x , y) ∈ E indicates that rooms x and y are
adjacent and there is no wall in between them

• The first special node is the start of the maze

• The second special node is the exit of the maze

h

a b c d

m

i

e

n

j

f

o

k

g

p

l

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 30 / 246

Another way of formulating this is to say that a maze is described by a triple (G,S,X) where G = (V,E)
is a graph with the vertices V and the edges E and S ∈ V is the start node and X ∈ V is the exit node.

Given this formalization, the example maze is represented as follows:

• V = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p}
• E = {(a, b), (a, e), (b, c), (d, h), (e, i), (f, g), (f, j), (g, h), (g, k), (i, j), (k, o), (l, p), (m,n), (n, o), (o, p)}
• S = a

• X = p

Note that this is just one out of many different possible representations of the problem. Finding a
good representation of a given problem requires experience and knowledge of many different possible
representation approaches.

15

Mazes as Graphs (Visualization via Diagrams)

• Graphs are very abstract objects, we need a good,
intuitive way of thinking about them.

• We use diagrams, where the nodes are visualized as
circles and the edges as lines between them.

• Note that the diagram is a visualization of the graph,
and not the graph itself.

• A visualization is a representation of a structure intended
for humans to process visually.

a b c d

m

i

e

n

j

f

o

k

g

p

l

h

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 31 / 246

Visualizations help humans to think about a problem. The human brain is very good in recognizing
structures visually. But note that a visualization is just another representation and it might not be the
best representation for a computer program. Also be aware that bad visualizations may actually hide
structures.

Graphs like the one discussed here can also be represented using a graph notation. Here is how the
graph looks like in the dot notation (used by the graphviz tools):

graph maze {

a -- b -- c;

a -- e -- i -- f -- g;

g -- h -- d;

g -- k -- o;

o -- m -- n;

o -- p -- l;

// _S an _X are additional invisible nodes with an edge

// to the start and exit nodes.

_S [style=invis]

_S -- a

_X [style=invis]

p -- _X

}

Several graph drawing tools can read graph representations in dot notation and produce drawings of
the graph. Note that producing good drawings for a given graphs is a non-trivial problem. You can look
at different drawings of the graph by saving the graph definition in a file (say maze.dot) and then run the
following commands to produce .pdf files (assuming you have the graphviz software package installed).

$ neato -T pdf -o maze-neato.pdf maze.dot

$ dot -T pdf -o maze-dot.pdf maze.dot

For further information:

• https://en.wikipedia.org/wiki/Graph_drawing

• http://www.graphviz.org/

16

https://en.wikipedia.org/wiki/Graph_drawing
http://www.graphviz.org/

Mazes as Graphs (Good Mazes)

Recall, what is a good maze?

• We want maze solutions to be unique.

• We want every room to be reachable.

Solution:

• The graph must be a tree (a graph with a unique root
node and every node except the root node having a
unique parent).

• The tree should cover all nodes (we call such a tree a
spanning tree).

Since trees have no cycles, we have a unique solution.

a b c d

m

i

e

n

j

f

o

k

g

p

l

h

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 32 / 246

Apparently, we are not interested in arbitrary graphs but instead in spanning trees. So we need to solve
the problem to construct a spanning tree rooted at the start node. This turns out to be a fairly general
problem which is not specific to the construction of mazes.

Note that in graph theory, a spanning tree T of an undirected graph G is a subgraph that is a tree which
includes all of the vertices of G, with minimum possible number of edges. In general, a graph may have
several spanning trees.

Spanning trees are important for communication networks in order to avoid loops. Spanning trees are
also often used as building blocks in more complex algorithms.

Computer scientists draw trees in a somewhat unconventional fashion: The root is usually at the top
and the tree grows towards the bottom.

For further information:

• https://en.wikipedia.org/wiki/Spanning_tree

17

https://en.wikipedia.org/wiki/Spanning_tree

Kruskal’s Algorithm (1/2)

General approach:

• Randomly add a branch to the tree if it won’t create a cycle (i.e., tear down a wall).

• Repeat until a spanning tree has been created.

Questions:

• When adding a branch (edge) (x , y) to the tree, how do we detect that the branch
won’t create a cycle?

• When adding an edge (x , y), we want to know if there is already a path from x to
y in the tree (if there is one, do not add the edge (x , y).

• How can we quickly determine whether there is already a path from x to y?

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 33 / 246

For further information:

• https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

18

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

Kruskal’s Algorithm (2/2)

The Union Find Algorithm successively puts nodes into an equivalence class if there is a
path connecting them. With this idea, we get the following algorithm to construct a
spanning tree:

1. Initially, every node is in its own equivalence class and the set of edges is empty.

2. Randomly select a possible edge (x , y) such that x and y are not in the same
equivalence class.

3. Add the edge (x , y) to the tree and join the equivalence classes of x and y .

4. Repeat the last two steps if there are still multiple equivalence classes.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 34 / 246

For further information:

• https://en.wikipedia.org/wiki/Equivalence_class

• https://en.wikipedia.org/wiki/Disjoint-set_data_structure

19

https://en.wikipedia.org/wiki/Equivalence_class
https://en.wikipedia.org/wiki/Disjoint-set_data_structure

Randomized Depth-first Search

Are there other algorithms? Of course there are. Here is a different approach to build a
tree rooted at the start node.

1. Make the start node the current node and mark it as visited.

2. While there are unvisited nodes:
2.1 If the current node has any neighbours which have not been visited:

2.1.1 Choose randomly one of the unvisited neighbours
2.1.2 Push the current node to the stack (of nodes)
2.1.3 Remove the wall between the current node and the chosen node
2.1.4 Make the chosen node the current node and mark it as visited

2.2 Else if the stack is not empty:

2.2.1 Pop a node from the stack (of nodes)
2.2.2 Make it the current node

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 35 / 246

For further information:

• https://en.wikipedia.org/wiki/Maze_generation_algorithm

20

https://en.wikipedia.org/wiki/Maze_generation_algorithm

String Search Algorithms

4 Computer Science and Algorithms

5 Maze Generation Algorithms

6 String Search Algorithms

7 Complexity, Correctness, Engineering

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 36 / 246

21

Problem Statement

Problem:

• Write a program to find a (relatively short) string in a (possibly long) text.

• This is sometimes called finding a needle in a haystack.

Questions:

• How can we do this efficiently?

• What do we mean with long?

• What exactly is a string and what is text?

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 37 / 246

Searching is one of the main tasks computers do for us.

• Searching in the Internet for web pages.

• Searching within a web page for a given pattern.

• Searching for a pattern in network traffic.

• Searching for a pattern in a DNA.

The search we are considering is more precisely called substring search. There are more expressive
search techniques that we do not consider here.

For further information:

• https://en.wikipedia.org/wiki/String_searching_algorithm

22

https://en.wikipedia.org/wiki/String_searching_algorithm

Problem Formalization

• Let Σ be a finite set, called an alphabet.

• Let k denote the number of elements in Σ.

• Let Σ∗ be the set of all words that can be created out of Σ (Kleene closure of Σ).

• Let t ∈ Σ∗ be a (possible long) text and p ∈ Σ∗ be a (typically short) pattern.

• Let n denote the length of t and m denote the length of p.

• We assume that n� m.

• Find the first occurance of p in t.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 38 / 246

The formalization introduces common terms that make it easier to discuss the problem. Furthermore,
we introduce the abstract notion of an alphabet and we do not care anymore about the details how such
an alphabet looks like. Some examples for alphabets:

• The characters of the Latin alphabet.

• The characters of the Universal Coded Character Set (Unicode)

• The binary alphabet Σ = {0, 1}.
• The DNA alphabet Σ = {A,C,G, T} used in bioinformatics.

The Kleene closure Σ∗ of the alphabet Σ is the (infinite) set of all words that can be formed with elements
out of Σ. This includes the empty word of length 0, typically denoted by ε. Note that words here are any
concatenation of elements of the alphabet, it does not matter whether the word is meaningful or not.

Note that the problem formalization details that we are searching for the first occurance of p in t. We
could have defined the problem differently, e.g., searching for the last occurance of p in t, or searching
for all occurances of p in t.

23

Naive String Search

• Check whether the pattern matches at each text position (going left to right).

• Lowercase characters indicate comparisons that were skipped.

• Example: t = FINDANEEDLEINAHAYSTACK, p = NEEDLE

F I N D A N E E D L E I N A H A Y S T A C K

N e e d l e

N e e d l e

N E e d l e

N e e d l e

N e e d l e

N E E D L E

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 39 / 246

An implementation of naive string search in a procedural language like C is straight forward. You need
two nested for-loops, the outer loop iterates over all possible alignments and the inner loop iterates over
the pattern to test whether the pattern matches the current part of text.

/*

* naive-search/search.c --

*

* Implementation of naive string search in C.

*/

#include <stdlib.h>

#include "search.h"

const char *

search(const char *haystack, const char *needle)

{

const char *t, *p, *r;

for (t = haystack; *t; t++) {

for (p = needle, r = t; *r && *p && *r == *p; p++, r++) ;

if (! *p) {

return t;

}

}

return NULL;

}

24

Naive String Search Performance

• How “fast” is naive string search?

• Idea: Lets try to count the number of comparisons.

• Problem: The number of comparisons depends on the strings.

• Idea: Consider the worst case possible.

• What is the worst case possible?
• Consider a haystack of length n using only a single symbol of the alphabet (e.g.,

“aaaaaaaaaa” with n = 10).
• Consider a needle of length m which consists of m − 1 times the same symbol

followed by a single symbol that is different (e.g., “aax” with m = 3).

• With n� m, the number of comparisons needed will be roughly n ·m.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 40 / 246

When talking about the performance of an algorithm, it is often useful to consider performance in the
best case, performance in the worst case, and performance in average cases. Furthermore, perfor-
mance is typically discussed in terms of processing steps (time) and in terms of memory required
(space). There is often an interdependency between time and space and it is often possible to trade
space against time or vice versa.

The naive string search is very space efficient but not very time efficient. Alternative search algorithms
can be faster, but they require some extra space.

25

Boyer-Moore: Bad character rule (1/2)

• Idea: Lets compare the pattern right to left instead left to right. If there is a
mismatch, try to move the pattern as much as possible to the right.

• Bad character rule: Upon mismatch, move the pattern to the right until there is a
match at the current position or until the pattern has moved past the current
position.

• Example: t = FINDANEEDLEINAHAYSTACK, p = NEED

F I N D A N E E D L E I N A H A Y S T A C K skip

n e E D 1

n e e D 2

N E E D

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 41 / 246

The bad character rule allows us to skip alignments:

1. In the initial alignment, we find that D is matching but E is not matching the N. So we check
whether there is an N in the part of the pattern not tested yet that we can align with the N. In this
case there is an N in the pattern and we can skip 1 alignment.

2. In the second alignment, we find that D is not matching N and so we check whether there is an N
in the part of the pattern not tested yet. In this case, we can skip 2 alignments.

3. In the third alignment, we find a match.

In this case, we have skipped 3 alignments and we used 3 alignments to find a match. With the naive
algorithms we would have used 6 alignments. We have performed 7 comparisons in this case while the
naive algorithm used 12 comparisons.

26

Boyer-Moore: Bad character rule (2/2)

• Example: t = FINDANEEDLEINAHAYSTACK, p = HAY

F I N D A N E E D L E I N A H A Y S T A C K skip

h a Y 2

h a Y 2

h a Y 2

h a Y 2

h a Y 1

H A Y

• How do we decide efficiently how far we can move the pattern to the right?

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 42 / 246

In this example, we test four times against a character in the text that is not present in the pattern.
Hence we can skip 2 alignments each time. In the fifth alignment, we compare Y against H and since H
is in the pattern, we skip 1 alignment. So overall, we have skipped 9 alignments. (15 alignments would
be needed to check with naive matching, Boyer-Moore only requires 6 alignments.)

In order to determine how many alignments we can skip, we need a function that takes the current
position in the pattern and the character of the text that does not match and returns the number of align-
ments that can be skipped. A naive implementation of this function requires again several comparisons.
In order to make this more efficient, we can pre-compute all possible skips and store the skips in a
two-dimensional table. This way, we can simply lookup the number of alignments that can be skipped
by indexing into the table. The table can be seen as a function that maps mismatching character and
the position in the pattern to the number of alignments that can be skipped.

Example: Lets assume p = NEED and an ASCII alphabet. Then the table looks as follows (counting
character positions in the patter starting with 0):

0 1 2 3

A 0 1 2 3
B 0 1 2 3
C 0 1 2 3
D 0 1 2 −
E 0 − − 3
...

...
...

...
...

N − 0 1 2
...

...
...

...
...

Z 0 1 2 3

This pre-computation of a lookup table is key to the performance of the Boyer-Moore bad character rule.
The size of the lookup table and the time to compute it depends only on the length of the pattern and
the size of the alphabet. The effort is independent of the length of the text. Since we assume that the
text is significantly longer than the pattern, the effort to calculate the lookup table becomes irrelevant for
large texts. (It is possible to find more space efficient representations of the lookup table. For example,
all rows for characters not present in the pattern look the same.)

27

Boyer-Moore: Good suffix rule (1/3)

• Idea: If we already matched a suffix and the suffix appears again in the pattern,
skip the alignment such that we keep the good suffix.

• Good suffix rule: Let s be the suffix already matched in the inner loop. If there is a
mismatch, skip alignments until (i) there is another match of the suffix, or (ii) a
prefix of p matches a suffix of s or (iii) if there is no such suffix, skip until the end
of the pattern.

• Example: t = FINDANEEDLEINAHAYSTACK, p = NEEDUNEED

F I N D A N E E D L E I N A H A Y S T A C K skip

n e e d U N E E D 4

n e e d u n e e D

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 43 / 246

This example demonstrates case (i) of the good suffix rule.

28

Boyer-Moore: Good suffix rule (2/3)

• Example: t = FINDANEEDLEINAHAYSTACK, p = EDISUNEED

F I N D A N E E D L E I N A H A Y S T A C K skip

e d i s U N E E D 6

e d i s u n e e D

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 44 / 246

This example demonstrates case (ii) of the good suffix rule.

29

Boyer-Moore: Good suffix rule (3/3)

• Example: t = FINDANEEDLEINAHAYSTACK, p = FOODINEED

F I N D A N E E D L E I N A H A Y S T A C K skip

f o o d I N E E D 8

f o o d i n e e D

• How do we decide efficiently how far we can move the pattern to the right?

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 45 / 246

This example demonstrates case (iii) of the good suffix rule.

The good suffix rule is actually a bit more complex. Consult wikipedia or a textbook on algorithms or the
original publication for a complete description of the good suffix rule.

To implement the good suffix rule efficiently, lookup tables are again needed to quickly lookup how many
alignments can be skipped. Given a pattern p, the lookup tables can be calculated, that is, the lookup
tables do not depend on the text being searched.

For further information:

• https://doi.org/10.1145/359842.359859

30

https://doi.org/10.1145/359842.359859

Boyer-Moore Rules Combined

• The Boyer-Moore algorithm combines the bad character rule and the good suffix
rule. (Note that both rules can also be used alone.)

• If a mismatch is found,
• calculate the skip sb by the bad character rule
• calculate the skip sg by the good suffix rule

and then skip by s = max(sb, sg).

• The Boyer-Moore algorithm often does the substring search in sub-linear time.

• However, it does not perform better than naive search in the worst case if the
pattern does occur in the text.

• An optimization by Gali results in linear runtime across all cases.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 46 / 246

The Boyer-Moore algorithm demonstrates that in computer science we sometimes trade space against
time. The lookup table reduces the time needed to perform the search but it requires additional space
to store the lookup table.

For further information:

• https://doi.org/10.1145/359146.359148

31

https://doi.org/10.1145/359146.359148

Complexity, Correctness, Engineering

4 Computer Science and Algorithms

5 Maze Generation Algorithms

6 String Search Algorithms

7 Complexity, Correctness, Engineering

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 47 / 246

32

Complexity of Algorithms

• Questions:
• Which maze generation algorithm is faster?
• Is there a fastest maze generation algorithm?
• What happens if we consider mazes of different sizes or dimensions?
• Instead of measuring execution time (which depends on the speed of the computer

hardware), can we have a more neutral notion of “fast”?

• Computer science is about analyzing the complexity of algorithms.

• Complexity is an abstract measure of computational effort (time complexity) and
memory usage (space complexity).

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 48 / 246

The performance analysis of algorithms is a very important part of computer science. Since we are
generally not so much interested in execution times that are large depending on the hardware compo-
nents of a computer system, we like to have a more abstract way of talking about the “performance” of
an algorithm. We call this abstract measure of “performance” the complexity of an algorithm and we
usually distinguish the time complexity (the computational effort) and the space complexity (how much
storage is required).

We will discuss this further later in the course and we will introduce a framework that allows us to define
classes of complexity.

33

Performance and Scaling

• Suppose we have three algorithms to
choose from. For example, consider
algorithms to detect cycles in a graph
of n nodes.

• With n = 50, the exponential
algorithm has an execution time of
more than 35 years.

• For n ≥ 1000, the exponential
algorithm gives us exeution times that
are longer than the age of the universe!

size linear quadratic exponential
n 100n µs 7n2 µs 2n µs
1 100 µs 7 µs 2 µs
5 500 µs 175 µs 32 µs

10 1 ms 700 µs 1024 µs
50 5 ms 17.5 ms 13 031.25 d

100 10 ms 70 ms
1000 100 ms 7 s

10 000 1 s 700 s
100 000 10 s 70 000 s

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 49 / 246

Something that scales exponentially with the problem size quickly becomes intractable. In theoretical
computer science, we will look at the question whether there are problems that are inherently exponen-
tial. We will also investigate whether we can show the best possible solution for a given problem in terms
of complexity. Once you proof for a given problem that the best possible solution is lets say quadratic,
you can stop searching for a linear solution (this can literally save you endless nights of work).

34

Correctness of Algorithms and Programs

• Questions:
• Is our algorithm correct?
• Is our algorithm a total function or a partial function?
• Is our implementation of the algorithm (our program) correct?
• What do we mean by “correct”?
• Will our algorithm or program terminate?

• Computer science is about techniques for proving correctness of programs.

• In situations where correctness proofs are not feasible, computer sciences is about
engineering practices that help to avoid or detect errors.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 50 / 246

Note the difference between the correctness of an algorithm and the correctness of a program imple-
menting an algorithm.

35

Partial Correctness and Total Correctness

Definition (partial correctness)

An algorithm starting in a state that satisfies a precondition P is partially correct with
respect to P and Q if results produced by the algorithm satisfy the postcondition Q.
Partial correctness does not require that always a result is produced, i.e., the algorithm
may not always terminate.

Definition (total correctness)

An algorithm is totally correct with respect to P and Q if it is partially correct with
respect to P and Q and it always terminates.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 51 / 246

In order to talk about the correctness of an algorithm, we need a specification that clearly states the
precondition P and the postconditionQ. In other words, an algorithm is always correct regarding a spec-
ification, i.e., a problem formalization. Without a precise specification, it is impossible to say whether an
algorithm is correct or not.

The distinction between partial correctness and total correctness is important. Total correctness re-
quires a termination proof and unfortunately an automated termination proof is impossible for arbitrary
algorithms.

36

Deterministic Algorithms

Definition (deterministic algorithm)

A deterministic algorithm is an algorithm which, given a particular input, will always
produce the same output, with the underlying machine always passing through the same
sequence of states.

• Some factors that make an algorithm non-deterministic:
• external state
• user input
• timers
• random values
• hardware errors

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 52 / 246

Deterministic algorithms are often easier to understand and analyze. Real software systems, however,
are rarely fully deterministic since they interact with a world that is largely non-deterministic.

Computer science is spending a lot of effort trying to make the execution of algorithms deterministic.
Operating systems, for example, deal with a large amount of nondeterminism originating from computing
hardware and they try to provide an execution environment for programs that is less nondeterministic
than the hardware components.

37

Randomized Algorithms

Definition (randomized algorithm)

A randomized algorithm is an algorithm that employs a degree of randomness as part of
its logic.

• A randomized algorithm uses randomness in order to produce its result; it uses
randomness as part of the logic of the algorithm.

• A perfect source of randomness is not trivial to obtain on digital computers.

• Random number generators often use algorithms to produce so called pseudo
random numbers, sequences of numbers that “look” random but that are not really
random (since they are calculated using a deterministic algorithm).

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 53 / 246

Randomized algorithms are sometimes desirable, for example to create cryptographic keys or to drive
computer games. For some problems, some known randomized algorithms provide solutions faster
than known deterministic solutions. The question for which problems randomized algorithms provide an
advantage is an import question investigated in theoretical computer science.

Pseudo random numbers are commonly provided as library functions (e.g., the long random(void)

function of the C library). You have to be very careful with the usage of these pseudo random numbers.
A common problem is that not all bits of a random number have the same degree of “randomness”.

38

Engineering of Software

• Questions:
• Can we identify building blocks (data structures, generic algorithms, design pattern)

that we can reuse?
• Can we implement algorithms in such a way that the program code is easy to read

and understand?
• Can we implement algorithms in such a way that we can easily adapt them to

different requirements?

• Computer science is about modular designs that are both easier to get right and
easier to understand. Finding good software designs often takes time and effort.

• Software engineering is about applying structured approaches to the design,
development, maintenance, testing, and evaluation of software.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 54 / 246

Software engineering (SWE) is the application of engineering to the development of software in a sys-
tematic method. The main goal is the production of software with predictable quality and costs. Another
definition says software engineering is the application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software.

For further information:

• https://en.wikipedia.org/wiki/Software_engineering

39

https://en.wikipedia.org/wiki/Software_engineering

Part II

Discrete Mathematics

This part will introduce basic elements of discrete mathematics that are relevant for many of the com-
puter science courses.

40

Propositions, Axioms, Theorems, Proofs

8 Propositions, Axioms, Theorems, Proofs

9 Sets

10 Relations

11 Functions

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 56 / 246

41

Propositions

Definition (proposition)

A proposition is a statement that is either true or false.

Examples:

• 1 + 1 = 1 (false proposition)

• The sum of the integer numbers 1, . . . , n is equal to 1
2
n(n + 1). (true proposition)

• “In three years I will have obtained a CS degree.” (not a proposition)

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 57 / 246

A key property is that a proposition is either true or false. Every statement that is only true or false in
a certain context is not a proper proposition. In addition, any statement that depends on something
undefined (e.g., something happening in the future) is not a proposition.

42

Predicates

• A predicate is a statement that may be true or false depending on the values of its
variables. It can be thought of as a function that returns a value that is either true
or false. Variables appearing in a predicate are quantified:
• A predicate is true for all values of a given set of values.
• A predicate is true for at least one value of a given set of values.

(There exists a value such that the predicate is true.)

• There may be multiple quantifiers and they may be combined (but note that the
order of the quantifiers matters).

• Example: (Goldbach’s conjecture) For every even integer n greater than 2, there
exists primes p and q such that n = p + q.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 58 / 246

Human language is often ambiguous. The statement “Every American has a dream.” can be interpreted
in two different ways:

a) There exists a dream d out of the set of all dreams D and forall persons a out of the set of Americans
A, person a has dream d.

b) Forall persons a out of the set of Americans A, there exists a dream d out of the set of all dreams D
such that persons a has dream d.

Our common sense says that b) is the more likely interpretation but for machines, which lack a notion
of common sense, such ambiguities are really difficult to work with. (And this makes natural language
processing really difficult for computers.) In mathematics and computer science, we try hard to avoid
ambiguities.

Note that predicates are more expressive than simple propositions. As a consequence, the mathemat-
ical logic to deal with propositions (called propositional logic or Boolean logic) is simpler than the logic
that deals with predicates (called predicate logic or first-order logic).

43

Axioms

Definition (axiom)

An axiom is a proposition that is taken to be true.

Definition (Peano axioms for natural numbers)

P1 0 is a natural number.

P2 Every natural number has a successor.

P3 0 is not the successor of any natural number.

P4 If the successor of x equals the successor of y , then x equals y .

P5 If a statement is true for the natural number 0, and if the truth of that statement
for a natural number implies its truth for the successor of that number, then the
statement is true for every natural number.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 59 / 246

When developing a theory and using formal proofs, it is important to be clear about the underlying
axioms and the propositions that are used. Ideally, a small number of well defined axioms are sufficient
to develop and proof a complex theory. Finding a minimal set of axioms that are sufficient to derive all
knowledge of a certain theory is an important part of research.

The five Peano axioms, defined in 1889 by Giuseppe Peano, are sufficient to derive everything we know
about natural numbers. The fifths Peano axiom is particularly interesting since it allows us to proof a
statement for all natural numbers even though there are infinite many natural numbers. We will make
use of this technique, called induction, frequently.

44

Theorems, Lemma, Corollary

Definition (theorem, lemma, corollary)

An important true proposition is called a theorem.
A lemma is a preliminary proposition useful for proving later propositions and a corollary
is a proposition that follows in just a few logical steps from a theorem.

• There is no clear boundary between what is a theorem, a lemma, or a corollary.

• A proposition for which no proof has been found yet and which is believed to be
true is called a conjecture.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 60 / 246

Theorem 1 (Fermat’s last theorem). There are no positive integers x, y, and z such that

xn + yn = zn

for some integer n > 2.

Fermat claimed to have a proof for this conjecture in 1630 but he had not enough space on the margin
of the book he was reading to write it down. Fermat’s last theorem was finally proven to be true by
Andrew Wiles in 1995. Sometimes it takes time to fully work out a proof.

45

Mathematical Notation

Notation Explanation

P ∧ Q logical and of propositions P and Q
P ∨ Q logical or of propositions P and Q
¬P negation of proposition P

∀x ∈ S .P the predicate P holds for all x in the set S
∃x ∈ S .P there exists an x in the set S such that the predicate P holds
P ⇒ Q the statement P implies statement Q
P ⇔ Q the statement P holds if and only if (iff) Q holds

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 61 / 246

Some examples:

• The following statement in mathematical notation

∀x.∃y.x = y ⇔ ¬(x 6= y)

reads as follows:

For all x, there is a y, such that x = y, if and only if it is not the case that x is unequal to y.

• We can write the five Peano axioms in mathematical notation. Lets assume that the function
s : N 7→ N returns the successor of its argument.

P1 0 ∈ N (zero is a natural number)

P2 ∀n ∈ N.s(n) ∈ N ∧ n 6= s(n) (closed under successor, distinct)

P3 ¬(∃n ∈ N.0 = s(n)) (zero is not a successor)

P4 ∀n ∈ N.∀m ∈ N.s(n) = s(m)⇒ n = m (different successors)

P5 ∀P.(P (0) ∧ (∀n ∈ N.P (n)⇒ P (s(n))))⇒ (∀m ∈ N.P (m)) (induction)

• Goldbach’s conjecture is stated in mathematical notation as follows:

Let E be the set all even integers larger than two and P the set of prime numbers. Then
the following holds:

∀n ∈ E.∃p ∈ P.∃q ∈ P.n = p+ q

Note that n = p+q is a predicate over the variables n, p, and q. Also recall that changing the order
of the quantifiers may alter the statement.

46

Greek Letters

α Α alpha β Β beta γ Γ gamma
δ Δ delta ε Ε epsilon ζ Ζ zeta
η Η eta θ Θ theta ι Ι iota
κ Κ kappa λ Λ lmapda μ Μ mu
ν Ν nu ξ Ξ xi ο Ο omikron
π Π pi ρ Ρ rho σ Σ sigma
τ Τ tau υ Υ upsilon φ Φ phi
χ Χ chi ψ Ψ psi ω Ω omega

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 62 / 246

Mathematicians love to use greek letters. And if they run out of greek letters, they love to use roman
letters in different writing styles. And to keep reading math fun, every author is free to choose the letters
he likes best.

We observe the same behavior with young programmers until they realize that reading code written
by someone else is way more common than writing code and that things really get much simpler if all
people within a project follow common conventions, the so called coding styles.

The same applies to mathematicians to some extend. Different areas of math tend to prefer certain
notations and writing styles. As a novice mathematician or programmer, the best advice one can give
is to follow the conventions that are used by the seniors around you.

47

Mathematical Proof

Definition (mathematical proof)

A mathematical proof of a proposition is a chain of logical deductions from a base set
of axioms (or other previously proven propositions) that concludes with the proposition
in question.

• Informally, a proof is a method of establishing truth. There are very different ways
to establish truth. In computer science, we usually adopt the mathematical notion
of a proof.

• There are a certain number of templates for constructing proofs. It is good style to
indicate at the beginning of the proof which template is used.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 63 / 246

48

Proofs Hints

• Proofs often start with scratchwork that can be disorganized, have strange
diagrams, obscene words, whatever. But the final proof should be clear and concise.

• Proofs usually begin with the word “Proof” and they end with a delimiter such as
.

• Make it easy to understand your proof. A good proof has a clear structure and it is
concise.

• Introduce notation carefully. Good notation can make a proof easy to follow (and
bad notation can achieve the opposite effect).

• Revise your proof and simplify it. A good proof has been written multiple times.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 64 / 246

Writing good source code is a bit like writing a good proof. Good source code is clear and concise, it
has a well-defined structure, it uses a carefully chosen notation, it is easy to read, and it likely has been
revised a couple of times. Learning how to write good source code (and good proofs) requires practice.
The earlier you start, the faster you get excellent at it. Start right now. Stop producing source code and
proofs that are just good enough, instead challenge yourself to produce source code and proofs that
are elegant and a little piece of “art” you can be proud of. If you do not know how to distinguish beautiful
source code and proofs from just average stuff, start reading other people’s source code and proofs.
Learn from how they are doing things, ask yourself what you like about what you read and what you find
perhaps irritating or difficult. Think how things could have been done differently.

49

Proof an Implication by Derivation

• An implication is a proposition of the form “If P , then Q”, or P ⇒ Q.

• One way to proof such an implication is by a derivation where you start with P and
stepwise derive Q from it.

• In each step, you apply theorems (or lemmas or corollaries) that have already been
proven to be true.

• Template:

Assume P . Then, . . . Therefore . . . [. . .] This finally leads to Q.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 65 / 246

Theorem 2. Lets x and y be two integers. If x and y are both odd, then the produxt xy is odd.

Proof. Assume x and y are two odd integers. We can write x as x = 2a+ 1 and y = 2b+ 1 with a and b
being suitable integers. With this, we can write the product of x and y as follows:

xy = (2a+ 1)(2b+ 1)

= 4ab+ 2a+ 2b+ 1

= 2(2ab+ a+ b) + 1

Since 2(2ab+ a+ b) is even and we add 1 to it, it follows that the product of x and y is odd.

50

Proof an Implication by its Contrapositive

• An implication is a proposition of the form “If P , then Q”, or P ⇒ Q.

• Such an implication is logically equivalent to its contrapositive, ¬Q ⇒ ¬P .

• Proving the contrapositive is sometimes easier than proving the original statement.

• Template:

Proof. We prove the contrapositive, if ¬Q, then ¬P . We assume ¬Q. Then,
. . . Therefore . . . [. . .] This finally leads to ¬P .

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 66 / 246

Theorem 3. Let x be an integer. If x2 is even, then x is even.

Proof. We prove the contrapositive, if x is not even, then x2 is odd. Assume x is not even. Since the
product of two odd numbers results in an odd number (see Theorem 2), it follows that x2 = x · x is
odd.

Note that the proof above relies on Theorem 2 to be true.

51

Proof an “if and only if” by two Implications

• A statement of the form “P if and only if Q” is equivalent to the two statements
“P implies Q” and “Q implies P”.

• Split your proof into two parts, the first part proving P ⇒ Q and the second part
proving Q ⇒ P .

• Template:

Proof. We prove P implies Q and vice-versa.

First, we show P implies Q. Assume P . Then, . . . Therefore . . . [. . .] This finally
leads to Q.

Now we show Q implies P . Assume Q. Then, Therefore . . . [. . .] This finally
leads to P .

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 67 / 246

Theorem 4. An integer x is even if and only if its square x2 is even.

Proof. We prove x is even implies x2 is even and vice versa.

First, we show that if x is even, then x2 is even. Since x is even, it can be written as x = 2k for some
suitable number k. With this, we obtain x2 = (2k)2 = 2(2k2). Hence, x2 is even.

Now, we show that if x2 is even, then x is even. Since x2 is even, we can write it as x2 = 2k for some
suitable number k, i.e., 2 divides x2. This means that 2 divides either x or x, which implies that x is
even.

This approach to prove an equivalence can be extended. Suppose that you have to show that A ⇔ B,
B ⇔ C and C ⇔ A, then it is sufficient to prove a chain of implications, namely that A⇒ B and B ⇒ C
and C ⇒ A. It is not necessary to prove B ⇒ A since this follows from B ⇒ C ⇒ A. Similarly, it is not
necessary to prove C ⇒ B since this follows form C ⇒ A⇒ B.

52

Proof an “if and only if” by a Chain of “if and only if”s

• A statement of the form “P if and only if Q” can be shown to hold by constructing
a chain of “if and only if” equivalence implications.

• Constructing this kind of proof is often harder then proving two implications, but
the result can be short and elegant.

• Template:

Proof. We construct a proof by a chain of if-and-only-if implications.

Prove P is equivalent to a P ′ which is equivalent to [. . .] which is equivalent to Q.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 68 / 246

add an example

53

Breaking a Proof into Cases

• It is sometimes useful to break a complicated statement P into several cases that
are proven separately.

• Different proof techniques may be used for the different cases.

• It is necessary to ensure that the cases cover the complete statement P .

• Template:

Proof. We prove P by considering the cases c1, . . . , cN .

Case 1: Suppose c1. Proof of P for c1.

. . .

Case N : Suppose cN . Proof of P for cN .

Since P holds for all cases c1, . . . cN hold, the statement P holds.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 69 / 246

Theorem 5. For every integer n ∈ Z, n2 + n is even.

Proof. We proof n2 + n is even for all n ∈ Z by considering the case where n is even and the case
where n is odd.

• Case 1: Suppose n is even:

n can be written as 2k with k ∈ Z. This gives us:

n2 + n = (2k)2 + (2k) = 4k2 + 2k = 2(2k2 + k)

Since the result is a multiple of two, it is even.

• Case 2: Suppose n is odd:

n can be written as 2k + 1 with k ∈ Z. This gives us:

n2 + n = (2k + 1)2 + (2k + 1) = (4k2 + 4k + 1) + (2k + 1) = 4k2 + 6k + 2 = 2(2k2 + 3k + 1)

Since the result is a multiple of two, it is even.

Since n2 + n is even holds for the two cases n is even and n is odd, it holds for all n ∈ Z.

54

Proof by Contradiction

• A proof by contradiction for a statement P shows that if the statement were false,
then some false fact would be true.

• Starting from ¬P , a series of derivations is used to arrive at a statement that
contradicts something that has already been shown to be true or which is an axiom.

• Template:

Proof. We prove P by contradiction.

Assume ¬P is true. Then . . . Therefore . . . [. . .] This is a contradiction. Thus, P
must be true.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 70 / 246

Theorem 6.
√

2 is irrational.

Proof. We use proof by contradiction. Suppose the claim is false. Assume
√

2 is rational. Then we can
write

√
2 as a fraction in lowest terms, i.e.,

√
2 = a

b with two integers a and b. Since a
b is in lowest terms,

at least one of the integers a or b must be odd.

By squaring the equation, we get 2 = a2

b2 which is equivalent to a2 = 2b2.

Since the square of an odd number is odd (see Theorem 2) and a2 apparently is even (a multiple of 2),
b must be odd.

On the other hand, if a is even, then a2 is a multiple of 4. If a2 is a multiple of 4 and a2 = 2b2, then 2b2 is
a multiple of 4, and therefore b2 must be even, and hence b must be even.

Obviously, b cannot be even and odd at the same time. This is a contradiction. Thus,
√

2 must be
irrational.

55

Proof by Induction

• If we have to prove a statement P on nonnegative integers (or more generally an
inductively defined infinite set), we can use the induction principle.

• We first proof that P is true for the “lowest” element in the set (the base case).

• Next we prove that if P holds for a nonnegative integer n, then the statement P
holds for n + 1 (induction step).

• Since we can apply the induction step m times, starting with the base, we have
shown that P is true for arbitrary nonnegative integers m.

• Template:

Proof. We prove P by induction.

Base case: We show that P(0) is true. [. . .]

Induction step: Assume P(n) is true. Then, . . . This proves that P(n + 1) holds.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 71 / 246

Theorem 7. For all n ∈ N, 0 + 1 + 2 + 3 + . . .+ n = n(n+1)
2 .

Proof. We prove 0 + 1 + 2 + 3 + . . .+ n = n(n+1)
2 by induction.

• Base case:

We show that the equation is true for n = 0. Setting n = 0, the equation becomes

0 =
0(0 + 1)

2
= 0

1

2

and this is true since the product of 0 with any number is 0.

• Induction step:

Assume that the equation is true for some n. Lets consider the case n+ 1:

0 + 1 + 2 + 3 + . . .+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1)

=
n(n+ 1) + 2(n+ 1)

2

=
n2 + n+ 2n+ 2)

2

=
(n+ 2)(n+ 1)

2

This shows that the equation holds for n+ 1.

It follows by induction that 0 + 1 + 2 + 3 + . . .+n = n(n+1)
2 holds for arbitrary nonnegative integers n.

56

Sets

8 Propositions, Axioms, Theorems, Proofs

9 Sets

10 Relations

11 Functions

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 72 / 246

57

Sets

• Informally, a set is a well-defined collection of distinct objects. The elements of the
collection can be anything we like the set to contain, including other sets.

• In modern math, sets are defined using axiomatic set theory, but for us the informal
definition above is sufficient.

• Sets can be defined by
• listing all elements in curly braces, e.g., {a, b, c},
• describing all objects using a predicate P, e.g., {x |x ≥ 0 ∧ x < 28},
• stating element-hood using some other statements.

• A set has no order of the elements and every element appears only once.

• The two notations {a, b, c} and {b, a, a, c} are different representations of the
same set.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 73 / 246

Some popular sets in mathematics:

symbol set elements

∅ empty set
N nonnegative integers {0, 1, 2, 3, . . . }
Z integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
Q rational numbers 1

2 , 42, etc.
R real numbers π,

√
2, 0 etc.

C complex numbers i, 5 + 9i, 0, π etc.

Sets can be very confusing. A mathematician called Georg Cantor tried to formalize the notion of sets,
introducing so called naive set theory. According to naive set theory, any definable collection is a set.
Bertrand Russell, another mathematician, discovered a paradox that is meanwhile known as Russell’s
paradox:

Let R be the set of all sets that are not members of themselves. If R is not a member of itself,
then its definition dictates that it must contain itself, and if it contains itself, then it contradicts
its own definition as the set of all sets that are not members of themselves. Symbolically:

Let R = {x|x /∈ x}, then R ∈ R⇔ R /∈ R.

Another formulation provided by Bertrand Russell and known as the barber paradox:

You can define a barber as “one who shaves all those, and only those, who do not shave
themselves.” The question is, does the barber shave himself?

58

Basic Relations between Sets

Definition (basic relations between sets)

Lets A and B be two sets. We define the following relations between sets:

1. (A ≡ B) :⇔ (∀x .x ∈ A⇔ x ∈ B) (set equality)

2. (A ⊆ B) :⇔ (∀x .x ∈ A⇒ x ∈ B) (subset)

3. (A ⊂ B) :⇔ (A ⊆ B) ∧ (A 6≡ B) (proper subset)

4. (A ⊇ B) :⇔ (∀x .x ∈ B ⇒ x ∈ A) (superset)

5. (A ⊃ B) :⇔ (A ⊇ B) ∧ (A 6≡ B) (proper superset)

• Obviously:
• (A ⊆ B) ∧ (B ⊆ A)⇒ (A ≡ B)
• (A ⊆ B)⇔ (B ⊇ A)

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 74 / 246

Obviously, N ⊂ Z ⊂ Q ⊂ R ⊂ C for the popular sets in mathematics.

In the real world, sets and their relations are often not well defined. For example, consider the set
representing the faculty of Jacobs University. How do you think this set is defined? And is it a proper
subset of the set of all employees of Jacobs University?

59

Operations on Sets 1/2

Definition (set union)

The union of two sets A and B is defined as A ∪ B = {x |x ∈ A ∨ x ∈ B}.

Definition (set intersection)

The intersection of two sets A and B is defined as A ∩ B = {x |x ∈ A ∧ x ∈ B}.

Definition (set difference)

The difference of two sets A and B is defined as A \ B = {x |x ∈ A ∧ x 6∈ B}.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 75 / 246

Some basic properties of set unions:

• A ∪B = B ∪A
• A ∪ (B ∪ C) = (A ∪B) ∪ C
• A ⊆ (A ∪B)

• A ∪A = A

• A ∪ ∅ = A

• A ⊆ B ⇔ A ∪B = B

Some basic properties of set intersections:

• A ∩B = B ∩A
• A ∩ (B ∩ C) = (A ∩B) ∩ C
• A ∩B ⊆ A
• A ∩A = A

• A ∩ ∅ = ∅
• A ⊆ B ⇔ A ∩B = A

Some basic properties of set differences:

• A \B 6= B \A for A 6= B

• A \A = ∅
• A \ ∅ = A

60

Operations on Sets 2/2

Definition (power set)

The power set P(A) of a set A is the set of all subsets of S , including the empty set
and S itself. Formally, P(A) = {S |S ⊆ A}.

Definition (cartesian product)

The cartesian product of the sets X1, . . . ,Xn is defined as
X1 × . . .× Xn = {(x1, . . . , xn)|∀i .1 ≤ i ≤ n⇒ xi ∈ Xi}.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 76 / 246

Theorem 8. If S is a finite set with |S| = n elements, then the number of subsets of S is |P(S)| = 2n.

61

Cardinality of Sets

Definition (cardinality)

If A is a finite set, the cardinality of A, written as |A|, is the number of elements in A.

Definition (countably infinite)

A set A is countably infinite if and only if there is a bijective function f : A 7→ N.

Definition (countable)

A set A is countable if and only if it is finite or countably infinite.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 77 / 246

Theorem 9. Let A and B be two finite sets. Then the following holds:

1. |(A ∪B)| ≤ |A|+ |B|
2. |(A ∩B)| ≤ min(|A|, |B|)
3. |(A×B)| = |A| · |B|

The proof of this theorem is straight forward and you may do this as a homework exercise.

There are sets that are not countable, so called uncountable sets. The best known example of an
uncountable set is the set R of all real numbers. Cantors diagonal argument, published in 1891, is a
famous proof that there are infinite sets that can not be counted.

62

Relations

8 Propositions, Axioms, Theorems, Proofs

9 Sets

10 Relations

11 Functions

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 78 / 246

63

Relations

Definition (relation)

A relation R over the sets X1, . . . ,Xk is a subset of their Cartesian product, written
R ⊆ X1 × . . .× Xk .

• Relations are classified according to the number of sets in the defining Cartesian
product:
• A unary relation is defined over a single set X
• A binary relation is defined over X1 × X2

• A ternary relation is defined over X1 × X2 × X3

• A k-ary relation is defined over X1 × . . .× Xk

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 79 / 246

We do not really need ternary, . . . , k-ary relations. For example, we can view a ternary relation A×B×C
as a binary relation A× (B × C). Hence, we will often focus on binary relations.

Relations are a fairly general concept. Relations play a very important role while developing data models
for computer applications. There is a class of database systems, the so called relational database
management systems (RDMS), that are based on a formal relational model. The idea is to model a
domain as a collection of relations that can be represented efficiently as database tables.

Entity relationship models describe a part of a world as sets of typed objects (entities), relations between
entities, and attributes of entities or relations. An example for a system like CampusNet:

• Entities:

– Student

– Instructor

– Course

– Module

– Person

– . . .

• Relations:

– enrolled in ⊆ (Student× Course)
– is a ⊆ (Student× Person)

– is a ⊆ (Instructor × Person)

– belongs to ⊆ (Course×Module)

– teaches ⊆ (Instructor × Course)
– tutor of ⊆ (Student× Course)
– . . .

Entity relationship models are usually written using a graphical notation. A standard graphical notation
is part of the Unified Modeling Language (UML).

64

Binary Relations

Definition (binary relation)

A binary relation R ⊆ A× B consists of a set A, called the domain of R , a set B , called
the codomain of R , and a subset of A× B called the graph of R .

Definition (inverse of a binary relation)

The inverse of a binary relation R ⊆ A× B is the relation R−1 ⊆ B × A defined by the
rule

b R−1 a⇔ a R b.

• For a ∈ A and b ∈ B , we often write a R b to indicate that (a, b) ∈ R .

• The notation a R b is called infix notation while the notation R(a, b) is called the
prefix notation. For binary relations, we commonly use the infix notation.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 80 / 246

Another way to define the inverse relation is to use the set builder notation: Given a binary relation
R ⊆ A×B, we define the inverse relation R−1 as R−1 = {(b, a) ∈ (B ×A)|(a, b) ∈ R}.
It is also possible to define the complement relation of a binary relation. Given a binary relation R ⊆
A×B, we define the complement relation R̄ as R̄ = {(a, b) ∈ (A×B)|(a, b) /∈ R}.
An good example is the relation of students with their teaching assistants. Let S be the set of students
in this course and let T be the set of teaching assistants of this course. Then is assigned to is a binary
relation over S × T and S is the domain and T is the codomain of this relation.

We sometimes use the notation dom(R) and codom(R) to refer to the domain and the codomain of a
relation R.

65

Image and Range of Binary Relations

Definition (image of a binary relation)

The image of a binary relation R ⊆ A× B , is the set of elements of the codomain B of
R that are related to some element in A.

Definition (range of a binary relation)

The range of a binary relation R ⊆ A× B is the set of elements of the domain A of R
that relate to at least one element in B .

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 81 / 246

For small binary relations, it is possible to draw relation diagrams, with points representing the domain
on the left side, points representing the codomain on the right side, and arrows representing the relation,
pointing from the domain points to the codomain points.

As an example, consider R ⊆ A×B with A = {a, b, c, d, e, f} and B = {1, 2, 3, 4, 5}. We define R using
the dot graph notation:

digraph R {

a -> 1;

b -> 3;

c -> 4;

d -> 2;

e -> 3;

}

The range of R is {a, b, c, d, e} and the image of R is {1, 2, 3, 4}.
The inverse R−1 of R defined in the dot graph notation:

digraph Rinv {

1 -> a;

3 -> b;

4 -> c;

2 -> d;

3 -> e;

}

The complement R̄ of R defined in the dot graph notation:

digraph Rbar {

a -> 2; a -> 3; a -> 4; a -> 5;

b -> 1; b -> 2; b -> 4; b -> 5;

c -> 1; c -> 2; c -> 3; c -> 5;

d -> 1; d -> 3; d -> 4; d -> 5;

e -> 1; e -> 2; e -> 4; e -> 5;

f -> 1; f -> 2; f -> 3; f -> 4; f -> 5;

}

66

Properties of Binary Relations (Endorelations)

Definition
A relation R ⊆ A× A is called

• reflexive iff ∀a ∈ A.(a, a) ∈ R

• irreflexive iff ∀a ∈ A.(a, a) 6∈ R

• symmetric iff ∀a, b ∈ A.(a, b) ∈ R ⇒ (b, a) ∈ R

• asymmetric iff ∀a, b ∈ A.(a, b) ∈ R ⇒ (b, a) 6∈ R

• antisymmetric iff ∀a, b ∈ A.((a, b) ∈ R ∧ (b, a) ∈ R)⇒ a = b

• transitive iff ∀a, b, c ∈ A.((a, b) ∈ R ∧ (b, c) ∈ R)⇒ (a, c) ∈ R

• total iff ∀a, b ∈ A.(a, b) ∈ R ∨ (b, a) ∈ R

• equivalence relation iff R is reflexive, symmetric, and transitive.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 82 / 246

Examples:

• The relation is as old as on the set of persons is reflexive.

• The relation is older than on the set of persons is irreflexive.

Note: There are relations that are neither reflexive nor irreflexive.

Examples:

• The relation is sibling of on the set of persons is symmetric.

• The relation is mother of on the set of persons is asymmetric.

• The relation is not older as on the set of persons is antisymmetric.

• The relation is ancestor of on the set of persons transitive.

The relation is as old as is reflexive, symmetric and transitive. Hence it is an equivalence relation.

Note: An equivalence relation induces equivalence classes. Given a set of persons, the is as old as
relation induces classes of persons with the same age.

67

Partial and Strict Order

Definition (partial order and strict partial order)

A relation R ⊆ A× A is called a partial order on A if and only if R is reflexive,
antisymmetric, and transitive on A. The relation R is called a strict partial order on A if
and only if it is irreflexive, asymmetric and transitive on A.

Definition (linear order)

A partial order R is called a linear order on A if and only if all elements in A are
comparable, i.e., the partial order is total.

• A symbol commonly used for strict partial orders is ≺ and a symbol commonly
used for non-strict partial orders is �.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 83 / 246

Examples:

• The relation is notolder as on the set of persons is reflexive, antisymmetric, and transitive and
hence it is a partial order.

• The relation is younger as is irreflexive, asymmetric, and transitive and hence it is a strict partial
order.

Another example for a partial order is the following order relation defined on vectors ~x and ~y in Rn:

~x � ~y if and only if ∀i ∈ {1, . . . , n}.xi ≤ yi

Another example for a partial order is the happened before relation on events in a distributed system,
which expresses the fact that an event a that happened before an event b may have influenced the event
b.

Note: A partial order � induces a strict partial order a ≺ b⇔ a � b ∧ a 6= b.

This is a partial order since the vectors ~x = (0, 1) and ~y = (1, 0) have no order relationship.

Note: A strict partial order ≺ induces a partial order a � b⇔ a ≺ b ∨ a = b.

68

Functions

8 Propositions, Axioms, Theorems, Proofs

9 Sets

10 Relations

11 Functions

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 84 / 246

69

Functions

Definition (partial function)

A relation f ⊆ X × Y is called a partial function if and only if for all x ∈ X there is at
most one y ∈ Y with (x , y) ∈ f . We call a partial function f undefined at x ∈ X if and
only if (x , y) 6∈ f for all y ∈ Y .

Definition (total function)

A relation f ⊆ X × Y is called a total function if and only if for all x ∈ X there is
exactly one y ∈ Y with (x , y) ∈ f .

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 85 / 246

Notation:

• If f ⊆ X × Y is a total function, we write f : X 7→ Y .

• If (x, y) ∈ f , we often write f(x) = y.

• If a partial function f is undefined at x ∈ X, we often write f(x) = ⊥.

70

Function Properties

Definition (injective function)

A function f : X 7→ Y is called injective if every element of the codomain Y is mapped
to by at most one element of the domain X : ∀x , y ∈ X .f (x) = f (y)⇒ x = y

Definition (surjective function)

A function f : X 7→ Y is called surjective if every element of the codomain Y is
mapped to by at least one element of the domain X : ∀y ∈ Y .∃x ∈ X .f (x) = y

Definition (bijective function)

A function f : X 7→ Y is called bijective if every element of the codomain Y is mapped
to by exactly one element of the domain X . (That is, the function is both injective and
surjective.)

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 86 / 246

If a function f : X 7→ Y is bijective, we can easily obtain an inverse function f−1 : Y 7→ X.

• Example of an injective-only function f : {1, 2, 3} 7→ {A,B,C,D} in graph notation:

digraph f {

1->D

2->B

3->C

A

}

• Example of a surjective-only function f : {1, 2, 3, 4} 7→ {B,C,D} in graph notation:

digraph f {

1->D

2->B

3->C

4->C

}

• Example of a bijective function f : {1, 2, 3, 4} 7→ {A,B,C,D} in graph notation:

digraph f {

1->D

2->B

3->C

4->A

}

• Example of a function f : {1, 2, 3} 7→ {A,B,C,D} that is neither:

digraph f {

1->D

2->D

A

3->C

B

}

71

Operations on Functions

Definition (function composition)

Given two functions f : A 7→ B and g : B 7→ C , the composition of g with f is defined
as the function g ◦ f : A 7→ C with (g ◦ f)(x) = g(f (x)).

Definition (function restriction)

Let f be a function f : A 7→ B and C ⊆ A. Then we call the function
f |C = {(c , b) ∈ f |c ∈ C} the restriction of f to C .

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 87 / 246

72

Lambda Notation of Functions

• It is often not necessary to give a function a name.

• A function definition of the form {(x , y) ∈ X ×Y |y = E}, where E is an expression
(usually involving x), can be written in a shorter lambda notation as λx ∈ X .E .

• Examples:
• λn ∈ N.n (identity function for natural numbers)
• λx ∈ N.x2 (f (x) = x2)
• λ(x , y) ∈ N× N.x + y (addition of natural numbers)

• Lambda calculus is a formal system in mathematical logic for expressing
computation based on function abstraction and application using variable binding
and substitution.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 88 / 246

The lambda notation λx ∈ X.E implies a set that consists of elements of the form (x, y) ∈ X × Y , i.e.,
the function argument(s) and the function value.

• Identity function for natural numbers:

λn ∈ N.n = {(x, y) ∈ N× N | y = x}
= {(0, 0), (1, 1), (2, 2), . . .}

• f(x) = x2:

λx ∈ N.x2 = {(x, y) ∈ N× N | y = x2}
= {(0, 0), (1, 1), (2, 4), . . .}

• Addition of natural numbers:

λ(x, y) ∈ N× N.x+ y = {((x, y), z)in(N× N)× N | z = x+ y}
= {((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 2), . . .}

For further information:

• https://en.wikipedia.org/wiki/Lambda_calculus

73

https://en.wikipedia.org/wiki/Lambda_calculus

Currying

• Lambda calculus uses only functions that take a single argument. This is possible
since lambda calculus allows functions as arguments and results.

• A function that takes two arguments can be converted into a function that takes
the first argument as input and which returns a function that takes the second
argument as input.

• This method of converting function with multiple arguments into a sequence of
functions with a single argument is called currying.

• The term currying is a reference to the logician Haskell Curry.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 89 / 246

The Haskell programming language uses currying to convert all functions with multiple arguments into
a sequence of functions with a single argument.

74

Part III

Number Systems, Units, Characters, Date and
Time

In this part, we look at vary basic data types and how they are typically represented in computing
machines.

We start by looking at different number systems. While we know number systems such as natural
numbers, rational numbers, or real numbers from school, it turns out that computers tend to prefer
some restricted versions of these number systems. It is important to be aware of the differences in
order to produce software that behaves well.

Most numbers have associated units and hence we briefly discuss the international system of units and
metric prefixes.

We then turn to characters and some character representation and encoding issues. While characters
in principle look like a simple concept, they actually are not if consider the different character sets used
in the word. Operations like character comparisons can become quite challenging in practice.

We finally look at the notion of time in computer systems and the representation of time and dates. This
again turns out to be much more complicated than one might have hoped and it turns out that time
is actually often not a good concept in distributed computing systems since establishing an accurate
common notion of time is quite challenging.

75

Numbers can be confusing. . .

• There are only 10 people in the world: Those who understand binary and those
who don’t.

• Q: How easy is it to count in binary?
A: Its as easy as 01 10 11.

• A Roman walks into the bar, holds up two fingers, and says, “Five beers, please.”

• Q: Why do mathematicians confuse Halloween and Christmas?
A: Because 31 Oct = 25 Dec.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 91 / 246

For further information:

• http://ta.twi.tudelft.nl/users/vuik/wi211/disasters.html

76

http://ta.twi.tudelft.nl/users/vuik/wi211/disasters.html

Number Systems in Mathematics

• Numbers can be classified into sets, called number systems, such as the natural
numbers, the integer numbers, or the real numbers.

Symbol Name Description

N Natural 0, 1, 2, 3, 4, . . .
Z Integer . . . , -4, -3, -2, -1, 0, 1, 2, 3, 4, . . .
Q Rational a

b
were a ∈ Z and b ∈ Z and b 6= 0

R Real The limit of a convergent sequence of rational numbers
C Complex a + bi where a ∈ R and b ∈ R and i =

√
−1

• Numbers should be distinguished from numerals, the symbols used to represent
numbers. A single number can have many different representations.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 92 / 246

77

Natural Numbers

12 Natural Numbers

13 Integer Numbers

14 Rational and Real Numbers

15 Floating Point Numbers

16 International System of Units

17 Characters and Strings

18 Date and Time

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 93 / 246

78

Numeral Systems for Natural Numbers

• Natural numbers can be represented according to different bases. We commonly
use decimal number (base 10) representations in everyday life.

• In computer science, we also frequently use binary (base 2), octal (base 8), and
hexadecimal (base 16) number representations.

• In general, natural numbers represented in the base b system are of the form:

(anan−1 · · · a1a0)b =
n∑

k=0

akbk

hex 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12

dec 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

oct 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 21 22

bin 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 10001 10010

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 94 / 246

To convert binary numbers to octal or hexademial numbers or vice versa, group triples or quadrupels of
binary digits into recognizable chunks (add leading zeros as needed):

1100011010111002 = 01102︸ ︷︷ ︸
616

00112︸ ︷︷ ︸
316

01012︸ ︷︷ ︸
516

11002︸ ︷︷ ︸
c16

= 635c16

1100011010111002 = 1102︸︷︷︸
68

0012︸︷︷︸
18

1012︸︷︷︸
58

0112︸︷︷︸
38

1002︸︷︷︸
48

= 615348

This trick also works in the other direction: Convert every octal or hexademial digit individually into a
binary chunk:

deadbeaf16 = d16︸︷︷︸
11012

e16︸︷︷︸
11102

a16︸︷︷︸
10102

d16︸︷︷︸
11012

b16︸︷︷︸
10112

e16︸︷︷︸
11102

a16︸︷︷︸
10102

f16︸︷︷︸
11112

= 110111101010110110111110111011112

79

Natural Numbers Literals

• Computer scientists often use special prefix conventions to write natural number
literals in a way that indicates the base:

prefix example meaning description

42 4210 decimal number
0x 0x42 4216 = 6610 hexadecimal number
0 042 428 = 3410 octal number
0b 0b1000010 10000102 = 4210 binary number

• Beware that 42 and 042 may not represent the same number!

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 95 / 246

80

Natural Numbers with Fixed Precision

• Computer systems often work internally with finite subsets of natural numbers.

• The number of bits used for the binary representation defines the size of the subset.

bits name range (decimal) range (hexadecimal)

4 nibble 0-15 0x0-0xf
8 byte, octet, uint8 0-255 0x0-0xff

16 uint16 0-65 535 0x0-0xffff
32 uint32 0-4 294 967 295 0x0-0xffffffff
64 uint64 0-18 446 744 073 709 551 615 0x0-0xffffffffffffffff

• Using (almost) arbitrary precision numbers is possible but usually slower.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 96 / 246

Note that fixed point natural numbers typically silently wrap around, as demonstrated by the following C
program:

/*

* int-surprises/uint-surprises.c --

*

* Surprises with unsigned integers (not only in C).

*/

#include <stdio.h>

#include <stdint.h>

#include <stdlib.h>

static void

wraps()

{

uint8_t n;

n = UINT8_MAX;

printf("%d\n", ++n);

n = 42;

n += UINT8_MAX;

printf("%d\n", ++n);

n -= UINT8_MAX;

printf("%d\n", --n);

}

static void

dots(int n)

{

uint8_t i;

for (i = 0; i < n; i++) {

putchar(’.’);

81

}

putchar(’\n’);

}

int

main(int argc, char *argv[])

{

int i;

wraps();

for (i = 1; i < argc; i++) {

dots(atoi(argv[i]));

}

return 0;

}

Careless choice of fixed precision number ranges can lead to real disasters. The reason why many
programming languages have numbers that wrap around is primarily the design of central processing
units.

82

Integer Numbers

12 Natural Numbers

13 Integer Numbers

14 Rational and Real Numbers

15 Floating Point Numbers

16 International System of Units

17 Characters and Strings

18 Date and Time

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 97 / 246

83

Integer Numbers

• Integer numbers can be negative but surprisingly there are not “more” of them
(even though integer numbers range from −∞ to +∞ while natural numbers only
range from 0 to +∞).

• This can be seen by writing integer numbers in the order 0, 1, -1, 2, -2, . . . , i.e., by
defining a bijective function f : Z→ N (and the inverse function f −1 : N→ Z):

f (x) =

{
2x if x ≥ 0

−2x − 1 if x < 0
f −1(x) =

{
x
2

if x is even
−(x+1)

2
if x is odd

• So we could (in principle) represent integer numbers by implementing a bijection to
natural numbers. But there are more efficient ways to implement integer numbers
if we assume that we use a fixed precision anyway.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 98 / 246

84

One’s Complement Fixed Integer Numbers (b-1 complement)

• We have a fixed number space with n digits and base b to represent integer
numbers, that is, we can distinguish at most bn different integers.

• Lets represent the numbers 0 . . . bn−1 in the usual way.

• To represent negative numbers, we invert the absolute value (anan−1 · · · a1a0)b by
calculating (a′na′n−1 · · · a′1a′0)b with a′i = (b − 1)− ai .

• Example: b = 2, n = 4 : 510 = 0101,−510 = 1010

bin: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

dec: 0 1 2 3 4 5 6 7 -7 -6 -5 -4 -3 -2 -1 -0

• Note that this gives us +0 and -0, i.e., we only represent bn − 1 different integers.

• Negative binary numbers always have the most significant bit set to 1.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 99 / 246

85

Two’s Complement Fixed Integer Numbers (b complement)

• Like before, we assume a fixed number space with n digits and a base b to
represent integer numbers, that is, we can distinguish at most bn different integers.

• Lets again represent the numbers 0 . . . bn−1 in the usual way.

• To represent negative numbers, we invert the absolute value (anan−1 · · · a1a0)b by
calculating (a′na′n−1 · · · a′1a′0)b with a′i = (b − 1)− ai and adding 1 to it.

• Example: b = 2, n = 4 : 510 = 0101,−510 = 1011

bin: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

dec: 0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

• This representation simplifies the implementation of arithmetic operations.

• Negative binary numbers always have the most significant bit set to 1.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 100 / 246

Benefits of the two’s complement (b complement):

• Positive numbers and 0 have the most significant bit set to 0.

• Negative numbers have the most significant bit set to 1.

• There is only a single representation for 0.

• For positive numbers, the two’s complement representation corresponds to the normal binary
representation.

Example: Calculate 210 − 610 = 210 + (−610) using binary numbers using two’s complement represen-
tation for negative numbers with 4 digits.

Conversion into binary numbers yields 210 = 00102 and −610 = 10012 + 0001s = 10102. With
this, we can simply add the two numbers:

0010

+ 1010

1100

The results 11002 is a negative number. Inverting the bits and adding one gives us 01002 =
410. Hence, the result is −4.

86

Two’s Complement Fixed Integer Number Ranges

• Most computers these days use the two’s complement internally.

• The number of bits available defines the ranges we can use.

bits name range (decimal)

8 int8 −128 to 127
16 int16 −32 768 to 32 767
32 int32 −2 147 483 648 to 2 147 483 647
64 int64 −9 223 372 036 854 775 808 to 9 223 372 036 854 775 807

• Be careful if your arithmetic expressions overflows/underflows the range!

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 101 / 246

Note that computer hardware usually does not warn you about integer overflows or underflows. Instead,
numbers simply “wrap” around.

/*

* int-surprises/int-surprises.c --

*

* Surprises with integers (not only in C).

*/

#include <stdio.h>

#include <stdint.h>

int main()

{

int8_t x = 127;

uint8_t y = 255;

int8_t z = -128;

printf("%d\n", ++x); /* 127 + 1 = -128 (!) */

printf("%d\n", ++y); /* 255 + 1 = 0 (!) */

printf("%d\n", --z); /* -128 - 1 = 127 (!) */

return 0;

}

87

Rational and Real Numbers

12 Natural Numbers

13 Integer Numbers

14 Rational and Real Numbers

15 Floating Point Numbers

16 International System of Units

17 Characters and Strings

18 Date and Time

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 102 / 246

88

Rational Numbers

• Computer systems usually do not natively represent rational numbers, i.e., they
cannot compute with rational numbers at the hardware level.

• Software can, of course, implement rational number data types by representing the
numerator and the denominator as integer numbers internally and keeping them in
the reduced form.

• Example using Haskell (execution prints 5 % 6):

import Data.Ratio

print $ 1%2 + 1%3

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 103 / 246

The equivalent Python code would look like this:

from fractions import Fraction

a = Fraction("1/2")

b = Fraction("1/3")

print(a + b)

C++ has support for rational numbers in the standard library:

#include <iostream>

#include <ratio>

int main()

{

typedef std::ratio<1, 2> a;

typedef std::ratio<1, 3> b;

typedef std::ratio_add<a, b> sum;

std::cout << sum::num << ’/’ << sum::den << ’\n’;

return 0;

}

C programmers can use the GNU multiple precision arithmetic library:

#include <gmp.h>

int main()

{

mpq_t a, b, c;

mpq_inits(a, b, c, NULL);

mpq_set_str(a, "1/2", 10);

mpq_set_str(b, "1/3", 10);

mpq_add(c, a, b);

gmp_printf("%Qd\n", c);

mpq_clears(a, b, c, NULL);

return 0;

}

89

Real Numbers

• Computer systems usually do not natively represent real numbers, i.e., they cannot
compute with real numbers at the hardware level.

• The primary reason is that real numbers like the result of 1
7

or numbers like π have
by definition not a finite representation.

• So the best we can do is to have a finite approximation. . .

• Since all we have are approximations of real numbers, we always make rounding
errors if we use these approximations. If we are not very careful, these rounding
errors can accumulate badly.

• The notion of numeric stability can be used to classify algorithms according how
they propagate rounding errors.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 104 / 246

90

Floating Point Numbers

12 Natural Numbers

13 Integer Numbers

14 Rational and Real Numbers

15 Floating Point Numbers

16 International System of Units

17 Characters and Strings

18 Date and Time

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 105 / 246

91

Floating Point Numbers

• Floating point numbers are useful in situations where a large range of numbers
must be represented with fixed size storage for the numbers.

• The general notation of a floating point number f is

f = s × d0.d1d2 . . . dp−1 × be

where b is the basis, e is the exponent, d0, d1, . . . , dp−1 are digits of the mantissa
with di ∈ {0, . . . , b − 1} for i ∈ {0, . . . , p − 1}, s ∈ {1,−1} is the sign, and p is
the precision.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 106 / 246

As humans, we are used to the base b = 10 and the so called scientific notation of large (or small)
numbers, e.g., 1234 = 1.234× 103.

Computers prefer to use the base b = 2 for efficiency reasons. Even if you print the number in a decimal
scientific notation (b = 10), internally the number is most likely stored with base b = 2.

92

Floating Point Number Normalization

• Floating point numbers are usually normalized such that d0 is in the range
{1, . . . , b − 1}, except when the number is zero.

• Normalization must be checked and restored after each arithmetic operation since
the operation may denormalize the number.

• When using the base b = 2, normalization implies that the first digit d0 is always 1.
Hence, it is not necessary to store d0 and instead the mantissa can be extended by
one additional bit.

• Floating point numbers are at best an approximation of a real number due to the
limited precision.

• Calculations involving floating point numbers usually do not lead to precise results
since rounding must be used to match the result into the floating point format.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 107 / 246

It is important for you to remember that floating point arithmetic is generally not exact. This applies to
almost all digital calculators, regardless whether it is a school calculator, an app in your mobile phone,
a calculator program in your computer. Many of these programs try to hide the fact that the results
produced are imprecise by internally using more bits than what is shown to the user. While this helps a
bit, it does not cure the problem, as will be demonstrated on subsequent pages.

While there are programs to do better than average when it comes to floating point numbers, many
programs that are used widely may suffer from floating point imprecision. The most important thing is
that you are aware of the simple fact that numbers produced by a computer may simply be incorrect.

For further information:

• https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel

93

https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel

IEEE 754 Floating Point Formats

Item Single precision Double precision Quad precision

sign 1 bit 1 bit 1 bit
exponent 8 bit 11 bit 15 bit
mantissa 23 bit 52 bit 112 bit
total size 32 bit 64 bit 128 bit
decimal digits ≈ 7.2 ≈ 15.9 ≈ 34.0

• IEEE 754 is a standard for floating point numbers that is widely implemented today.

• IEEE 754 floating point numbers use the base b = 2 and as a consequence
numbers such as 1× 10−1 cannot be represented precisely.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 108 / 246

94

IEEE 754 Exceptions and Special Values

• The standard defines five exceptions, some of them lead to special values:

1. Invalid operation: returns not a number (nan)
2. Division by zero: returns ±infinity (inf)
3. Overflow: returns ±infinity (inf)
4. Underflow: depends on the operating mode
5. Inexact: returns rounded result by default

• Note that computations may continue if you hit a special value like nan or inf.

• Hence, it is important to check whether a calculation resulted in a value at all.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 109 / 246

We have seen that integer numbers usually just silently overflow (or underflow) by “wrapping” around.
IEEE 754 floating point numbers behave differently when it comes to overflows, this is in a way perhaps
an improvement.

95

Floating Point Surprises

• Any floating point computation should be treated with the utmost suspicion unless
you can argue how accurate it is. [Alan Mycroft, Cambridge]

• Floating point arithmetic almost always involves rounding errors and these errors
can badly aggregate.

• It is possible to “loose” the reasonably precise digits and to continue calculation
with the remaining rather imprecise digits.

• Comparisons to floating point constants may not be “exact” and as a consequence
loops may not end where they are expected to end.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 110 / 246

/*

* double-surprises/double-surprises.c --

*

* Surprises with doubles (not only in C).

*/

#include <stdio.h>

#include <math.h>

static void a()

{

double x = 2.0/0.0;

printf("%e\n", x); /* inf */

}

static void b()

{

double x = INFINITY + 1;

printf("%e\n", x); /* inf */

}

static void c()

{

double x = INFINITY - INFINITY;

printf("%e\n", x); /* nan */

}

static void d()

{

double x = (1 + 1e20) - 1e20;

double y = 1 + (1e20 - 1e20);

printf("%g == %g\n", x, y); /* 0 == 1 */

}

static void e()

96

{

double f; int c = 0;

for (f = 0.0; f < 1.0; f += 0.1) c++;

printf("%d == 10\n", c); /* 11 == 10 */

}

static void f()

{

double x = 10.0/9.0;

int i;

for (i = 0; i < 30; i++) {

printf("%e\n", x);

x = (x - 1.0) * 10.0;

}

}

int main()

{

a(); b(); c(); d(); e(); f();

return 0;

}

For further information:

• https://www.cl.cam.ac.uk/teaching/1011/FPComp/fpcomp10slides.pdf

97

https://www.cl.cam.ac.uk/teaching/1011/FPComp/fpcomp10slides.pdf

International System of Units

12 Natural Numbers

13 Integer Numbers

14 Rational and Real Numbers

15 Floating Point Numbers

16 International System of Units

17 Characters and Strings

18 Date and Time

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 111 / 246

98

Importance of Units and Unit Prefixes

• Most numbers we encounter in practice have associated units. It is important to be
very clear about the units used.
• NASA lost a Mars climate orbiter (worth $125 million) in 1999 due to a unit

conversion error.
• An Air Canada plane ran out of fuel in the middle of a flight in 1983 due to a fuel

calculation error while switching to the metric system.

• There is an International System of Units (SI Units) to help you. . .

� Always be clear about units.

� And always be clear about the unit prefixes.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 112 / 246

For further information:

• https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

• https://en.wikipedia.org/wiki/Gimli_Glider

99

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://en.wikipedia.org/wiki/Gimli_Glider

SI Base Units

Unit Symbol Description

metre m The distance travelled by light in a vacuum in a certain fraction
of a second.

kilogram kg The mass of the international prototype kilogram.
second s The duration of a number of periods of the radiation of the

caesium-133 atom.
ampere A The constant electric current which would produce between

two conductors a certain force.
kelvin K A fraction of the thermodynamic temperature of the triple

point of water.
mole mol The amount of substance of a system which contains atoms

corresponding to a certain mass of carbon-12.
candela cd The luminous intensity of a source that emits monochromatic

radiation.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 113 / 246

For further information:

• BIPM: “SI Brochure: The International System of Units”, 8th edition, updated 2014

• https://en.wikipedia.org/wiki/SI_base_unit

100

https://en.wikipedia.org/wiki/SI_base_unit

SI Derived Units

• Many important units can be derived from the base units. Some have special
names, others are simply defined by their units. Some examples:

Name Symbol Definition Description

herz Hz s−1 frequency
newton N kg m s−1 force

watt W kg m2 s−3 power
volt V kg m2 s−3 A−1 voltage
ohm Ω kg m2 s−2 A−1 resistance

velocity m s−1 speed

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 114 / 246

For further information:

• BIPM: “SI Brochure: The International System of Units”, 8th edition, updated 2014

• https://en.wikipedia.org/wiki/SI_derived_unit

101

https://en.wikipedia.org/wiki/SI_derived_unit

Metric Prefixes (International System of Units)

Name Symbol Base 10 Base 1000 Value

kilo k 103 10001 1000
mega M 106 10002 1 000 000
giga G 109 10003 1 000 000 000
tera T 1012 10004 1 000 000 000 000
peta P 1015 10005 1 000 000 000 000 000
exa E 1018 10006 1 000 000 000 000 000 000

zetta ζ 1021 10007 1 000 000 000 000 000 000 000
yotta Y 1024 10008 1 000 000 000 000 000 000 000 000

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 115 / 246

102

Metric Prefixes (International System of Units)

Name Symbol Base 10 Base 1000 Value

milli m 10−3 1000−1 0.001
micro µ 10−6 1000−2 0.000 001
nano n 10−9 1000−3 0.000 000 001
pico p 10−12 1000−4 0.000 000 000 001

femto f 10−15 1000−5 0.000 000 000 000 001
atto a 10−18 1000−6 0.000 000 000 000 000 001

zepto z 10−21 1000−7 0.000 000 000 000 000 000 001
yocto y 10−24 1000−8 0.000 000 000 000 000 000 000 001

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 116 / 246

103

Binary Prefixes

Name Symbol Base 2 Base 1024 Value

kibi Ki 210 10241 1024
mebi Mi 220 10242 1 048 576
gibi Gi 230 10243 1 073 741 824
tebi Ti 240 10244 1 099 511 627 776
pebi Pi 250 10245 1 125 899 906 842 624
exbi Ei 260 10246 1 152 921 504 606 846 976
zebi Zi 270 10247 1 180 591 620 717 411 303 424
yobi Yi 280 10248 1 208 925 819 614 629 174 706 176

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 117 / 246

There is often confusion about metric and binary prefixes since metric prefixes are sometimes incor-
rectly used to refer to binary prefixes. Storage devices are a good example where this has led to serious
confusion.

Computers generally access storage using addresses with an address range that is a power of two.
Hence, with 30 bits, we can address 230 = 1073741824 bytes, or 1 Gi byte. The industry, however,
preferred to use the metric prefix system (well, initially, there was no binary prefix system), hence they
used 1 G byte, which is 109 = 1000000000 bytes. The difference is 73741824 bytes (almost 7% of the 1
Gi byte).

The binary prefixes, proposed in 2000, can help avoid the confusion. However, the adoption is rather
slow and hence we will likely have to live with the confusion for many years to come. But of course, you
can make a difference by always using the right prefixes.

104

Characters and Strings

12 Natural Numbers

13 Integer Numbers

14 Rational and Real Numbers

15 Floating Point Numbers

16 International System of Units

17 Characters and Strings

18 Date and Time

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 118 / 246

105

Characters and Character Encoding

• A character is a unit of information that roughly corresponds to a grapheme,
grapheme-like unit, or symbol, such as in an alphabet or syllabary in the written
form of a natural language.

• Examples of characters include letters, numerical digits, common punctuation
marks, and whitespace.

• Characters also includes control characters, which do not correspond to symbols in
a particular natural language, but rather to other bits of information used to
control information flow or presentation.

• A character encoding is used to represent a set of characters by some kind of
encoding system. A single character can be encoded in many different ways.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 119 / 246

106

ASCII Characters and Encoding

• The American Standard Code for Information Interchange (ASCII) is a still widely
used character encoding standard.

• Originally, ASCII encodes 128 specified characters into seven-bit natural numbers.
Extended ASCII encodes the 128 specified characters into eight-bit natural
numbers. This makes code points available for additional characters.

• ISO 8859 is a family of extended ASCII codes that support different language
requirements, for example:
• ISO 8859-1 adds characters for most common Western European languages
• ISO 8859-2 adds characters for the most common Eastern European languages
• ISO 8859-5 adds characters for Cyrillic languages

• Unfortunately, ISO 8859 code points overlap, making it difficult to represent texts
requiring many different character sets.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 120 / 246

107

ASCII Characters and Code Points (decimal)

0 nul 1 soh 2 stx 3 etx 4 eot 5 enq 6 ack 7 bel

8 bs 9 ht 10 nl 11 vt 12 np 13 cr 14 so 15 si

16 dle 17 dc1 18 dc2 19 dc3 20 dc4 21 nak 22 syn 23 etb

24 can 25 em 26 sub 27 esc 28 fs 29 gs 30 rs 31 us

32 sp 33 ! 34 " 35 # 36 $ 37 % 38 & 39 ’

40 (41) 42 * 43 + 44 , 45 - 46 . 47 /

48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7

56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?

64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G

72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O

80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W

88 X 89 Y 90 Z 91 [92 \ 93] 94 ^ 95 _

96 ‘ 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o

112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w

120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 del

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 121 / 246

108

Universal Coded Character Set and Unicode

• The Universal Coded Character Set (UCS) is a standard set of characters defined
and maintained by the International Organization of Standardization (ISO).

• As of Unicode 10.0 (June 2017), it contains 136 690 abstract characters, each
identified by an unambiguous name and an integer number called its code point.

• The Unicode Consortium produces industry standards based on the UCS for the
encoding, representation, and handling of text expressed in most of the world’s
writing systems.

• Unicode can be implemented using different character encodings.

• The UTF-32 encoding encodes character code points directly into 32-bit numbers
(fixed length encoding). While simple, an ASCII text of size n would become a
UTF-32 text of size 4n.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 122 / 246

Some programming languages natively support unicode while others require the use of unicode li-
braries. In general, unicode is not trivial to program with.

• Unicode characters are categorized and they have properties that go beyond a simple classifica-
tion into numbers, letters, etc.

• Unicode characters and strings require normalization since some symbols may be represented in
several different ways. Henc, in order to compare unicode characters, it is important to choose a
suitable normalization form.

• Unicode characters can be encoded in several different formats and this requires character and
string conversion functionality.

• Case mappings are not trivial since certain characters do not have a matching lowercase and
uppercase representation. Some case conversions are also language specific and not character
specific.

The GNU libunistring library is an example of a Unicode string library for C programmers.

109

Unicode Transformation Format UTF-8

bytes cp bits first cp last cp byte 1 byte 2 bytes 3 byte 4

1 7 U+0000 U+007F 0xxxxxxx
2 11 U+0080 U+07FF 110xxxxx 10xxxxxx
3 16 U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx
4 21 U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

• Variable-length encoding of Unicode code points (cp) in such a way that seven-bit
ASCII becomes valid UTF-8.

• The e symbol with the code point U+20AC (0010 0000 1010 1100 in binary
notation) encodes as 0xE282AC (11100010 10000010 10101100 in binary notation).

• Note that this makes the e more expensive than the $. ,

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 123 / 246

110

Strings

• Let Σ be a non-empty finite set of symbols (or characters), called the alphabet.

• A string (or word) over Σ is any finite sequence of symbols from Σ, including (of
course) the empty sequence.

• Typical operations on strings are length(), concatenation(), reverse(), . . .

• There are different ways to store strings internally. Two common approaches are:
• The sequence is null-terminated, i.e., the characters of the string are followed by a

special NUL character.
• The sequence is length-prefixed, i.e., a natural number indicating the length of the

string is stored in front of the characters.

• In some programming languages, you need to know how strings are stored, in other
languages you happily leave the details to the language implementation.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 124 / 246

111

Date and Time

12 Natural Numbers

13 Integer Numbers

14 Rational and Real Numbers

15 Floating Point Numbers

16 International System of Units

17 Characters and Strings

18 Date and Time

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 125 / 246

112

System Time and Clocks

• Computer systems usually maintain a notion of system time. The term system time
indicates that two different systems usually have a different notion of system time.

• System time is measured by a system clock, which is typically implemented as a
simple count of the number of ticks that have transpired since some arbitrary
starting date, called the epoch.

• Since internal counting mechanisms are not very precise, systems often exchange
time information with other systems that have “better” clocks or sources of time in
order to converge their notions of time.

• Time is sometimes used to order events, due to its monotonic nature.

• In distributed systems, this has its limitations and therefore the notion of logical
clocks has been invented. (Logical clocks do not measure time, they only help to
order events.)

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 126 / 246

Most computer systems have relatively poor clocks and hence the notion of a computer’s time drifts
quickly. Time synchronization protocols are commonly used these days to synchronize the time with a
more robust time source. A widely deployed time synchronization protocol is the Network Time Proto-
col (NTP). An alternative solution is the Precision Time Protocol (PTP). A common problem of these
protocols is that the exchange of synchronization messages itself introduces errors that must be com-
pensated for.

Another commonly available source of time is the Global Positioning System (GPS).

For further information:

• https://en.wikipedia.org/wiki/Network_Time_Protocol

• https://en.wikipedia.org/wiki/Precision_Time_Protocol

113

https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/Precision_Time_Protocol

Calendar Time

• System time can be converted into calendar time, a reference to a particular time
represented within a calendar system.

• A popular calendar is the Gregorian calendar, which maps a time reference into a
year, a month within the year, and a day within a month.

• The Gregorian calendar was introduced by Pope Gregory XIII in October 1582.

• The Coordinated Universal Time (UTC) is the primary time standard by which the
world regulates clocks and time.

• Due to the rotation of the earth, days start and end at different moments. This is
reflected by the notion of a time zone, which is essentially an offset to UTC.

• The number of time zones is not static and time zones change occasionally.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 127 / 246

Computer systems often indicate time zones using time zone names. Associated to a time zone name
are usually complicated rules that indicate for example transitions to daylight saving times or simply
changes to the time zones. IANA is maintaining a time zone database that is commonly used by
software systems to interpret time zone names in order to derive the correct time zone offset from UTC.

For further information:

• https://en.wikipedia.org/wiki/Time_zone

• https://www.iana.org/time-zones

• https://youtu.be/-5wpm-gesOY

114

https://en.wikipedia.org/wiki/Time_zone
https://www.iana.org/time-zones
https://youtu.be/-5wpm-gesOY

ISO 8601 Date and Time Formats

• Different parts of the world use different formats to write down a calendar time,
which can easily lead to confusion.

• The ISO 8601 standard defines an unambiguous notation for calendar time.

• ISO 8601 in addition defines formats for durations and time intervals.

name format example

date yyyy-mm-dd 2017-06-13
time hh:mm:ss 15:22:36
date and time yyyy-mm-ddThh:mm:ss[±hh:mm] 2017-06-13T15:22:36+02:00
date and time yyyy-mm-ddThh:mm:ss[±hh:mm] 2017-06-13T13:22:36+00:00
date and time yyyy-mm-ddThh:mm:ssZ 2017-06-13T13:22:36Z
date and week yyyy-Www 2017-W24

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 128 / 246

The special letter Z indicates that the date and time is in UTC time. The ISO 8601 standard deals with
timezone offsets by specifying the positive or negative offset from UTC time in hours and minutes. This
in principle allows us to define +00:00 and -00:00 but the ISO 8601 disallows a negative zero offset.
RFC 3339, a profile of ISO 8601, however, defines that -00:00 indicates that the offset is unknown.

For further information:

• https://en.wikipedia.org/wiki/ISO_8601

• https://xkcd.com/1179/

115

https://en.wikipedia.org/wiki/ISO_8601
https://xkcd.com/1179/

Part IV

Boolean Algebra and Logic

Boolean logic is the mathematical framework for describing anything that is binary, that is, anything
which can have only two values.

• Boolean logic is the foundation for understanding digitial circuits, the foundation of today’s com-
puters. The central processing unit (CPU) of a computer is just a very large collection of digital
circuits consisting of logic gates. The mathematical foundation of a CPU is Boolean logic since it
helps to understand how digital circuits and be composed and where necessary verified.

• Boolean logic is also the foundation of systems that behave as if they were intelligent, i,e., systems
that exhibit artificial intelligence. Logic (not just Boolean logic) is a sub-field of artificial intelligence
that enabled programs to reason about their environment, to solve planning problems, or to provide
powerful search facilities on large amounts of formalized knowledge.

This part introduces the basics of Boolean logic. More advanced logics and the usage of advanced
logics will be covered in second and third year courses.

116

Logic can be confusing. . .

• If all men are mortal and Socrates is a man, then Socrates is mortal.

• I like Pat or I like Joe.
If I like Pat, I like Joe.
Do I like Joe?

• If cats are dogs, then the sun shines.

• “Logic is the beginning of wisdom, not the end of it.”

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 130 / 246

117

Elementary Boolean Functions

19 Elementary Boolean Functions

20 Boolean Functions and Formulas

21 Boolean Algebra Equivalence Laws

22 Normal Forms (CNF and DNF)

23 Complexity of Boolean Formulas

24 Boolean Logic and the Satisfiability Problem

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 131 / 246

118

Boolean Variables

• Boolean logic describes objects that can take only one of two values.

• The values may be different voltage levels {0,V +} or special symbols {F ,T} or
simply the digits {0, 1}.

• In artificial intelligence, such objects are often called propositions and they are
either true or false.

• In mathematics, the objects are called Boolean variables and we use the symbols
X1,X2,X3, . . . for them.

• The main purpose of Boolean logic is to describe (or design) interdependencies
between Boolean variables.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 132 / 246

119

Interpretation of Boolean Variables

Definition (Boolean variables)

A Boolean variable Xi with i ≥ 1 is an object that can take on one of the two values 0
or 1. The set of all Boolean variables is X = {X1,X2,X3, . . .}.

Definition (Interpretation)

Let D be a subset of X. An interpretation I of D is a function I : D 7→ {0, 1}.

• The set X is very large. It is often sufficient to work with a suitable subset D of X.

• An interpretation assigns to every Boolean variable a value.

• An interpretation is also called a truth value assignment.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 133 / 246

120

Boolean ∧ Function (and)

X Y X ∧ Y
0 0 0
0 1 0
1 0 0
1 1 1

• The logical and ∧ can be viewed as a function that
maps two Boolean values to a Boolean value:

∧ : {0, 1} × {0, 1} 7→ {0, 1}

• A truth table defines a Boolean operation (or function)
by listing the result for all possible arguments.

• In programming languages like C or C++ (or even Haskell), the operator && is
often used to represent the ∧ operation.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 134 / 246

121

Boolean ∨ Function (or)

X Y X ∨ Y
0 0 0
0 1 1
1 0 1
1 1 1

• The logical or ∨ can be viewed as a function that maps
two Boolean values to a Boolean value:

∨ : {0, 1} × {0, 1} 7→ {0, 1}

• Each row in the truth table corresponds to one
interpretation.

• A truth table simply lists all possible interpretations.

• In programming languages like C or C++ (or even Haskell), the operator || is
often used to represent the ∨ operation.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 135 / 246

122

Boolean ¬ Function (not)

X ¬X
0 1
1 0

• The logical not ¬ can be viewed as a unary function
that maps a Boolean value to a Boolean value:

¬ : {0, 1} 7→ {0, 1}

• The ¬ operation simply flips a Boolean value.

• In programming languages like C or C++, the operator ! is often used to represent
the ¬ operation.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 136 / 246

123

Boolean → Function (implies)

X Y X → Y
0 0 1
0 1 1
1 0 0
1 1 1

• The logical implication → can be viewed as a function
that maps two Boolean values to a Boolean value:

→: {0, 1} × {0, 1} 7→ {0, 1}

• The implication represents statements of the form “if X
then Y ” (where X is called the precondition and Y the
consequence).

• The logical implication is often confusing to ordinary mortals. A logical implication
is false only if the precondition is true, but the consequence it asserts is false.

• The claim “if cats eat dogs, then the sun shines” is logically true.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 137 / 246

124

Boolean ↔ Function (equivalence)

X Y X ↔ Y
0 0 1
0 1 0
1 0 0
1 1 1

• The logical equivalence ↔ can be viewed as a function
that maps two Boolean values to a Boolean value:

↔: {0, 1} × {0, 1} 7→ {0, 1}

• In programming languages like C or C++, the operator == is often used to
represent the equivalence function as an operation.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 138 / 246

125

Boolean ∨̇ Function (exclusive or)

X Y X ∨̇Y
0 0 0
0 1 1
1 0 1
1 1 0

• The logical exclusive or ∨̇ can be viewed as a function
that maps two Boolean values to a Boolean value:

∨̇ : {0, 1} × {0, 1} 7→ {0, 1}

• Another commonly used symbol for the exclusive or is ⊕.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 139 / 246

The exclusive or function has an interesting property. Lets consider the following example where we
apply the exclusive or function bitwise to two longer bit strings:

123416∨̇cafe16 = 0001 0010 0011 01002∨̇1100 1010 1111 11102 = 1101 1000 1100 10102 = d8ca16

If we perform an exclusive or on the result with the same second operand, we get the following:

d8ca16∨̇cafe16 = 1101 1000 1100 10102∨̇1100 1010 1111 11102 = 0001 0010 0011 01002 = 123416

Apparently, it seems that (X∨̇Y)∨̇Y = X. To prove this property, we can simply write down a truth table:

X Y X∨̇Y (X∨̇Y)∨̇Y
0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1

126

Boolean ↑ Function (not-and)

X Y X ↑ Y
0 0 1
0 1 1
1 0 1
1 1 0

• The logical not-and (nand) or ↑ can be viewed as a
function that maps two Boolean values to a Boolean
value:

↑: {0, 1} × {0, 1} 7→ {0, 1}
• The ↑ function is also called Sheffer stroke.

• While we use the functions ∧, ∨, and ¬ to introduce more complex Boolean
functions, the Sheffer stroke is sufficient to derive all elementary Boolean functions
from it.

• This is important for digital circuits since all you need are not-and gates.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 140 / 246

The not-and is a universal function since it can be used to derive all elementary Boolean functions.

• X ∧ Y = (X ↑ Y) ↑ (X ↑ Y)

X Y X ∧ Y X ↑ Y (X ↑ Y) ↑ (X ↑ Y)
0 0 0 1 0
0 1 0 1 0
1 0 0 1 0
1 1 1 0 1

• X ∨ Y = (X ↑ X) ↑ (Y ↑ Y)

X Y X ∨ Y X ↑ X Y ↑ Y (X ↑ X) ↑ (Y ↑ Y)
0 0 0 1 1 0
0 1 1 1 0 1
1 0 1 0 1 1
1 1 1 0 0 1

• ¬X = X ↑ X
X ¬Y X ∧X
0 1 1
1 0 0

127

Boolean ↓ Function (not-or)

X Y X ↓ Y
0 0 1
0 1 0
1 0 0
1 1 0

• The logical not-or (nor) ↓ can be viewed as a function
that maps two Boolean values to a Boolean value:

↓: {0, 1} × {0, 1} 7→ {0, 1}

• The ↓ function is also called Quine arrow.

• The ↓ (nor) is like ↑ (nand) sufficient to derive all elementary Boolean functions.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 141 / 246

The not-or is a universal function since it can be used to derive all elementary Boolean functions.

• X ∧ Y = (X ↓ X) ↓ (Y ↓ Y)

• X ∨ Y = (X ↓ Y) ↓ (X ↓ Y)

• ¬X = X ↓ X

128

Boolean Functions and Formulas

19 Elementary Boolean Functions

20 Boolean Functions and Formulas

21 Boolean Algebra Equivalence Laws

22 Normal Forms (CNF and DNF)

23 Complexity of Boolean Formulas

24 Boolean Logic and the Satisfiability Problem

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 142 / 246

There are different symbols used to denote basic boolean functions. Here is an attempt to provide an
overview. Note that authors sometimes mix symbols; there is no common standard notation.

function mnemonic mathematics engineering C / C++

and X and Y X ∧ Y X · Y X && Y

or X or Y X ∨ Y X + Y X || Y

not not X ¬X X ! X

implication X impl Y X → Y
equivalence X equiv Y X ↔ Y X == Y

exclusive or X xor Y X∨̇Y X ⊕ Y
not and X nand Y X ↑ Y
not or X nor Y X ↓ Y

129

Boolean Functions

• Elementary Boolean functions (¬,∧,∨) can be composed to define more complex
functions.

• An example of a composed function is

ϕ(X ,Y) := ¬(X ∧ Y)

which is a function ϕ : {0, 1} × {0, 1} 7→ {0, 1} and means “first compute the ∧ of
X and Y, then apply the ¬ on the result you got from the ∧”.

• Boolean functions can take a large number of arguments. Here is a function taking
three arguments:

ϕ(X ,Y ,Z) := (¬(X ∧ Y) ∨ (Z ∧ Y))

• The left hand side of the notation above defines the function name and its
arguments, the right hand side defines the function itself by means of a formula.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 143 / 246

Below is the definition of all elementary Boolean functions we have introduced so far using just the
Boolean operations ∧, ∨, and ¬:

• Implication

→ (X,Y) := ¬X ∨ Y

• Equivalence

↔ (X,Y) := (X ∧ Y) ∨ (¬X ∧ ¬Y)

• Exclusive or:

∨̇(X,Y) := (X ∧ ¬Y) ∨ (¬X ∧ Y)

• Not and:

↑ (X,Y) := ¬(X ∧ Y)

• Not or:

↓ (X,Y) := ¬(X ∨ Y)

130

Boolean Functions

Definition (Boolean function)

A Boolean function ϕ is any function of the type ϕ : {0, 1}k 7→ {0, 1}, where k ≥ 0.

• The number k of arguments is called the arity of the function.

• A Boolean function with arity k = 0 assigns truth values to nothing. There are two
such functions, one always returning 0 and the other always returning 1. We simply
identify these two arity-0 functions with the truth value constants 0 and 1.

• The truth table of a Boolean function with arity k has 2k rows. For a function with
a large arity, truth tables become quickly unmanageable.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 144 / 246

Boolean functions are interesting, since can be used as computational devices. In particular, we can
consider a computer CPU as collection of Boolean functions (e.g., a modern CPU with 64 inputs and
outputs can be viewed as a sequence of 64 Boolean functions of arity 64: one function per output pin).

Another option to define a Boolean function is of course by writing down the truth table. We can define
φ(X,Y, Z) := (¬(X ∧ Y) ∨ (Z ∧ Y)) by filling out the following table:

X Y Z (¬(X ∧ Y) ∨ (Z ∧ Y))
0 0 0 1
0 0 1 . . .
0 1 0 . . .
0 1 1 . . .
1 0 0 . . .
1 0 1 . . .
1 1 0 . . .
1 1 1 . . .

To fill in the first row (the first interpretation), one computes:

1. (X ∧ Y) = (0 ∧ 0) = 0

2. (Z ∧ Y) = (0 ∧ 0) = 0

3. ¬(X ∧ Y) = ¬0 = 1

4. (¬(X ∧ Y) ∨ (Z ∧ Y)) = 1 ∨ 0 = 1

Note that boolean formulas can be considered boolean polynomials. This becomes perhaps more
obvious if one uses the alternate writing style where X · Y is used instead of X ∧ Y and X + Y is used
instead of X ∨ Y and X is used instead of ¬X.

φ(X,Y, Z) = (X · Y) + (Z · Y)

131

Syntax of Boolean formulas (aka Boolean expressions)

Definition (Syntax of Boolean formulas)

Basis of inductive definition:

1a Every Boolean variable Xi is a Boolean formula.

1b The two Boolean constants 0 and 1 are Boolean formulas.

Induction step:

2a If ϕ and ψ are Boolean formulas, then (ϕ ∧ ψ) is a Boolean formula.

2b If ϕ and ψ are Boolean formulas, then (ϕ ∨ ψ) is a Boolean formula.

2c If ϕ is a Boolean formula, then ¬ϕ is a Boolean formula.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 145 / 246

Strictly speaking, only Xi qualify for step 1a but in practice we may also use X,Y,

The definition provides all we need to verify whether a particular sequence of symbols qualifies as a
Boolean formula. Obviously, (¬(X ∧ Y) ∨ (Z ∧ Y)) is a valid Boolean formula and ¬(X∧) is not.

In practice, we often use conventions that allow us to save parenthesis. For example, we may simply
write (X ∧ Y ∧ Z) instead of ((X ∧ Y) ∧ Z) or (X ∧ (Y ∧ Z)).

Furthermore, we may write:

• (X → Y) as a shorthand notation for (¬X ∨ Y)

• (X ↔ Y) as a shorthand notation for ((¬X ∨ Y) ∧ (¬Y ∨X))

Note that the definition for Boolean formulas defines the syntax of Boolean formulas. It provides a
grammar that allows us to construct valid formulas and it allows us to decide whether a given formula
is valid. However, the definition does not define what the formula means, that is, the semantics. We
intuitively assume a certain semantic that does “make sense” but we have not yet defined the semantics
formally.

132

Semantics of Boolean formulas

Definition (Semantics of Boolean formulas)

Let D ⊆ X be a set of Boolean variables and I : D 7→ {0, 1} an interpretation. Let
Φ(D) be the set of all Boolean formulas which contain only Boolean variables that are
in D. We define a generalized version of an interpretation I∗ : Φ(D) 7→ {0, 1}.
Basis of the inductive definition:

1a For every Boolean variable X ∈ D, I∗(X) = I(X).

1b For the two Boolean constants 0 and 1, we set I∗(0) = 0 and I∗(1) = 1.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 146 / 246

Because this generalized interpretation I∗ is the same as I for Boolean variables X ∈ D , we say that
I∗ extends I from the domain D to the domain Φ(D). Following common practice, we will use I for the
generalized interpretation too. Furthermore, since the set D is often clear from the context, we will often
not specify it explicitly.

133

Semantics of Boolean formulas

Definition (Semantics of Boolean formulas (cont.))

Induction step, with ϕ and ψ in Φ(D):

2a

I∗((ϕ ∧ ψ)) =

{
1 if I∗(ϕ) = 1 and I∗(ψ) = 1

0 otherwise

2b

I∗((ϕ ∨ ψ)) =

{
1 if I∗(ϕ) = 1 or I∗(ψ) = 1

0 otherwise

2c

I∗(¬ϕ) =

{
1 if I∗(ϕ) = 0

0 if I∗(ϕ) = 1

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 147 / 246

Note that a boolean expression defines a boolean function and that multiple boolean expressions can
define the same boolean function.

134

Boolean Algebra Equivalence Laws

19 Elementary Boolean Functions

20 Boolean Functions and Formulas

21 Boolean Algebra Equivalence Laws

22 Normal Forms (CNF and DNF)

23 Complexity of Boolean Formulas

24 Boolean Logic and the Satisfiability Problem

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 148 / 246

135

Tautology and contradiction

Definition (adapted interpretation)

An interpretation I : D 7→ {0, 1} is adapted to a Boolean formula ϕ if all Boolean
variables that occur in ϕ are contained in D.

Definition (tautologies and contradictions)

A Boolean formula ϕ is a tautology if for all interpretations I which are adapted to ϕ it
holds that I(ϕ) = 1. A Boolean formula is a contradiction if for all interpretations I
which are adapted to ϕ it holds that I(ϕ) = 0.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 149 / 246

A tautology is a Boolean formula which is always true, and a contradiction is never true.

The classical example of a tautology is

(X ∨ ¬X)

and the classical example of a contradiction is

(X ∧ ¬X).

Two elementary facts relating to tautologies and contradictions:

• For any Boolean expression ϕ, (ϕ ∨ ¬ϕ) is a tautology and (ϕ ∧ ¬ϕ) is a contradiction.

• If ϕ is a tautology, then ¬ϕ is a contradiction and vice versa.

For a complex Boolean formula ϕ with many Boolean variables, it is not easy to find out whether a
given Boolean formula is a tautology or a contradiction. One way to find out would be to compute the
complete truth table. Recall that each row in a truth table corresponds to one possible interpretation of
the variables in ϕ. Recall furthermore that if ϕ contains k Boolean variables, the truth table has 2k rows.
This becomes quickly impractical if k grows. Unfortunately, there is no known general procedure to find
out whether a given ϕ is a tautology or contradiction which is less costly than computing the entire truth
table. In fact, logicians have reason to believe that no faster method exists (but this is an unproven
conjecture!).

136

Satisfying a Boolean formula

Definition (satisfying a Boolean formula)

An interpretation I which is adapted to a Boolean formula ϕ is said to satisfy the
formula ϕ if I(ϕ) = 1. A formula ϕ is called satisfiable if there exists an interpretation
which satisfies ϕ.

The following two statements are equivalent characterizations of satisfiability:

• A Boolean formula is satisfiable if and only if its truth table contains at least one
row that results in 1.

• A Boolean formula is satisfiable if and only if it is not a contradiction.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 150 / 246

Note that the syntactic definition of Boolean formulas defines merely a set of legal sequences of sym-
bols. Via the definition of the semantics of Boolean formulas, we obtain a Boolean function for every
Boolean formula. In other words, there is a distinction between a Boolean formula and the Boolean
function induced by the formula. In practice, this distinction is often not made and we often treat formu-
lars as synomyms for the functions induced by the formula and we may use a function name to refer to
the formula that was used to define the function.

137

Equivalence of Boolean formulas

Definition (equivalence of Boolean formulas)

Let ϕ, ψ be two Boolean formulas. The formula ϕ is equivalent to the formula ψ,
written ϕ ≡ ψ, if for all interpretations I which are adapted to both ϕ and ψ it holds
that I(ϕ) = I(ψ).

• There are numerous “laws” of Boolean logic which are stated as equivalences.
Each of these laws can be proven by writing down the corresponding truth table.

• Boolean equivalence “laws” can be used to “calculate” with logics, executing
stepwise transformations from a starting formula to some target formula, where
each step applies one equivalence law.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 151 / 246

A simple example is (X ∨ Y) ≡ (Y ∨X).

Note that equivalent formulas are not required to have the same set of variables. The following equiva-
lence surely holds:

(X ∨ Y) ≡ (X ∨ Y) ∧ (Z ∨ ¬Z)

138

Equivalence laws

Proposition (equivalence laws)

For any Boolean formulas ϕ, ψ, χ, the following equivalences hold:

1. ϕ ∧ 1 ≡ ϕ and ϕ ∨ 0 ≡ ϕ (identity)

2. ϕ ∨ 1 ≡ 1 and ϕ ∧ 0 ≡ 0 (domination)

3. (ϕ ∧ ϕ) ≡ ϕ and (ϕ ∨ ϕ) ≡ ϕ) (idempotency)

4. (ϕ ∧ ψ) ≡ (ψ ∧ ϕ) and (ϕ ∨ ψ) ≡ (ψ ∨ ϕ) (commutativity)

5. ((ϕ ∧ ψ) ∧ χ) ≡ (ϕ ∧ (ψ ∧ χ)) and ((ϕ ∨ ψ) ∨ χ) ≡ (ϕ ∨ (ψ ∨ χ)) (associativity)

6. ϕ∧ (ψ∨χ) ≡ (ϕ∧ψ)∨ (ϕ∧χ) and ϕ∨ (ψ∧χ) ≡ (ϕ∨ψ)∧ (ϕ∨χ) (distributivity)

7. ¬¬ϕ ≡ ϕ (double negation)

8. ¬(ϕ ∧ ψ) ≡ (¬ϕ ∨ ¬ψ) and ¬(ϕ ∨ ψ) ≡ (¬ϕ ∧ ¬ψ) (de Morgan’s laws)

9. ϕ ∧ (ϕ ∨ ψ) ≡ ϕ and ϕ ∨ (ϕ ∧ ψ) ≡ ϕ (absorption laws)

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 152 / 246

Each of these equivalence laws can be proven by writing down the corresponding truth table. To illus-
trate this, here is the truth table for the first of the two de Morgan’s laws:

ϕ ψ ¬ϕ ¬ψ (ϕ ∧ ψ) ¬(ϕ ∧ ψ) (¬ϕ ∨ ¬ψ)
0 0 1 1 0 1 1
0 1 1 0 0 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 0

Designing algorithms to transform starting formulas into target formulas is a practically important topic
of artificial intelligence applications, more specifically “automated reasoning”.

Try to simplify the following formula:

((X ∨ Y) ∧ (¬Y ∧ Z)) ∧ Z = . . . = X ∧ ¬Y ∧ Z

((X ∨ Y) ∧ (¬Y ∧ Z)) ∧ Z = (((X ∨ Y) ∧ ¬Y) ∧ Z) ∧ Z associativity
= (((X ∧ ¬Y) ∨ (Y ∧ ¬Y)) ∧ Z) ∧ Z distributivity
= (((X ∧ ¬Y) ∨ 0) ∧ Z) ∧ Z
= ((X ∧ ¬Y) ∧ Z) ∧ Z identity
= ((X ∧ ¬Y) ∧ (Z ∧ Z) associativity
= ((X ∧ ¬Y) ∧ Z idempotency
= X ∧ ¬Y ∧ Z associativity

Alternatively, simplify the formula using a truth table.

139

Normal Forms (CNF and DNF)

19 Elementary Boolean Functions

20 Boolean Functions and Formulas

21 Boolean Algebra Equivalence Laws

22 Normal Forms (CNF and DNF)

23 Complexity of Boolean Formulas

24 Boolean Logic and the Satisfiability Problem

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 153 / 246

140

Literals

Definition (literals)

A literal Li is a Boolean formula that has one of the forms Xi , ¬Xi , 0, 1, ¬0, ¬1, i.e., a
literal is either a Boolean variable or a constant or a negation of a Boolean variable or a
constant. The literals Xi , 0, 1 are called positive literals and the literals ¬Xi , ¬0, ¬1 are
called negative literals.

Definition (monomial)

A monomial (or product term) is a literal or the logic and (product) of literals.

Definition (clause)

A clause (or sum term) is a literal or the logic or (sum) of literals.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 154 / 246

141

Conjunctive Normal Form

Definition (conjunctive normal form)

A Boolean formula is said to be in conjunctive normal form (CNF) if it is a conjunction
of disjunctions of literals.

• Examples of formulas in CNF:
• X1 (this is a short form of (1 ∨ 1) ∧ (X1 ∨ 0)
• X1 ∧ X2 (this is a short form of (X1 ∨ X1) ∧ (X2 ∨ X2))
• X1 ∨ X2 (this is a short form of (1 ∨ 1) ∧ (X1 ∨ X2))
• ¬X1 ∧ (X2 ∨ X3) (this is a short form of (0 ∨ ¬X1) ∧ (X2 ∨ X3))
• (X1 ∨ ¬X2) ∧ (¬X1 ∨ X2)

• We typically write the short form, leaving out trivial expansions into full CNF form.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 155 / 246

The terms of a CNF are all clauses.

142

Disjunctive Normal Form

Definition (disjunctive normal form)

A Boolean formula is said to be in disjunctive normal form (DNF) if it is a disjunction of
conjunctions of literals.

• Examples of formulas in DNF:
• X1 (this is a short form of (0 ∧ 0) ∨ (X1 ∧ 1))
• X1 ∧ X2 (this is a short form of (0 ∧ 0) ∨ (X1 ∧ X2))
• X1 ∨ X2 (this is a short form of (X1 ∧ X1) ∨ (X2 ∧ X2))
• (¬X1 ∧ X2) ∨ (¬X1 ∧ X3)
• (¬X1 ∧ ¬X2) ∨ (X1 ∧ X2)

• We typically write the short form, leaving out trivial expansions into full DNF form.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 156 / 246

The terms of a DNF are all monomials. If we order the boolean variables involved in a Boolean ex-
pression, we may write the monomials as mi where i represents the number implied by the boolean
variables.

For example,

ϕ(X,Y, Z) = (¬X∧¬Y ∧Z)∨(¬X∧Y ∧¬Z)∨(X∧¬Y ∧¬Z)∨(X∧¬Y ∧Z)∨(X∧Y ∧¬Z)∨(X∧Y ∧Z)

can be written as

ϕ(X,Y, Z) = m1 ∨m2 ∨m4 ∨m5 ∨m6 ∨m7

or with the alternative notation as

ϕ(X,Y, Z) = m1 +m2 +m4 +m5 +m6 +m7.

143

Equivalence of Normal Forms

Proposition (CNF equivalence)

Every Boolean formula ϕ is equivalent to a Boolean formula χ in conjunctive normal
form.

Proposition (DNF equivalence)

Every Boolean formula ϕ is equivalent to a Boolean formula χ in disjunctive normal
form.

• These two results are important since we can represent any Boolean formula in a
“shallow” format that does not need any “deeply nested” bracketing levels.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 157 / 246

Here is a proof for the CNF equivalence. Since Boolean formulas are defined in an inductive way, we
proof the equivalence by induction. The proof itself provides the basic idea how to convert a Boolean
formula into CNF.

Basis of induction:

1a Let ϕ = Xi be a Boolean formula that just consists of a single Boolean variables Xi. Obviously,
χ = (1 ∨ 1) ∧ (ϕ ∨ 0) is a formula in CNF that is equivalent to Xi.

χ = (1 ∨ 1) ∧ (ϕ ∨ 0)

= 1 ∧ (ϕ ∨ 0) (domination)
= ϕ ∨ 0 (identity)
= ϕ (identity)
= Xi

1b Let ϕ be a Boolean constant, i.e., ϕ = 0 or ϕ = 1. By the same construction as used in 1a, we
obtain a formula in CNF.

Induction step:

2a Assume that ϕ = (χ1 ∧ χ2) is a conjunction of two formulas χ1 and χ2, which we assume to be in
CNF. Due to the associativity of ∧ we can drop the parenthesis to obtain χ = χ1 ∧ χ2 in CNF.

2b Assume that ϕ = (χ1 ∨ χ2) is a disjunction of two formulas χ1 and χ2, which we assume to be in
CNF.

complete this

2c Assume that ϕ = 6 χ1 is a negation of the formula χ1, which we assume to be in CNF.

complete this

144

Obtaining a DNF from a Truth Table

• Given a truth table, a DNF can be obtained by writing down a conjunction of the
input values for every row where the result is 1 and connecting all obtained
conjunctions together with a disjunction.

X Y X ∨̇Y
0 0 0
0 1 1
1 0 1
1 1 0

• 2nd row: ¬X ∧ Y

• 3rd row: X ∧ ¬Y

• χ = (¬X ∧ Y) ∨ (X ∧ ¬Y)

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 158 / 246

Every boolean function defined by a boolean expression can be represented as a truth table. Since it is
possible to obtain the DNF directly from the truth table, every boolean expression can be represented
in DNF.

145

Obtaining a CNF from a Truth Table

• Given a truth table, a CNF can be obtained by writing down a disjunction of the
negated input values for every row where the result is 0 and connecting all obtained
disjunctions together with a conjunction.

X Y X ∨̇Y
0 0 0
0 1 1
1 0 1
1 1 0

• 1st row: X ∨ Y

• 4th row: ¬X ∨ ¬Y

• χ = (X ∨ Y) ∧ (¬X ∨ ¬Y)

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 159 / 246

We will show that (X ∨ Y) ∧ (¬X ∨ ¬Y) is indeed the same as (¬X ∧ Y) ∨ (X ∧ ¬Y):

(X ∨ Y) ∧ (¬X ∨ ¬Y) = ((X ∨ Y) ∧ ¬X) ∨ (X ∨ Y) ∧ ¬Y)
= (X ∧ ¬X) ∨ (Y ∧ ¬X) ∨ (X ∧ ¬Y) ∨ (Y ∧ ¬Y)
= 0 ∨ (Y ∧ ¬X) ∨ (X ∧ ¬Y) ∨ 0
= (¬X ∧ Y) ∨ (X ∧ ¬Y)

Every boolean function defined by a boolean expression can be represented as a truth table. Since it is
possible to obtain the CNF directly from the truth table, every boolean expression can be represented
in CNF.

146

Complexity of Boolean Formulas

19 Elementary Boolean Functions

20 Boolean Functions and Formulas

21 Boolean Algebra Equivalence Laws

22 Normal Forms (CNF and DNF)

23 Complexity of Boolean Formulas

24 Boolean Logic and the Satisfiability Problem

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 160 / 246

147

Cost of Boolean Expressions and Functions

Definition (cost of boolean expression)

The cost C (e) of a boolean expression e is the number of operators in e.

Definition (cost of boolean function)

The cost C (f) of a boolean function f is the minimum cost of boolean expressions
defining f , C (f) = min{C (e)|e defines f }.

• We can find expressions of arbitrary high cost for a given boolean function.

• How do we find an expression with minimal cost for a given boolean function?

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 161 / 246

When talking about the cost of Boolean formulas, we often restrict us to a certain set of operations,
e.g., the classic set {∧,∨,¬}. In some contexts, ¬ is not counted and only the number of ∧ and ∨
operations is counted. (The reasoning is that negation is cheap compared to the other operations and
hence negation can be applied to any input or output easily.) We will follow this approach and restrict
us to the classic {∧,∨,¬} operations and only count the number of ∧ and ∨ operations unless stated
otherwise.

148

Implicants and Prime Implicants

Definition (implicant)

A product term P of a Boolean function ϕ of n variables is called an implicant of ϕ if
and only if for every combination of values of the n variables for which P is true, ϕ is
also true.

Definition (prime implicant)

An implicant of a function ϕ is called a prime implicant of ϕ if it is no longer an
implicant if any literal is deleted from it.

Definition (essential prime implicant)

A prime implicant of a function ϕ is called an essential prime implicant of ϕ if it covers
a true output of ϕ that no combination of other prime implicants is covers.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 162 / 246

Observations:

• If an expression defining ϕ is in DNF, then every minterm of the DNF is an implicant of ϕ.

• Any term formed by combining two or more minterms of a DNF is an implicant.

• Each prime implicant of a function has a minimum number of literals; no more literals can be
eliminated from it.

Example:

ϕ(X,Y, Z) = (¬X ∧ ¬Y ∧ ¬Z) ∨ (X ∧ ¬Y ∧ ¬Z) ∨ (X ∧ ¬Y ∧ Z) ∨ (X ∧ Y ∧ Z)
= (¬Y ∧ ¬Z) ∨ (X ∧ Z)

• Implicant (¬X ∧ ¬Y ∧ ¬Z) is not a prime implicant. The first two product terms can be combined
since they only differ in one variable:

(¬X ∧ ¬Y ∧ ¬Z) ∨ (X ∧ ¬Y ∧ ¬Z) = (¬X ∧X) ∨ (¬Y ∧ ¬Z)
= 0 ∨ (¬Y ∧ ¬Z)
= (¬Y ∧ ¬Z)

The resulting product term ¬Y ∧¬Z is still an implicant of ϕ. In a similar way, Y can be eliminated
from the last two product terms.

• (¬Y ∧ ¬Z) and (X ∧ Z) are prime implicants (it is not possible to further eliminate a variable).

149

Quine McCluskey Algorithm

QM-0 Find all implicants of a given function (e.g., by determining the DNF from a
truth table or by converting a boolean expression into DNF).

QM-1 Repeatedly combine non-prime implicants until there are only prime implicants
left.

QM-2 Determine a minimum sum of prime implicants that defines the function. (This
sum not necessarily includes all prime implicants.)

• We will further detail the steps QM-1 and QM-2 in the following slides.

• See also the complete example in the notes.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 163 / 246

• The time complexity of the algorithm grows exponentially with the number of variables.

• The problem is known to the NP-hard (non-deterministic polynomial time hard). There is little hope
that polynomial time algorithms exist for NP-hard problems.

• For large numbers of variables, it is necessary to use heuristics that run faster but which may not
always find a minimal solution.

150

Finding Prime Implicants (QM-1)

PI-1 Classify and sort the minterms by the number of positive literals they contain.

PI-2 Iterate over the classes and compare each minterms of a class with all minterms of
the following class. For each pair that differs only in one bit position, mark the bit
position as a wildcard and write down the newly created shorter term combining
two terms. Mark the two terms as used.

PI-3 Repeat the last step if new combined terms were created.

PI-4 The set of minterms or combined terms not marked as used are the prime
implicants.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 164 / 246

Example: Minimize ϕ(W,X, Y, Z) = m4 +m8 +m9 +m10 +m11 +m12 +m14 +m15

• Classify and sort minterms

minterm pattern used
m4 0100

m8 1000

m9 1001

m10 1010

m12 1100

m11 1011

m14 1110

m15 1111

• Combination steps

minterm pattern used minterms pattern used minterms pattern used
m4 0100 X m4,12 -100

m8 1000 X m8,9 100- X m8,9,10,11 10--

m8,10 10-0 X m8,10,12,14 1--0

m8,12 1-00 X
m9 1001 X m9,11 10-1 X
m10 1010 X m10,11 101- X m10,11,14,15 1-1-

m10,14 1-10 X
m12 1100 X m12,14 11-0 X
m11 1011 X m11,15 1-11 X
m14 1110 X m14,15 111- X
m15 1111 X

• This gives us four prime implicants:

– m4,12 = (X ∧ ¬Y ∧ ¬Z)

– m8,9,10,11 = (W ∧ ¬X)

– m8,10,12,14 = (W ∧ ¬Z)

– m10,11,14,15 = (W ∧ Y)

151

Finding Minimal Sets of Prime Implicants (QM-2)

MS-1 Identify essential prime implicants (essential prime implicants cover an implicant
that is not covered by any of the other prime implicants)

MS-2 Find a minimum coverage of the remaining implicants by the remaining prime
implicants

• Note that multiple minimal coverages may exist. The algorithm above does not
define which solution is returned in this case.

• There are additional ways to cut the search space by eliminating rows or columns
that are “dominated” by other rows or columns.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 165 / 246

We continue the example from the previous page. To find prime implicant sets, we construct a prime
implicant table. The colummns are the original minterms and the rows represent the prime implicants.
The marked cells in the table indicate whether a prime implicant covers a minterm.

m4 m8 m9 m10 m11 m12 m14 m15

m4,12 X X
m8,9,10,11 X X X X
m8,10,12,14 X X X X
m10,11,14,15 X X X X

Columns that only have a single marked cell indicate essential prime implicants. In this case, m4 is
only marked by m4,12 and hence m4,12 is an essential prime implicant. Similarly, m9 is only marked by
m8,9,10,11, hence m8,9,10,11 is an essential prime implicant. Finally, m15 is only marked by m10,11,14,15,
hence m10,11,14,15 is an essential prime implicant as well.

The remaining prime implicant m8,10,12,14 has marks only in columns that are covered already by prime
implicants that we have already selected and hence m8,10,12,14 is not needed in a minimal set of prime
implicants.

The resulting minimal expression is ϕ′(W,X, Y, Z) = (X∧¬Y ∧¬Z)∨(W ∧¬X)∨(W ∧Y). The minimal
expression ϕ′ uses 6 operations (out of {∧,∨}). The original expression ϕ used 8 ·3+7 = 31 operations
(out of {∧,∨}).

152

Boolean Logic and the Satisfiability Problem

19 Elementary Boolean Functions

20 Boolean Functions and Formulas

21 Boolean Algebra Equivalence Laws

22 Normal Forms (CNF and DNF)

23 Complexity of Boolean Formulas

24 Boolean Logic and the Satisfiability Problem

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 166 / 246

153

Logic Statements

• A common task is to decide whether statements of the form
if premises P1 and ... and Pm hold, then conclusion C holds

are true.

• The premises Pi and the conclusion C are expressed in some logic formalism, the
simplest is Boolean logic (also called propositional logic).

• Restricting us to Boolean logic here, the statement above can be seen as a Boolean
formula of the following structure

(ϕ1 ∧ . . . ∧ ϕm)→ ψ

and we are interested to find out whether such a formula is true, i.e., whether it is
a tautology.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 167 / 246

First order logic (also called predicate logic) is an extension of propositional logic (Boolean logic) that
adds quantified variables and predicates that contain variables. First order logic is more powerful than
propositional logic but unfortunately also more difficult to handle. Logic programming languages hence
often use a subset of first order logic in order to be efficient.

154

Tautology and Satisfiability

• Recall that a Boolean formula τ is a tautology if and only if τ ′ = ¬τ is a
contradiction. Furthermore, a Boolean formula is a contradiction if and only if it is
not satisfiable. Hence, in order to check whether

τ = (ϕ1 ∧ . . . ∧ ϕm)→ ψ (1)

is a tautology, we may check whether

τ ′ = ¬((ϕ1 ∧ . . . ∧ ϕm)→ ψ) (2)

is unsatisfiable.

• If we show that τ ′ is satisfiable, we have disproven τ .

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 168 / 246

155

Tautology and Satisfiability

• Since ϕ→ ψ ≡ ¬(ϕ ∧ ¬ψ), we can rewrite the formulas as follows:

τ = (ϕ1 ∧ . . . ∧ ϕm)→ ψ = ¬(ϕ1 ∧ . . . ∧ ϕm ∧ ¬ψ) (3)

τ ′ = ¬((ϕ1 ∧ . . . ∧ ϕm)→ ψ) = (ϕ1 ∧ . . . ∧ ϕm ∧ ¬ψ) (4)

• To disprove τ , it is often easier to prove that τ ′ is satisfiable.

• Note that τ ′ has a homogenous structure. If we transform the elements
ϕ1, . . . , ϕm, ψ into CNF, then the entire formula is in CNF.

• If τ ′ is in CNF, all we need is to invoke an algorithm that searches for
interpretations I which satisfy a formula in CNF. If there is such an interpretation,
τ is disproven, otherwise, if there is no such interpretation, then τ is proven.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 169 / 246

156

Satisfiability Problem

Definition (satisfiability problem)

The satisfiability problem (SAT) is the following computational problem: Given as input
a Boolean formula in CNF, compute as output a “yes” or “no” response according to
whether the input formula is satisfiable or not.

• It is believed that there is no polynomial time solution for this problem.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 170 / 246

There is no known general algorithm that efficiently (means in polynomial time) solves the SAT problem,
and it is generally believed that no such algorithm exists. However, this belief has not been proven
mathematically, and resolving the question whether SAT has a polynomial-time algorithm is equivalent
to the P versus NP problem, which is a famous open problem in the theory of computer science.

Note that it is rather trivial to check whether a Boolean formula in DNF is satisfiable since it is sufficient
to show that one of the conjunctions is satisfiable. A conjunction is satisfiable if it does not contain
X and ¬X for some variable X. Given an arbitrary Boolean formula, the conversion into DNF may
unfortunately require exponential time.

By solving the general SAT problem, you will become a famous mathematician and you can secure a
one million dollar price.

For further information:

• https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

• https://en.wikipedia.org/wiki/Millennium_Prize_Problems

157

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Millennium_Prize_Problems

Part V

Computer Architecture and System Software

This part takes a systems’ view on information and communication technology, moving from elementary
circuits to processors to operating systems and higher programming languages. This is a major zoom
out from elementary boolean logic gates to distributed computing and pretty much resembles a zoom
out on Google Earth from the level of a brick of a building to a complete view of the earth.

The details we will cover:

1. From logic gates via logic circuits that can add numbers to an elementary machine language of a
simple processor.

2. From machine language to abstractions provided by operating systems.

3. From machine and assembly languages up via compilers and interpreters to high-level program-
ming languages.

Given the time constraints, we will only touch on many interesting topics. If you want to dive deeper, con-
sider joining one of the core courses such as Computer Architecture, Operating Systems, or Computer
Networks.

158

Logic Gates and Digital Circuits

25 Logic Gates and Digital Circuits

26 Von Neumann Computer Architecture

27 Interpreter and Compiler

28 Operating Systems

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 172 / 246

159

Recall elementary boolean operations and functions

• Recall the elementary boolean operations AND (∧), OR (∨), and NOT (¬) as well
as the boolean functions XOR (∨̇), NAND (↑), and NOR (↓).

X ∨̇Y := (X ∨ Y) ∧ ¬(X ∧ Y)

X ↑ Y := ¬(X ∧ Y)

X ↓ Y := ¬(X ∨ Y)

• For each of these elementary boolean operations or functions, we can construct
digital gates, for example, using transistors in Transistor-Transistor Logic (TTL).

• Note: NAND and NOR gates are called universal gates since all other gates can be
constructed by using multiple NAND or NOR gates.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 173 / 246

It is essential to recall the basic boolean operations and functions. The following tables summarize the
truth tables.

X Y X ∧ Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X ∨ Y
0 0 0
0 1 1
1 0 1
1 1 1

X ¬X
0 1
1 0

Figure 1: Truth tables for the elementary operations AND, OR, and NOT

X Y X∨̇Y
0 0 0
0 1 1
1 0 1
1 1 0

X Y X ↑ Y
0 0 1
0 1 1
1 0 1
1 1 0

X Y X ↓ Y
0 0 1
0 1 0
1 0 0
1 1 0

Figure 2: Truth tables for the elementary functions XOR, NAND, and NOR

We will now introduce symbols for logic gates that implement these basic boolean operations and func-
tions. Afterwards, we will design a logic circuit that can add N-bit digital numbers.

Further information:

• http://en.wikipedia.org/wiki/Boolean_algebra

160

http://en.wikipedia.org/wiki/Boolean_algebra

Logic gates implementing logic functions

NOT (¬) AND (∧) OR (∨)

A out
A
B

Q
A
B

Q

XOR (∨̇) NAND (↑) NOR (↓)
A
B

Q
A
B

Q
A
B

Q

• There are different sets of symbols for logic gates (do not get confused if you look
into other sources of information).

• The symbols used here are the ANSI (American National Standards Institute)
symbols.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 174 / 246

161

Addition of decimal and binary numbers

2 0010 3 0011 8 1000

+ 5 + 0101 + 3 + 0011 + 3 + 0011

11 1

--- ------ --- ------ --- ------

7 0111 6 0110 11 1011

• We are used to add numbers in the decimal number system.

• Adding binary numbers is essentially the same, except that we only have the digits
0 and 1 at our disposal and “carry overs” are much more frequent.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 175 / 246

162

Adding two bits (half adder)

• The half adder adds two single binary digits A and B .

• It has two outputs, sum (S) and carry (C).

A B C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

S = A∨̇B

C = A ∧ B

A
B

S

C

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 176 / 246

The gate delay tg is the time it takes for the output signal to be a stable reflection of the two input signals.

Assuming that every gate has the same gate delay, the half adder works with a constant gate delay of
tha = tg.

Further information:

• http://en.wikipedia.org/wiki/Adder_%28electronics%29

163

http://en.wikipedia.org/wiki/Adder_%28electronics%29

Adding two bits (full adder)

• A full adder adds two single bit digits A and B and accounts for a carry bit Cin.

• It has two outputs, sum (S) and carry (Cout).

A B Cin Cout S
0 0 0 0 0
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0
0 0 1 0 1
0 1 1 1 0
1 0 1 1 0
1 1 1 1 1

S = A∨̇B∨̇Cin

Cout = (A ∧ B) ∨ (Cin ∧ (A∨̇B))

A
B
Cin

S

Cout

Carry-block

Tc

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 177 / 246

Assuming that every gate has the same gate delay tg, the full adder works with a constant gate delay
of tfa = 3 · tg.

Further information:

• http://en.wikipedia.org/wiki/Adder_%28electronics%29

164

http://en.wikipedia.org/wiki/Adder_%28electronics%29

Adding N bits (ripple carry adder)

• And N-bit adder can be created using multiple full adders.
• Each full adder inputs a Cin, which is the Cout of the previous adder.
• Each carry bit “ripples” to the next full adder.

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

AdderC3 C2 C1 C0C4

A3 B3 A2 B2 A1 B1 A0 B0

S3 S2 S1 S0

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 178 / 246

The layout of a ripple-carry adder is simple. However, the ripple-carry adder is relatively slow, since each
full adder must wait for the carry bit to be calculated from the previous full adder. Assuming that every
gate has the same gate delay tg, the n-bit ripple-carry adder has a gate delay of tra = n · tha = 3n · tg. It
is possible to design adders that reduce the gate delay. A classic example is the carry lookahead adder.
Lets consider how the carry bit works: The carry bit is either the result of adding ai = 1 and bi = 1 or it
is the result of ci = 1 and either ai = 1 or bi = 1.

ci+1 = (ai ∧ bi) ∨ ((ai∨̇bi) ∧ ci) = gi ∨ (pi ∧ ci)
gi = ai ∧ bi
pi = ai∨̇bi

The function gi “generates” a carry bit and the function pi “propagates” a carry bit. Note that the
equation above gives us a recursive definition how ci can be calculated. From this, we can derive
concrete expressions for the carry bits.

c0 = c0
c1 = g0 ∨ (p0 ∧ c0)
c2 = g1 ∨ (p1 ∧ c1)

= g1 ∨ (p1 ∧ (g0 ∨ (p0 ∧ c0)))
= g1 ∨ (p1 ∧ g0) ∨ (p1 ∧ p0 ∧ c0)

c3 = g2 ∨ (p2 ∧ c2)
= g2 ∨ (p2 ∧ (g1 ∨ (p1 ∧ g0) ∨ (p1 ∧ p0 ∧ c0)))
= g2 ∨ (p2 ∧ g1) ∨ (p2 ∧ p1 ∧ g0) ∨ (p2 ∧ p1 ∧ p0 ∧ c0)

c4 = g3 ∨ (p3 ∧ c3) = . . .
= g4 ∨ (p3 ∧ g2) ∨ (p3 ∧ p2 ∧ g1) ∨ (p3 ∧ p2 ∧ p1 ∧ g0) ∨ (p3 ∧ p2 ∧ p1 ∧ p0 ∧ c0)

Note that gi and pi are exactly the functions of our half adder (C = gi, S = pi). Hence, we can use n half
adders to produce g0, . . . , gn−1 and p0, . . . , pn−1. We then create a circuit to calculate c1, . . . cn following
the expansion scheme above and we finally use n half adders to add the carry bits ci to pi in order to
produce the sum bits si. The overall delay of the carry lookahead adder becomes tcla = 2 · tha + tcc
where tcc is the delay of the digital circuit calculating the carry bits. If our gates are restricted to two
inputs, we can calculate the logical ands in a tree-like fashion, which gives us tcc = log(n) · tg. Putting
things together, the overall delay becomes tcla = 2 · tg + log(n) · tg, i.e., the delay grows logartihmically
with the number of bits. The price for this improvement is a more complex digital circuit.

Further information:

165

• http://en.wikipedia.org/wiki/Adder_%28electronics%29

166

http://en.wikipedia.org/wiki/Adder_%28electronics%29

Von Neumann Computer Architecture

25 Logic Gates and Digital Circuits

26 Von Neumann Computer Architecture

27 Interpreter and Compiler

28 Operating Systems

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 179 / 246

167

Von Neumann computer architecture

• Control unit contains an instruction register and
a program counter

• Arithmetic/logic unit (ALU) performs integer
arithmetic and logical operations

• Program instructions and data is stored in a
memory unit

• Processor registers provide small amount of
storage as part of a central processing unit

• The central processing unit (CPU) carries out the actual computations

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 180 / 246

• Mass storage and input/output devices communicate with the central processing unit.

• The memory unit stores both data and program instructions.

• The ALU contains many basic digital circuits, such as a N-bit adder.

• The processor usually operates on binary data with a certain number of bits (8-bit processor,
16-bit processor, 32-bit processor, 64-bit processor).

• The processor is controlled by a clock (usually measured in GHz) that drives the actions a central
processing unit is performing.

• Instructions may need one or multiple clock cycles to be carried out.

• A central processing unit may try to “overlap” the execution of instructions (e.g., fetch and decode
the next instruction while the current instruction is carried out in the ALU).

• Modern systems often have multiple tightly integrated central processing units (often called cores)
in order to perform computations concurrently.

Further information:

• http://en.wikipedia.org/wiki/Von_Neumann_architecture

168

http://en.wikipedia.org/wiki/Von_Neumann_architecture

Computer system bus (data, address, and control)

Memory Input and
Output

Control bus

Address bus

Data bus S
ys

te
m

 b
us

CPU

• The data bus transports data (primarily between registers and main memory).

• The address bus selects which memory cell is being read or written.

• The control bus activates components and steers the data flow over the data bus
and the usage of the address bus.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 181 / 246

• Parallel busses data words in parallel on multiple wires

• Serial busses carry data in bit-serial form over simple wires

• Parallel busses are highly efficient if the distance to cover is small.

• Serial busses are highly efficient if the distance to cover is long.

• Inside the central processing unit, busses are usually parallel.

• Examples of parallel busses:

– PATA (IDE) - Parallel Advanced Technology Attachment (primarily used to connect hard
drives)

– SCSI - Small Computer System Interface (primarily used to connect external storage devices)

– PCI - Peripheral Component Interconnect (primarily used internally to interconnect computer
components)

• Examples of serial busses:

– SATA - Serial ATA (primarily used to connect hard drives)

– PCI Express - Peripheral Component Interconnect Express (serial bus designed to replace
PCI)

– RS232 (very old serial bus widely used for low-speed communication)

– USB - Universal Serial Bus (primarily used to connect external devices)

– Thunderbold - (combines PCI Express with a video interface)

Further information:

• http://en.wikipedia.org/wiki/Bus_%28computing%29

169

http://en.wikipedia.org/wiki/Bus_%28computing%29

Simple Central Processing Unit

• Real CPUs usually have multiple
registers

• Real CPUs support memory outside of
the CPU itself

• Real CPUs have different instruction
sets for different privilege levels

• Real CPUs have special digital circuits
for floating point arithmetic or
cryptographic operations

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 182 / 246

This is a model of a very simple central processing unit.

• The Accumulator (a single register) is used to carry out all operations.

• The Accumulator is connected to the Arithmetic/Logic Unit, which consists of digital circuits (such
as an 8-bit adder).

• The Instruction Register holds the current instruction being executed.

• The Decoder determines from the Instruction which digital circuit needs to be activated.

• The Multiplexor controls whether the operand is read from a memory cell or out of the Instruction
itself.

• The Program Counter holds the address of the current instruction in the Random Access Memory
(RAM).

• The +1 circuit increments the Program Counter after each instruction.

The simple model can be improved in several ways:

• Larger memory sizes. What are the changes that necessary to support larger memory sizes?

• Additional instructions: What are good instructions to add to the CPU’s instruction set?

• Function calls: How can we support the calling of functions (and the return from functions) in a
way that support recursion?

170

Instruction cycle (fetch – decode – execute cycle)

while True:

advance_program_counter();

instruction = fetch();

decode(instruction);

execute(instruction);

• The CPU runs in an endless
loop fetching instructions,
decoding them, and executing
them.

• The set of instructions a CPU
can execute is called the
CPU’s machine language

• Typical instructions are to add two N-bit numbers, to test whether a certain register
is zero, or to jump to a certain position in the ordered list of machine instructions.

• An assembly programming language is a mnemonic representation of machine code.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 183 / 246

Further information:

• http://en.wikipedia.org/wiki/Instruction_cycle

• http://en.wikipedia.org/wiki/Machine_code

• http://en.wikipedia.org/wiki/Assembly_language

171

http://en.wikipedia.org/wiki/Instruction_cycle
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Assembly_language

Simple Machine Language

Op-code Mnemonic Function
001 LOAD Load the value of the operand into the accumulator
010 STORE Store the value of the accumulator at the address specified by

the operand
011 ADD Add the value of the operand to the accumulator
100 SUB Subtract the value of the operand from the accumulator
101 EQUAL If the value of the operand equals the value of the Accumu-

lator, skip the next instruction
110 JUMP Jump to a specified instruction by setting the program counter

to the value of the operand
111 HALT Stop execution

• Each instruction of the machine language is encoded into 8 bits:
• 3 bits are used for the op-code
• 1 bit indicates whether the operand is a constant (1) or a memory address (0)
• 4 bits are used to carry a constant or a memory address (the operand)

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 184 / 246

Further information:

• http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html

172

http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html

Program #1 in our simple machine language

Machine Code Assembly Code Description
0 001 1 0010 LOAD #2 Load the value 2 into the accumulator
1 010 0 1101 STORE 13 Store the value of the accumulator in memory location 13
2 001 1 0101 LOAD #5 Load the value 5 into the accumulator
3 010 0 1110 STORE 14 Store the value of the accumulator in memory location 14
4 001 0 1101 LOAD 13 Load the value of memory location 13 into the accumulator
5 011 0 1110 ADD 14 Add the value of memory location 14 to the accumulator
6 010 0 1111 STORE 15 Store the value of the accumulator in memory location 15
7 111 0 0000 HALT Stop execution

• An animation of the execution of this program can be found here:
http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html

• What is the equivalent C program?

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 185 / 246

Below is a trace of the execution of the program (showing the initial memory content, the machine
instructions executed (PC = program counter, IR = instruction register, ACC = accumulator), and the
final memory content. Numbers starting with 0x are in hexadecimal notation.

MEM = 0x32 4d 35 4e 2d 6e 4f e0 00 00 00 00 00 00 00 00

1: PC= 0 IR= 0x32 ACC= 0x02 ; LOAD #2

2: PC= 1 IR= 0x4d ACC= 0x02 ; STORE 13

3: PC= 2 IR= 0x35 ACC= 0x05 ; LOAD #5

4: PC= 3 IR= 0x4e ACC= 0x05 ; STORE 14

5: PC= 4 IR= 0x2d ACC= 0x02 ; LOAD 13

6: PC= 5 IR= 0x6e ACC= 0x07 ; ADD 14

7: PC= 6 IR= 0x4f ACC= 0x07 ; STORE 15

8: PC= 7 IR= 0xe0 ACC= 0x07 ; HALT

MEM = 0x32 4d 35 4e 2d 6e 4f e0 00 00 00 00 00 02 05 07

173

Program #2 in our simple machine language

Machine Code Assembly Code Description
0 001 1 0101 LOAD #5 Load the value 5 into the accumulator
1 010 0 1111 STORE 15 Store the value of the accumulator in memory location 15
2 001 1 0000 LOAD #0 Load the value 0 into the accumulator
3 101 0 1111 EQUAL 15 Skip next instruction if accumulator equal to memory location 15
4 110 1 0110 JUMP #6 Jump to instruction 6 (set program counter to 6)
5 111 0 0000 HALT Stop execution
6 011 1 0001 ADD #1 Add the value 1 to the accumulator
7 110 1 0011 JUMP #3 Jump to instruction 3 (set program counter to 3)

• An animation of the execution of this program can be found here:
http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html

• What is the equivalent C program?

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 186 / 246

Below is a trace of the execution of the program using the same notation as used before.

MEM = 0x35 4f 30 af d6 e0 71 d3 00 00 00 00 00 00 00 00

1: PC= 0 IR= 0x35 ACC= 0x05 ; LOAD #5

2: PC= 1 IR= 0x4f ACC= 0x05 ; STORE 15

3: PC= 2 IR= 0x30 ACC= 0x00 ; LOAD #0

4: PC= 3 IR= 0xaf ACC= 0x00 ; EQUAL 15

5: PC= 4 IR= 0xd6 ACC= 0x00 ; JUMP #6

6: PC= 6 IR= 0x71 ACC= 0x01 ; ADD #1

7: PC= 7 IR= 0xd3 ACC= 0x01 ; JUMP #3

8: PC= 3 IR= 0xaf ACC= 0x01 ; EQUAL 15

9: PC= 4 IR= 0xd6 ACC= 0x01 ; JUMP #6

10: PC= 6 IR= 0x71 ACC= 0x02 ; ADD #1

11: PC= 7 IR= 0xd3 ACC= 0x02 ; JUMP #3

12: PC= 3 IR= 0xaf ACC= 0x02 ; EQUAL 15

13: PC= 4 IR= 0xd6 ACC= 0x02 ; JUMP #6

14: PC= 6 IR= 0x71 ACC= 0x03 ; ADD #1

15: PC= 7 IR= 0xd3 ACC= 0x03 ; JUMP #3

16: PC= 3 IR= 0xaf ACC= 0x03 ; EQUAL 15

17: PC= 4 IR= 0xd6 ACC= 0x03 ; JUMP #6

18: PC= 6 IR= 0x71 ACC= 0x04 ; ADD #1

19: PC= 7 IR= 0xd3 ACC= 0x04 ; JUMP #3

20: PC= 3 IR= 0xaf ACC= 0x04 ; EQUAL 15

21: PC= 4 IR= 0xd6 ACC= 0x04 ; JUMP #6

22: PC= 6 IR= 0x71 ACC= 0x05 ; ADD #1

23: PC= 7 IR= 0xd3 ACC= 0x05 ; JUMP #3

24: PC= 3 IR= 0xaf ACC= 0x05 ; EQUAL 15

25: PC= 5 IR= 0xe0 ACC= 0x05 ; HALT

MEM = 0x35 4f 30 af d6 e0 71 d3 00 00 00 00 00 00 00 05

174

Interpreter and Compiler

25 Logic Gates and Digital Circuits

26 Von Neumann Computer Architecture

27 Interpreter and Compiler

28 Operating Systems

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 187 / 246

175

Are there better ways to write machine or assembler code?

• Observations:
• Writing machine code or assembler code is difficult and time consuming.
• Maintaining machine code or assembler code is even more difficult and time

consuming (and most cost is spent on software maintenance).

• A high-level programming language is a programming language with strong
abstraction from the low-level details of the computer.

• Rather than dealing with registers and memory addresses, high-level languages deal
with variables, arrays, objects, collections, complex arithmetic or boolean
expressions, subroutines and functions, loops, threads, locks, and other abstract
computer science concepts, with a focus on usability over optimal program
efficiency.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 188 / 246

Higher-level programming languages are often designed (at least originally) to be implemented either
with a compiler or an interpreter.

Examples of (typically) compiled programming languages:

• C, C++, Java, C#, Objective C, Pascal, Fortran, Cobol, . . .

Examples of (typically) interpreted programming languages:

• Python, PHP, JavaScript, Perl, Basic, . . .

Note that an increasing number of (typically) interpreted languages are not executed by pure interpreters
anymore. Many modern interpreters compile the source code into an intermediate byte-code that is
executed by a byte-code interpreter. However, this internal compilation step is usually transparent
for the user; the languages keep their highly interactive interface and they do not require an explicit
compilation step.

176

Simple C program to add two numbers

/* C source code

(C is a compiled procedural programming language) */

int main()

{

int a = 5;

int b = 2;

int c = a + b;

return c;

}

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 189 / 246

Assuming the source code is in the file ’add.c’, type the following commands into your shell:

gcc -o add add.c

./add

echo $?

The first command calls the gcc compiler and instructs it to compile and link the source code contained
in add.c into an executable file add. The second command executes the program add stored in the
current directory. The third command prints (echoes) the result of the last program execution. You
should see the number 7.

177

Disassembled machine code (without optimizations)

compile without optimization (gcc) and look at the machine code

gcc (Debian 4.7.2-5) 4.7.2 on Linux

00000000004004ac <main>:

4004ac: 55 push %rbp

4004ad: 48 89 e5 mov %rsp,%rbp

4004b0: c7 45 fc 05 00 00 00 movl $0x5,-0x4(%rbp)

4004b7: c7 45 f8 02 00 00 00 movl $0x2,-0x8(%rbp)

4004be: 8b 45 f8 mov -0x8(%rbp),%eax

4004c1: 8b 55 fc mov -0x4(%rbp),%edx

4004c4: 01 d0 add %edx,%eax

4004c6: 89 45 f4 mov %eax,-0xc(%rbp)

4004c9: 8b 45 f4 mov -0xc(%rbp),%eax

4004cc: 5d pop %rbp

4004cd: c3 retq

4004ce: 90 nop

4004cf: 90 nop

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 190 / 246

The objdump utility can be used to disassemble the machine code generated by the gcc compiler for
an Intel x86 processor. Disassembling means the translation of binary machine code into a mnemonic
representation humans can easier read. Here is a description of the most important disassembled
machine instructions:

4004ac push old base pointer to the stack
4004ad set base pointer to the current stack address
4004b0 move the constant 5 to the stack (offset -4)
4004b7 move the constant 2 to the stack (offset -8)
4004be move the second constant into register eax
4004c1 move the first constant into register edx
4004c4 add register edx to register eax
4004c6 move the register eax to the stack (offset -12 = 0xc)
4004c9 move the value from the stack into register eax
4004cc pop the old base pointer off the stack
4004cd return from function call

The Intel x86 assembly language uses the following notation:

• %eax, %edx, %rbp, %rsp, . . . refer to the processor registers eax (general accumulator), edx
(general register), rbp (base register), rsp (stack register), . . .

• $0x5, $0x2, . . . denotes hexadecimal constants

• -0x4(%rpb) refers to an address with a negative 4 byte offset from the address stored in the
register rbp

178

Disassembled machine code (with optimizations)

compile with optimization (gcc -O2) and look at the machine code

gcc (Debian 4.7.2-5) 4.7.2 on Linux

00000000004003a0 <main>:

4003a0: b8 07 00 00 00 mov $0x7,%eax

4003a5: c3 retq

4003a6: 90 nop

4003a7: 90 nop

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 191 / 246

With optimization turned on, the compiler has detected that the expression only depends on constants
and thus the expression can already be evaluated at compile time to improve speed at runtime. Fur-
thermore, the compiler has figured out that the variables a, b, and c are not used outside of the function
main() and hence it is not necessary to store any values for them somewhere in memory.

As a result, the function now translates into two instructions: one to load the constant 7 into register eax
and one to return from the function. The previous version used 11 instructions.

Note: A compiler can be smart and produce machine code that is optimized for a certain processor
architecture. In particular, a smart compiler can rewrite parts of the program logic as long as the
execution leads to the same runtime behavior.

Note: Most of the time, compilers optimize for speed but it is usually also possible to ask the compiler
to optimize for space.

179

Compiler and Interpreter

[1] Source Code --> Interpreter

[2] Source Code --> Compiler --> Machine Code

[3] Source Code --> Compiler --> Byte Code --> Interpreter

[4] Source Code --> Compiler --> Byte Code --> Compiler --> Machine Code

• An interpreter is a computer program that directly executes source code written in a higher-level
programming language.

• A compiler is a program that transforms source code written in a higher-level programming
language (the source language) into a lower-level computer language (the target language).

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 192 / 246

• Many modern high-level programming languages use both compilation and interpretation

– Source code is first compiled (either using an explicit compilation step or on-the-fly) into an
intermediate byte code.

– The byte code is afterwards interpreted by an byte-code interpreter.

– As an optimization, the byte code might be further compiled to machine code (on-the-fly
compilation).

• Byte-code is often generated for Stack Machines that differ from Register Machines by not having
registers and performing all operations on a stack.

• An interpreter is usually written in a higher-level programming language and compiled into ma-
chine code.

Further information:

• http://en.wikipedia.org/wiki/Register_machine

• http://en.wikipedia.org/wiki/Stack_machine

180

http://en.wikipedia.org/wiki/Register_machine
http://en.wikipedia.org/wiki/Stack_machine

Interpreter

• A basic interpreter parses a statement, executes it, and moves on to the next
statement (very similar to a fetch-decode-execute cycle).

• More advanced interpreter do a syntactic analysis to determine syntactic
correctness before execution starts.

• Properties:
• Highly interactive code development (trial-and-error coding)
• Limited error detection capabilities before code execution starts
• Interpretation causes a certain runtime overhead
• Development of short pieces of code can be very fast

• Examples: command interpreter (shells), scripting languages

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 193 / 246

181

Compiler

Compiler front-end for language 1 Compiler front-end for language 2

void
usage (char *name)
{
 printf ("Usage:\n");
 printf ("%s -a [-c file",
name};
#ifdef LOFI
 printf ("[-g] [-s] ");
#endif
 printf ("[-g what] [-r]
[-u file [type]]");
#ifdef LOFI
 printf (" [-z size] ");
#endif

public class OddEven {
 private int input;
 public OddEven() {
 input = Integer.parseInt()
 }
 public void calculate() {
 if (input % 2 == 0)
 System.out.println("Even");
 else
 System.out.printin("Odd");
 }
 public void main(String[] args) {
 }
}

Language 1 source code Language 2 source code

Lexical Analyzer (Scanner)

Syntax/Semantic
Analyzer (Parser)

Intermediate-code
Generator

Lexical Analyzer (Scanner)

Syntax/Semantic
Analyzer (Parser)

Intermediate-code
Generator

Intermediate code optimizer

Non-optimized intermediate code Non-optimized intermediate code

Optimized intermediate code

Target-1
Code Generator

Target-2
Code Generator

Target-1 machine code Target-2 machine code

• lexical analysis
⇒ sequence of token

• syntax analysis
⇒ parse tree

• semantic analysis
⇒ abstract syntax tree

• optimization
⇒ enhanced abstract syntax tree

• code generation
⇒ object code

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 194 / 246

• The lexical analysis turns a sequence of characters into a sequence of tokens.

• The format of tokens is often specified using regular expressions.

• The syntax analysis turns the sequence of tokens into a parse tree.

• The possible structure of the parse tree is usually defined using a formal grammar (a set of rules
defining the structure of syntactically correct programs).

• The semantic analysis adds semantic information to the parse tree, resulting in an abstract syntax
tree.

• Transformations on the abstract syntax tree can be used to optimize the program.

• The code generation for a specific target is the final step.

• Multi-language compiler support multiple language frontends that produce a common abstract
syntax tree.

• Multi-target compiler multiple target platforms by driving multiple target platform specific code
generators.

Further information:

• http://en.wikipedia.org/wiki/Compiler

182

http://en.wikipedia.org/wiki/Compiler

Abstract Syntax Tree Example

condition

body

else-bodyif-body

while

variable
name: b

constant

value: 0

compare

op: ≠

branch

compare

op: >
assign

bin op
op: −

assign

bin op
op: −

statement
sequence

return

variable
name: a

variable
name: a

variable
name: a

variable
name: a

variable
name: a

variable
name: b

variable
name: b

variable
name: b

variable
name: b

condition

Euclidean algorithm to find the greatest
common divisor of a and b:

while (b != 0):

if (a > b):

a = a - b

else:

b = b - a

return a

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 195 / 246

183

Backus-Naur-Form and Formal Languages

The syntax of programming languages is often defined using syntax rules. A common
notation for syntax rules is the Backus-Naur-Form (BNF):

• Terminal symbols are enclosed in quotes

• Non-terminal symbols are enclosed in <>

• A BNF rule consists of a non-terminal symbol followed by the defined-as operator
::= and a rule expression

• A rule expression consists of terminal and non-terminal symbols and operators; the
empty operator denotes contatenation and the | operator denotes an alternative

• Parenthesis may be used to group elements of a rule expression

A set of BNF rules has a non-terminal starting symbol.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 196 / 246

Example: Let Σ = {0, 1, . . . , 9, x, y, z}.
<expression> ::= <term> | <expression> "+" <term>

<term> ::= <factor> | <term> "*" <factor>

<factor> ::= <constant> | <variable> | "(" <expression> ")"

<variable> ::= "x" | "y" | "z"

<constant> ::= <digit> | <digit> <constant>

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

Using <expression> as a start symbol, the grammar defines a simplified format of expressions. Here
is a sample step-by-step deviation:

<expression>

-> <expression> + <term>

-> <term> + <term>

-> <factor> + <term>

-> <factor> + <term> * <factor>

-> <constant> + <term> * <factor>

-> <digit> <constant> + <term> * <factor>

-> <digit> <digit> + <term> * <factor>

-> <digit> <digit> + <factor> * <factor>

-> <digit> <digit> + <constant> * <factor>

-> <digit> <digit> + <digit> * <factor>

-> <digit> <digit> + <digit> * <variable>

-> 42+8*x

While a grammar can be used to derive a word of the language from a start symbol, it can also be
used to reduce a given input to the start symbol if the input is a word of the language. This is used by
compilers to test whether a given program text is a (syntactically) valid word of the language.

184

Virtual Machines and Emulators

• A virtual machine (VM) is an emulation of a particular computer system. Virtual
machines operate based on the computer architecture and functions of a real
computer.

• An emulator is hardware or software or both that duplicates (or emulates) the
functions of one computer system (the guest) in another computer system (the
host), different from the first one, so that the emulated behavior closely resembles
the behavior of the real system (the guest).

⇒ Virtual machines were invented in the 1970s and reinvented in the 1990s.

⇒ Virtual machines have been an enabler for cloud computing since they are easy to
start / stop / clone / migrate and they separate the software implementing services
form the underlying hardware.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 197 / 246

• The software virtualizing the underlying hardware is called a hypervisor.

• Full virtualization: Virtual machines run a complete operating system inside of the virtual machine.
The hypervisor virtualizes all aspects of the underlying hardware (e.g., VmWare).

• Operating-system level virtualization: Virtual machines (often called virtual servers) all run on a
single underlying operating system instance; virtualization is achieved by partitioning operating
system services (e.g., Linux Container).

• Paravirtualization: Virtual machines different operating systems that have been adapted to redirect
certain services to a special designated operating system instance (e.g., Xen).

Further information:

• http://en.wikipedia.org/wiki/Emulator

• http://en.wikipedia.org/wiki/Virtual_machine

185

http://en.wikipedia.org/wiki/Emulator
http://en.wikipedia.org/wiki/Virtual_machine

Hardware vs. System Software vs. Application Software

a
p

p
li

c
a

ti
o

n

operating system kernel

digital circuits, CPUs, busses, memory, ...

machine language

system calls, file systems, ...

compiler, linker, libraries, shells, daemons, ...

library calls, command languages

h
a

rd
w

a
re

s
y

s
te

m
 s

o
ft

w
a

re

browser, office software, databases, games, libraries, ...

human (graphical, voice, web) and physical world interfaces

s
o

ft
w

a
re

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 198 / 246

Remarks:

• The operating system provides services to application programs that can be used by making
system calls.

• The operating system controls all hardware components and mediates between the hardware and
application programs.

• Application programs are written against the system call interface (and associated libraries).

Relevant Linux tools to understand the difference between library and system calls:

• The strace tool can trace the system calls made by a program at runtime.

• The ltrace tool can trace the library calls made by a program at runtime.

The CORE modules of the CS bachelor program have been structured along this hierarchy of abstrac-
tions:

• The CORE module Technical Computer Science covers the hardware and programming language
view (computer architecture and programming languages), the functions of an operating system
kernel and concurrent programming (operating systems), and network communication (which is
partially implemented as part of operating systems).

• The CORE module Applied Computer Science covers databases and applications using a web
frontend to interact with users and other services (databases and web services), how graphics
and animations can be programmed (computer graphics), and how software can be produced
using engineering principles (software engineering).

• The CORE module Theoretical Computer Science covers the foundations of computer science
(formal languages and logic, computability and complexity) and it discusses how to construct
secure systems we can rightfully depend on (secure and dependable systems).

186

Operating Systems

25 Logic Gates and Digital Circuits

26 Von Neumann Computer Architecture

27 Interpreter and Compiler

28 Operating Systems

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 199 / 246

187

Operating System Kernel Functions

• Execute many programs concurrently (instead of just one program at a time)

• Assign resources to running programs (memory, CPU time, . . .)

• Ensure a proper separation of concurrent processes

• Enforce resource limits and provide means to control processes

• Provide logical filesystems on top of block-oriented raw storage devices

• Control and coordinate input/output devices (keyboard, display, . . .)

• Provide basic network communication services to applications

• Provide input/output abstractions that hide device specifics

• Enforce access control rules and privilege separation

• Provide a well defined application programming interface (API)

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 200 / 246

• Hello world in x64 assembly language using a system library function:

Writes "Hello, world" to the console using the C library (try on Linux).

gcc -static -o hello-asm-libc hello-asm-libc.s

--

.global main

.text

main: # This is called by C library’s startup code

mov $message, %rdi # First integer (or pointer) parameter in %rdi

call puts # puts(message)

ret # Return to C library code

.data

message:

.asciz "Hello, world" # asciz puts a 0 byte at the end

• Hello world in x64 assembly language using system calls:

--

Writes "Hello, world" to the console using system calls (try on Linux)

gcc -nostdlib -static -o hello-asm-syscall hello-asm-syscall.s

--

.global _start

.text

_start:

mov $1, %rax # Write system call number is 1

mov $1, %rdi # File descriptor 1 is stdout

mov $message, %rsi # Address of the string to output

mov $13, %rdx # Number of bytes in message

syscall # Invoke write(1, message, 13) system call

mov $60, %rax # Exit system call number is 60

xor %rdi, %rdi # We want return code 0

syscall # Invoke exit(0) system call

.data

message:

.ascii "Hello, world\n"

188

OS Abstraction #1: Processes and Process Lifecycle

Definition (process)

An instance of a computer program that is being executed is called a process.

• The OS kernel maintains information about each running process and assigns
resources and ensures protection of concurrently running processes.

• In Unix-like Operating Systems

- a new process is created by “cloning” (forking) an already existing process
- a process may load a new program image (machine code) to execute
- a terminating process returns a number to its parent process
- a parent process can wait for child processes to terminate

⇒ A very basic command interpreter can be written in a few lines of Python code.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 201 / 246

Relevant Linux command line tools to inspect the processes running on a system:

• The tool ps shows a list of processes.

• The tool pstree shows the process tree.

• The tool top periodically shows the list of processes (and threads) sorted by some sorting criteria.

189

OS Abstraction #1: Processes and Process Lifecycle

write(prompt)

time

fork()

exec("date")

wait()read(...)

date

bash

write(...) exit(0)

read(...)

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 202 / 246

The figure illustrates what happens if you type date into a command interpreter like the bash shell. The
shell uses a read() system call to read the input. It then invokes the fork() system call to create a
clone of itself. It the waits for the clone (child process) to finish by invoking the wait() system call. The
child process uses the exec() system call to replace the current process image with the process image
of the date program. The child process finally exits by calling exit(). The process stays around until
the exit code has been delivered to the parent process.

Description of the system calls:

• The fork() system call creates a new child process which is an exact copy of the parent process,
except that the result of the system call differs: 0 is returned to the new process, the process
number of the new process is returned to the parent process.

• The exec() system call replaces the current process image with a new process image.

• The wait() system call waits for a child process to exit

• The exit() system call terminates the calling process. (Returning from main() eventually leads
to a call of exit().)

190

OS Abstraction #1: Processes and Process Lifecycle

while (1) {

show_prompt(); /* display prompt */

read_command(); /* read and parse command */

pid = fork(); /* create new process */

if (pid < 0) { /* continue if fork() failed */

perror("fork");

continue;

}

if (pid != 0) { /* parent process */

waitpid(pid, &status, 0); /* wait for child to terminate */

} else { /* child process */

execvp(args[0], args, 0); /* execute command */

perror("execvp"); /* only reach on exec failure */

_exit(1); /* exit without any cleanups */

}

}

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 203 / 246

#!/usr/bin/env python3.4

import os

import sys

def run(token):

pid = os.fork()

if not pid:

try:

os.execvp(token[0], token)

except (OSError) as e:

print("pysh: %s" % e.strerror)

os._exit(1)

return os.wait()[0]

def main():

while True:

sys.stdout.write("pysh > ")

sys.stdout.flush()

line = sys.stdin.readline()

if not line or line == "exit\n":

break

if line == "\n":

continue

run(line.strip().split(’ ’))

print("pysh: have a nice day")

if __name__ == "__main__":

main()

191

OS Abstraction #2: File Systems

• Files are persistent containers for the storage of data

• Unstructured files contain a sequence of bytes

• Applications interpret the content of a file in a specific way

• Files also have meta data (owner, permissions, timestamps)

• Hierarchical file systems use directories to organize files into a hierarchy

• Names of files and directories at one level of the hierarchy usually have to be unique

• The operating system maps the logical structure of a hierarchical file system to a
block-oriented storage device

• The operating system must ensure file system integrity

• The operating system may support compression and encryption of file systems

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 204 / 246

• It is difficult to design a file system that satisfies to some extend conflicting requirements:

– It should be fast and at the same time it should maintain data integrity.

– It should not show any aging effects.

– It should work with small and large block storage devices.

– It should work with slow and fast block storage devices.

– It should work well for small and large files.

– It should support file names with international character sets.

– . . .

• General purpose file systems try to find a balance but in general there is not a single ’best’ file
system.

Further information:

• http://en.wikipedia.org/wiki/File_system

192

http://en.wikipedia.org/wiki/File_system

OS Abstraction #2: File Systems (Unix)

..

2

4 5

76

8 9

..

..

bin

etc

ls vi

usr vmunix

.

.

. .

..

• The logical structure of a typical Unix
file system

• The . in a directory always refers to
the directory itself

• The .. in a directory always refers to
the parent directory, except in the root
directory

• A link is a reference of a file system
object from a directory

• Any file system changes need to
maintain the integrity of these links

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 205 / 246

• Some file system operations require updates of multiple data blocks.

• As a consequence, file systems can be temporarily inconsistent.

• If a file system became inconsistent, it needs to be repaired by special programs. Sometimes this
leads to data loss.

• Warning: Removing a file often means only that the name refering to the data blocks is removed
(the link to the file is removed, the file is unlinked).

• Classic storage devices store data on a (rotating) magnetic surface. The magnetic surface ’re-
members’ data even if it was overwritten. Solid state storage devices do not show this behavior.

193

OS Abstraction #2: File and Directory Operations (Unix)

File operations

open() open a file
read() read data from the

current file position
write() write data at the cur-

rent file position
seek() seek to a file position
stat() read meta data
close() close an open file
unlink() remove a link to a file

Directory operations

mkdir() create a directory
rmdir() delete a directory
chdir() change to a directory

opendir() open a directory
readdir() read a directory entry
closedir() close a directory

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 206 / 246

#!/usr/bin/env python3.4

import os

import pwd

import grp

import time

import sys

def ls(path):

if (os.path.isdir(path)):

for entry in os.listdir(path):

ls(os.path.join(path, entry))

else:

s = os.stat(path)

print("%-8s %-8s %6d %s %s"

% (pwd.getpwuid(s.st_uid)[0],

grp.getgrgid(s.st_gid)[0],

s.st_size,

time.strftime("%Y-%m-%dT%H:%M:%S", time.localtime(s.st_mtime)),

path))

for arg in sys.argv[1:]:

print(arg)

ls(arg)

194

OS Abstraction #3: Inter-process Communication

• Communication between processes:
• Signals (software interrupts)
• Pipes (local unidirectional byte streams)
• Sockets (local and global bidirectional byte or datagram streams)
• Shared memory (memory regions shared between multiple processes)
• Message queues (a queue of messages between multiple processes)
• . . .

• Sockets are the basic inter-process communication abstraction used for
communication between processes over the Internet

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 207 / 246

#!/usr/bin/env python3.4

import socket

import sys

def connect(server):

ai_list = socket.getaddrinfo(server, "http")

err = None

s = None

for (family, socktype, proto, canonname, sockaddr) in ai_list:

try:

s = socket.socket(family, socktype, proto)

s.connect(sockaddr)

except Exception as e:

err = e

if s:

s.close()

else:

break

else:

raise err

return s

def wget(server):

s = connect(server)

if s:

with s.makefile(mode=’w’) as f:

f.write("GET / HTTP/1.0\r\nHost: %s\r\n\r\n" % (server))

with s.makefile(mode=’r’) as f:

for l in f.readlines():

print(l.strip())

for arg in sys.argv[1:]:

wget(arg)

Further information:

• http://en.wikipedia.org/wiki/Inter-process_communication

195

http://en.wikipedia.org/wiki/Inter-process_communication

Part VI

Automata and Formal Languages

Automata theory is the study of abstract machines and automata, as well as the computational problems
that can be solved using them. It is a theory in theoretical computer science and discrete mathematics.

The word automata (the plural of automaton) comes from the Greek word , which means ”self-acting”.
Some automata serve pure theoretical purposes, others are practically used to describe aspects of
software systems or to implement certain functionalities.

A formal language is a set of words formed over an alphabet (a set of symbols). A formal language is
often defined by means of a formal grammar.

Formal languages theory studies what kind of languages different types of grammars can describe and
it studies the problem to decice whether a given sequence of symbols belongs to a formal language or
not (a decision problem).

Formal languages and automata theory are closely related since the decision problem (whether a given
input belongs to a certain language) can be solved for different classes of languages with different types
of automata.

196

Finite State Machines

29 Finite State Machines

30 Pushdown Automaton

31 Turing Machines

32 Formal Languages

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 209 / 246

197

Finite State Machine

Definition (finite state machine)

A finite state machine (FSM) is a quintuple (Σ, S , s0, δ,F) where:

• Σ is the input alphabet (a finite, non-empty set of symbols)

• S is a finite, non-empty set of states

• s0 is an initial state (s0 ∈ S)

• δ is the state-transition function, δ : S × Σ 7→ S

• F is a possibly empty set of accepting states (F ⊂ S)

• We sometimes say that a FSM accepts an input word w ∈ Σ∗ if the machine,
starting from the state s0, processes all symbols of w and reaches one of the
accepting states in F .

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 210 / 246

A finite state machine has a finite set of internal states. Starting from an initial state, the machine
consumes in every computational step an input symbol. The current input symbol and the current
state determine the followup state. The finite state machine stops when all input symbols have been
consumed. If the machine stops in a final state, then we say that the finite state machine accepted the
input.

In a deterministic finite state machine, every state has exactly one transition for each possible input. In
a non-deterministic finite state machine, an input can lead to one, more than one, or no transition for a
given state.

Finite state machines can describe many different processes. Some examples:

• Traffic lights can be described using finite state machines. Given an infinite sequence of input
pulses, the traffic lights move through a sequence of states representing the sequence of possible
traffic light color combinations.

• A computer program may use a state machine in order to determine whether a sequence of input
symbols contains a certain pattern.

• The communication between computer systems is often controlled by state machines that deter-
mine the next possible steps that can be taken.

• An espresso machine may use a state machine to control the different steps of the coffee brewing
process.

198

Finite State Machine Example (anbm)

• The FSM (Σ, S , s0, δ,F) with Σ = {a, b}, S = {S0, S1, S2, S3}, s0 = S0,
F = {S2}, and

δ = {((S0, a), S1), ((S0, b), S3),

((S1, a), S1), ((S1, b), S2),

((S2, a), S3), ((S2, b), S2)}

recognizes all words of the form {anbm|n ≥ 1,m ≥ 1}.

• The set of words w ∈ Σ∗ accepted by a finite state is called the language
recognized by the finite state machine.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 211 / 246

An implementation of this finite state machine in Haskell:

data State = S0 | S1 | S2 | S3

accepts :: State -> String -> Bool

accepts S0 (’a’:xs) = accepts S1 xs

accepts S0 (’b’:xs) = accepts S3 xs

accepts S1 (’a’:xs) = accepts S1 xs

accepts S1 (’b’:xs) = accepts S2 xs

accepts S2 (’a’:xs) = accepts S3 xs

accepts S2 (’b’:xs) = accepts S2 xs

accepts S2 [] = True

accepts _ _ = False

decide :: String -> Bool

decide = accepts S0

199

FSM Example (anbm) Represented as a Graph

S0

S2

b

S3

a
S1

a

b

b

a

• State machines can be represented as graphs where nodes (circles) represent states,
arrows represent state transitions, an arrow pointing from a small black circle
indicates the initial state, and accepting states are marked with with a double circle.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 212 / 246

The table below shows an execution for the string aaabbb. Lines are prefixed with the current state of
the pushdown automaton. Lines starting with a vertical bar indicate a transition and the input symbol
processed.

S0:

| a

S1:

| a

S1:

| a

S1:

| b

S2:

| b

S2:

| b

S2:

200

Finite State Machine Example (integer)

• Consider the problem of deciding whether an input string contains an integer
number, that is, whether it consists of at least one digit and an optional ’-’ at the
very beginning (valid numbers would be -1, 0, -42, 42)

• The FSM (Σ, S , s0, δ,F) with Σ = {-, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, S = {S0, S1,
S2, S3}, s0 = S0, F = {S2}, and

δ = {((S0,−), S1), ((S0, 0), S2), . . . , ((S0, 9), S2),

((S1,−), S3), ((S1, 0), S2), . . . , ((S0, 9), S2),

((S2,−), S3), ((S2, 0), S2), . . . , ((S2, 9), S2),

((S3,−), S3), ((S3, 0), S3), . . . , ((S3, 9), S3)}

solves this integer number parsing problem.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 213 / 246

An implementation of this finite state machine in Haskell:

import Data.Char (isDigit)

data State = S0 | S1 | S2 | S3

accepts :: State -> String -> Bool

accepts S0 (’-’:xs) = accepts S1 xs

accepts S0 (x:xs)

| isDigit x = accepts S2 xs

accepts S1 (’-’:xs) = accepts S3 xs

accepts S1 (x:xs)

| isDigit x = accepts S2 xs

accepts S2 (’-’:xs) = accepts S3 xs

accepts S2 (x:xs)

| isDigit x = accepts S2 xs

accepts S2 [] = True

accepts _ _ = False

decide :: String -> Bool

decide = accepts S0

201

FSM Example (integer) Represented as a Graph

S0

S2

0, 1, ..., 9

S3

-
0, 1, ..., 9

S1

-
0, 1, ..., 9

-

-, 0, 1, ..., 9

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 214 / 246

202

Pushdown Automaton

29 Finite State Machines

30 Pushdown Automaton

31 Turing Machines

32 Formal Languages

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 215 / 246

203

Pushdown Automaton

Definition (pushdown automaton)

A pushdown automaton (PDA) is a 7-tuple (Σ, S , s0, Γ,Z , δ,F) where:

• Σ is the input alphabet (a finite, non-empty set of symbols)

• S is a finite, non-empty set of states

• s0 is an initial state (s0 ∈ S)

• Γ is a finite, non-empty stack alphabet

• Z is the initial stack symbol (Z ∈ Γ)

• δ is the state-transition function, δ : S × (Σ ∪ {ε})× Γ 7→ S × Γ∗

• F is a possibly empty set of accepting states (F ⊂ S)

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 216 / 246

Pushdown automata can be seen as an extension of finite state machines with a stack (of arbitrary size)
on which additional state can be kept. In every step, the pushdown automaton processes and input
symbol and depending on the current state and the symbol on the stack, the machine transitions into a
followup state and pushes new symbols on the stack.

Since pushdown automata extend finite state machines, pushdown automata can do everything a finite
state machine can do. However, since pushdown automata have unlimited memory (the stack), they
can solve problems that finite state machines cannot solve.

204

Pushdown Automaton Example (anbn)

• The PDA (Σ, S , s0, Γ,Z , δ) with Σ = {a, b}, S = {S0, S1, S2}, s0 = S0,
Γ = {A,Z}, F = {S2}, and

δ = {(S0, a,Z , S0,AZ),

(S0, a,A, S0,AA),

(S0, ε,Z , S1,Z),

(S0, b,A, S1, ε),

(S1, b,A, S1, ε),

(S1, ε,Z , S2,Z)}

recognizes all words of the form {anbn|n ≥ 1}.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 217 / 246

An implementation of this pushdown automata in Haskell:

data State = S0 | S1 | S2

data Stack = A | Z

accepts :: State -> [Stack] -> String -> Bool

accepts S0 (Z:ss) (’a’:xs) = accepts S0 (A:Z:ss) xs

accepts S0 (A:ss) (’a’:xs) = accepts S0 (A:A:ss) xs

accepts S0 (Z:ss) [] = accepts S1 (Z:ss) []

accepts S0 (A:ss) (’b’:xs) = accepts S1 ss xs

accepts S1 (A:ss) (’b’:xs) = accepts S1 ss xs

accepts S1 (Z:ss) [] = accepts S2 (Z:ss) []

accepts S2 _ _ = True

accepts _ _ _ = False

decide :: String -> Bool

decide = accepts S0 [Z]

205

PDA Example (anbn) Represented as a Graph

S0 S2

a; Z → AZ

a; A → AA

S1
ε; Z → Z

b; A → ε

ε; Z → Z

b; A → ε

• Pushdown automata can be represented as graphs where nodes (circles) represent
states, arrows represent state transitions, an arrow pointing from a small black
circle indicates the initial state, and accepting states are marked with with a double
circle.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 218 / 246

There is no common graphical notation for pushdown automata. We label transitions using the input
symbol followed by a semicolon followed by the top of the stack symbol and an arrow pointing to the
new symbols pushed on the stack.

The table below shows an execution for the string aaabbb. Lines are prefixed with the current state of
the pushdown automaton and they show the stack growing to the left. Lines starting with a vertical bar
indicate a transition and the input symbol processed.

S0: Z

| a

S0: ZA

| a

S0: ZAA

| a

S0: ZAAA

| b

S0: ZAA

| b

S1: ZA

| b

S1: Z

|

S2:

206

Turing Machines

29 Finite State Machines

30 Pushdown Automaton

31 Turing Machines

32 Formal Languages

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 219 / 246

207

Turing Machine

Definition (turing machine)

A Turing machine (TM) is a 7-tuple (Σ, S , s0, Γ, b, δ,F) where:

• Σ is the set of input symbols (Σ ⊆ Γ \ {b})
• S is a finite, non-empty set of states

• s0 is an initial state (s0 ∈ S)

• Γ is a finite, non-empty set of tape alphabet symbols

• b is the blank symbol (b ∈ Γ)

• δ is the state-transition function, δ : (S \ F)× Γ 7→ S × Γ× {L,R}
• F is a set of accepting states (F ⊂ S)

• The symbol L indicates a left movement, the symbol R a right movement.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 220 / 246

A turing machine in each step considers the current state and the current symbol on the tape and then
it transitions into a followup state, writes a symbol on the tape, and moves the read/write head either left
or right. A turing machine halts if no transition is defined for the current state and the current symbol on
the tape. A turing machine also halts if it transitions into a state in F .

208

Turing Machine Example (anbncn)

• The TM (Σ, S , s0, Γ, b, δ,F) with Σ = {a, b, c}, S = {S0, S1, S2, S3, S4, S5},
s0 = S0, Γ = {a, b, c ,A,B ,C , }, b = , F = {S5}, and

δ = {(S0, a, S1,A,R), (S0,B , S4,B ,R),

(S1, b, S2,B ,R), (S1, a, S1, a,R), (S1,B , S1,B ,R),

(S2, c , S3,C , L), (S2, b, S2, b,R), (S2,C , S2,C ,R),

(S3,A, S0,A,R), (S3,C , S3,C , L), (S3, b, S3, b, L),

(S3,B , S3,B , L), (S3, a, S3, a, L),

(S4, , S5, , L), (S4,B , S4,B ,R), (S4,C , S4,C ,R)}

recognizes all words of the form {anbncn|n ≥ 1}.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 221 / 246

An implementation of the Turing machine in Haskell:
import Prelude hiding (head)

data State = S0 | S1 | S2 | S3 | S4 | S5 deriving (Show)
data Tape = Tape String Int deriving (Show)

head :: Tape -> Char -> Bool
head (Tape xs i) c = xs !! i == c

left :: Tape -> Tape
left (Tape xs i)

| i == 0 = Tape ("_" ++ xs) 0
| otherwise = Tape xs (i - 1)

right :: Tape -> Tape
right (Tape xs i)

| i + 1 == length xs = Tape (xs ++ "_") (i + 1)
| otherwise = Tape xs (i + 1)

write :: Tape -> Char -> Tape
write (Tape xs i) c = Tape (take i xs ++ [c] ++ drop (i + 1) xs) i

accepts :: State -> Tape -> Bool
accepts S0 tape

| head tape ’a’ = accepts S1 (right (write tape ’A’))
| head tape ’B’ = accepts S4 (right (write tape ’B’))

accepts S1 tape
| head tape ’b’ = accepts S2 (right (write tape ’B’))
| head tape ’a’ = accepts S1 (right (write tape ’a’))
| head tape ’B’ = accepts S1 (right (write tape ’B’))

accepts S2 tape
| head tape ’c’ = accepts S3 (left (write tape ’C’))
| head tape ’b’ = accepts S2 (right (write tape ’b’))
| head tape ’C’ = accepts S2 (right (write tape ’C’))

accepts S3 tape
| head tape ’A’ = accepts S0 (right (write tape ’A’))
| head tape ’C’ = accepts S3 (left (write tape ’C’))
| head tape ’b’ = accepts S3 (left (write tape ’b’))
| head tape ’B’ = accepts S3 (left (write tape ’B’))
| head tape ’a’ = accepts S3 (left (write tape ’a’))

accepts S4 tape
| head tape ’_’ = accepts S5 (left (write tape ’_’))
| head tape ’B’ = accepts S4 (right (write tape ’B’))
| head tape ’C’ = accepts S4 (right (write tape ’C’))

accepts S5 tape = True
accepts _ _ = False

decide :: String -> Bool
decide xs = accepts S0 (Tape xs 0)

209

TM Example (anbncn) Represented as a Graph

S0

S5

S1
a → A; R

S4

B → B; R

a → a; R

B → B; R

S2
b → B; R

_ → _; L

B → B; R

C → C; R

b → b; R

C → C; R

S3

c → C; L

A → A; R

C → C; L

b → b; L

B → B; L

a → a; L

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 222 / 246

There is no common graphical notation for Turing machines. We label transitions using the symbol
under the head, an arrow pointing to the symbol written under the head, and a semicolon followed by
the movement indicator (L = left, R = right).

The Turing machine proceeds by replacing an a, a b, and a c with a capital letter and then moving back.
This continues until all letters have been replaced and a final check is made that no input letters are left.

The table below shows an execution for the string aabbcc. A symbol in brackets indicates the head of
the Turing machine and lines are prefixed with the current state of the Turing machine.

S0: _ [a] a b b c c _

S1: _ A [a] b b c c _

S1: _ A a [b] b c c _

S2: _ A a B [b] c c _

S2: _ A a B b [c] c _

S3: _ A a B [b] C c _

S3: _ A a [B] b C c _

S3: _ A [a] B b C c _

S3: _ [A] a B b C c _

S0: _ A [a] B b C c _

S1: _ A A [B] b C c _

S1: _ A A B [b] C c _

S2: _ A A B B [C] c _

S2: _ A A B B C [c] _

S3: _ A A B B [C] C _

S3: _ A A B [B] C C _

S3: _ A A [B] B C C _

S3: _ A [A] B B C C _

S0: _ A A [B] B C C _

S4: _ A A B [B] C C _

S4: _ A A B B [C] C _

S4: _ A A B B C [C] _

S4: _ A A B B C C [_]

S5: _ A A B B C [C] _

210

Turing Machine Example (BB-3)

• The busy beaver game consists of designing a halting, binary-alphabet Turing
machine, which writes the most 1s on the tape, using only a limited set of states.

• The TM (Σ, S , s0, Γ, b, δ,F) with Σ = {1}, S = {S0, S1, S2, S3}, s0 = S0,
Γ = {0, 1}, b = 0, F = {S3}, and

δ = {(S0, 0, S1, 1,R), (S0, 1, S2, 1, L),

(S1, 0, S0, 1, L), (S1, 1, S1, 1,R),

(S2, 0, S1, 1, L), (S2, 1, S3, 1,R)}

is a 3-state busy beaver (BB-3) Turing Machine (the halting state is not counted).

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 223 / 246

An implementation of a 3-state busy beaver in Haskell:
import Prelude hiding (head)

data State = S0 | S1 | S2 | S3 deriving (Show)
data Tape = Tape String Int deriving (Show)

head :: Tape -> Char -> Bool
head (Tape xs i) c = xs !! i == c

content :: Tape -> String
content (Tape xs _) = xs

left :: Tape -> Tape
left (Tape xs i)

| i == 0 = Tape ("0" ++ xs) 0
| otherwise = Tape xs (i - 1)

right :: Tape -> Tape
right (Tape xs i)

| i + 1 == length xs = Tape (xs ++ "0") (i + 1)
| otherwise = Tape xs (i + 1)

write :: Tape -> Char -> Tape
write (Tape xs i) c = Tape (take i xs ++ [c] ++ drop (i + 1) xs) i

delta :: State -> Tape -> Tape
delta S0 tape

| head tape ’0’ = delta S1 $ right $ write tape ’1’
| head tape ’1’ = delta S2 $ left $ write tape ’1’

delta S1 tape
| head tape ’0’ = delta S0 $ left $ write tape ’1’
| head tape ’1’ = delta S1 $ right $ write tape ’1’

delta S2 tape
| head tape ’0’ = delta S1 $ left $ write tape ’1’
| head tape ’1’ = delta S3 $ right $ write tape ’1’

delta S3 tape = tape
delta state tape

= error ("tm failed in " ++ show state ++ " with: " ++ show tape)

run = content (delta S0 (Tape "0" 0))

211

TM Example (BB-3) Represented as a Graph

S0

S3

S1
0 → 1; R

S2

1 → 1; L

0 → 1; L
1 → 1; R

1 → 1; R

0 → 1; L

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 224 / 246

The table below shows an execution for the string aabbcc. A symbol in brackets indicates the head of
the Turing machine and lines are prefixed with the current state of the Turing machine.

S0: 0 0 0 0 [0] 0 0 0

S1: 0 0 0 0 1 [0] 0 0

S0: 0 0 0 0 [1] 1 0 0

S2: 0 0 0 [0] 1 1 0 0

S1: 0 0 [0] 1 1 1 0 0

S0: 0 [0] 1 1 1 1 0 0

S1: 0 1 [1] 1 1 1 0 0

S1: 0 1 1 [1] 1 1 0 0

S1: 0 1 1 1 [1] 1 0 0

S1: 0 1 1 1 1 [1] 0 0

S1: 0 1 1 1 1 1 [0] 0

S0: 0 1 1 1 1 [1] 1 0

S2: 0 1 1 1 [1] 1 1 0

S2: 0 1 1 1 1 [1] 1 0

212

Formal Languages

29 Finite State Machines

30 Pushdown Automaton

31 Turing Machines

32 Formal Languages

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 225 / 246

213

Formal Language and Formal Grammar

Definition (formal language)

Given an alphabet Σ, a formal language L is a subset of Σ∗, i.e., Σ ⊆ L. An element
w ∈ L is called a word of L.

Definition (formal grammar)

A formal grammar G is a tuple (N ,Σ,P , S) where

• N is a finite set of non-terminal symbols (disjoint from Σ)

• Σ is a finite set of terminal symbols (disjoint from N)

• P is a finite set of production rules of the form (Σ ∪ N)∗N(Σ ∪ N)∗ 7→ (Σ ∪ N)∗

• S ∈ N is a distinguished start symbol

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 226 / 246

Examples:

a) The grammar G1 = (N,Σ, P, S) with

• N = {S, T}
• Σ = {a, b}
• start symbol S

• P = {S 7→ aTb, T 7→ aT, T 7→ Tb, T 7→ ε}
defines the language L(G1) = {anbm|n ≥ 1,m ≥ 1}.

b) The grammar G2 = (N,Σ, P, S) with

• N = {S}
• Σ = {a, b}
• start symbol S

• P = {S 7→ aSb, S 7→ ab}
defines the language L(G2) = {anbn|n ≥ 1}.

c) The grammar G3 = (N,Σ, P, S) with

• N = {S,B}
• Σ = {a, b, c}
• start symbol S

• P = {S 7→ aBSc, S 7→ abc,Ba 7→ aB,Bb 7→ bb}
defines the language L(G3) = {anbncn|n ≥ 1}.

214

Formal Grammar Semantics

Definition (grammar derivation)

Given a formal grammar G = (N ,Σ,P , S), the binary relation ⇒
G

(pronounced as “G

derives in one step”) on strings in (Σ ∪ N)∗ is defined by

x ⇒
G

y iff ∃u, v , p, q ∈ (Σ ∪ N)∗ : (x = upv) ∧ (p 7→ q ∈ P) ∧ (y = uqv).

Let
∗⇒
G

denote the reflexive transitive closure of ⇒
G

.

Definition (language of a grammar)

The language L(G) of G = (N ,Σ,P , S) is defined as {w ∈ Σ∗|S ∗⇒
G

w}

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 227 / 246

215

Operations on Formal Languages

Definition (operations on languages)

Let L1 and L2 be formal languages. We defined the following operations:

• L1 ∪ L2 = {w |w ∈ L1 ∨ w ∈ L2} (union)

• L1 ∩ L2 = {w |w ∈ L1 ∧ w ∈ L2} (intersection)

• L̄1 = {w |w 6∈ L1} (complement)

• L1L2 = {wz |w ∈ L1 ∧ z ∈ L2} (concatenation)

• L∗1 = {ε} ∪ {wz |w ∈ L1 ∧ z ∈ L∗1} (Kleene star)

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 228 / 246

Formal languages as defined so far are rather general. The focus of formal language theory is often
on specific subsets of formal languages, so called classes of formal languages. Some widely known
classes of formal languages are the following:

• Regular Languages (Type-3 Languages, L3)

• Context-free Languages (Type-2 Languages, L2)

• Context-sensitive Languages (Type-1 Languages, L1)

• Recursively enumeratable Languages (Type-0 Languages, L0)

These language classes form a hierarchy:

L3 ⊂ L2 ⊂ L1 ⊂ L0

This hierarchy is also known as the Chomsky Hierarchy (in reference to Noam Chomsky) and it was
developed in the 1950s. Note that the classes of formal languages have different properties concerning
the closure to the operations on formal languages.

Further information:

• http://en.wikipedia.org/wiki/Chomsky_hierarchy

216

http://en.wikipedia.org/wiki/Chomsky_hierarchy

Regular Languages

Definition (regular languages)

The collection of regular languages over an alphabet Σ is defined inductively as follows:

• The empty language ∅, and the empty string language {ε} are regular languages.

• For each a ∈ Σ, the singleton language {a} is a regular language.

• If A and B are regular languages, then
• (A ∪ B) (union),
• (AB) (concatenation), and
• (A∗) (Kleene star)

are regular languages.

• No other languages over Σ are regular.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 229 / 246

In practice, we often use conventions that allow us to save parenthesis. For example, we may simply
write abc or (abc) instead of ((ab)c) or (a(bc)).

The language L = aa∗bb∗ = ((a(a∗))(b(b∗))) is the set {anbm|n ≥ 1,m ≥ 1}.
Expressions defining regular languages are often used to search for more complex patterns in strings.
The pattern, defined by a regular expression, essentially defines a language and the search stops when
a word belonging to the language has been found in a given input text. Regular expression understood
by search tools often use a slightly different notation:

• The union (A ∪B) is written as (A|B)

• The Kleene star (A∗) is written as A*

• An expression of the form (A(A∗)) is written as A+

• An expression of the form (A ∪ ε) is written as A?

• Some regular expression languages allows repetitions of the form A{n,m} where A is matched at
least n times but not more than m times

• Parenthesis can be used to group expressions but they can be left out if there is no ambiguity

• Sets of characters can be defined using bracket expressions, e.g, [0123456789] or [0-9] or
[[:digit:]]

The Unix grep utility is well-known for using regular expressions for searching purposes. But most
editors and text processing tools these days understand some form of regular expression syntax. (But
be aware that there is no common regular expression syntax — there are actually quite many variations
out there.)

217

Regular Grammars

Definition (right regular grammar)

A formal grammar (N ,Σ,P , S) is called a right regular grammar iff all the production
rules in P are of one of the forms A 7→ a, A 7→ aB , or A 7→ ε with A,B ∈ N , a ∈ Σ,
and ε denoting the empty word.

Definition (left regular grammar)

A formal grammar (N ,Σ,P , S) is called a left regular grammar iff all the production
rules in P are of one of the forms A 7→ a, A 7→ Ba, or A 7→ ε with A,B ∈ N , a ∈ Σ, and
ε denoting the empty word.

Definition (regular grammar)

A regular grammar is a left or right regular grammar.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 230 / 246

The language L = aa∗bb∗ can be generated by the (right) regular grammar Gr = (N,Σ, Pr, S) with

• N = {S, T, U}
• Σ = {a, b}
• start symbol S

• Pr = {S 7→ aT, T 7→ aT, T 7→ bU, U 7→ bU, U 7→ ε}.
The language L can also be generated by the (left) regular grammar Gl = (N,Σ, Pl, S) with

• N = {S, T, U}
• Σ = {a, b}
• start symbol S

• Pl = {S 7→ Tb, T 7→ Tb, T 7→ Ua,U 7→ Ua,U 7→ ε}.

218

Properties of Regular Languages

• A regular language can be defined by a regular expression.

• A regular language can be accepted by a finite state machine.

• A regular language can be generated by a regular grammar.

• . . .

⇒ For more properties of regular languages and proofs of the properties, see the
course “Formal Languages and Logic”.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 231 / 246

219

Context-Free Languages

Definition (context-free grammar)

A formal grammar (N ,Σ,P , S) is called a context-free grammar iff all productions P
are of the form N 7→ (Σ ∪ N)∗.

Definition (context-free language)

A context-free language is a formal language generated by a context-free grammar.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 232 / 246

Context-free languages play an important role in computer science.

• The syntax of many programming languages is defined by context-free grammars.

• Many Internet message formats are defined by context-free grammars.

• Context-free grammars are often used to describe expressions.

Example: The context-free grammar G2 = (N,Σ, P, S) with

• N = {S}
• Σ = {a, b}
• start symbol S

• P = {S 7→ aSb, S 7→ ab}
defines the language L(G2) = {anbn|n ≥ 1}.

220

Properties of Context-Free Languages

• A context-free language can be accepted by a pushdown automata.

• A context-free language can be generated by a context-free grammar.

• The set of context-free languages includes the set of regular languages.

• There are context-free languages that are not regular languages.

• . . .

⇒ For more properties of context-free languages and proofs of the properties, see the
course “Formal Languages and Logic”.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 233 / 246

221

Context-Sensitive Languages

Definition (context-sensitive grammar)

A formal grammar (N ,Σ,P , S) is called a context-sensitive grammar iff all productions
P are of the form αNβ 7→ αγβ with α, β ∈ (Σ ∪ N)∗ and γ ∈ (Σ ∪ N)+

Definition (context-sensitive language)

A context-sensitive language is a formal language generated by a context-sensitive
grammar.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 234 / 246

Example: The context-sensitive grammar G3 = (N,Σ, P, S) with

• N = {S,B}
• Σ = {a, b, c}
• start symbol S

• P = {S 7→ aBSc, S 7→ abc,Ba 7→ aB,Bb 7→ bb}
defines the language L(G3) = {anbncn|n ≥ 1}.

222

Properties of Context-Sensitive Languages

• A context-sensitive language can be accepted by a Turing machine.

• A context-sensitive language can be generated by a context-sensitive grammar.

• The set of context-sensitive languages includes the set of context-free languages.

• There are context-sensitive languages that are not context-free languages.

• . . .

⇒ For more properties of context-sensitive languages and proofs of the properties, see
the course “Formal Languages and Logic”.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 235 / 246

A restricted form of a Turing machine, called a linear bounded automaton, is sufficient to accept context-
sensitive languages. A linear bounded automaton is essentially a Turing machine where the tape is
limited to a finite contiguous portion of the tape, whose length is a linear function of the length of the
initial input.

Turing machines can accept any recursively enumerable formal language, which is a proper superset of
all context-sensitive languages. But then there are also non-recursively enumerable languages that not
even a Turing machine can accept.

223

Part VII

Computability and Computational Complexity

Computability theory focuses on the following key questions:

• What does it mean for a function to be computable or noncomputable?

• How can noncomputable functions be classified into a hierarchy based on their level of noncom-
putability?

Computational complexity theory focuses on the following key question:

• How to classify computational problems according to their inherent difficulty?

Both theories require models of computation that one can work with in a mathematical sense, i.e.,

• models that are simple enough to reason with them formally and

• general enough that the theoretical results apply to real computers.

Abstract automate such as the Turing machine are often used in computability and computational com-
plexity in order to derive results that apply to all Turing equivalent computing machines.

224

Landau Sets and Big O Notation

33 Landau Sets and Big O Notation

34 Computability

35 Computational Complexity

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 237 / 246

225

Big O Notation (Landau Notation)

Definition (asymptotically bounded)

Let f , g : N 7→ N be two functions. We say that f is asymptotically bounded by g ,
written as f ≤a g , if and only if there is an n0 ∈ N , such that f (n) ≤ g(n) for all
n > n0.

Definition (Landau Sets)

The three Landau Sets O(g),Ω(g),Θ(g) are defined as follows:

• O(g) = {f |∃k .f ≤a k · g}
• Ω(g) = {f |∃k .k · g ≤a f }
• Θ(g) = O(g) ∩ Ω(g)

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 238 / 246

226

Commonly Used Landau Sets

Landau Set class name rank

O(1) constant 1
O(log2(n)) logarithmic 2
O(n) linear 3
O(n log2(n)) linear logarithmic 4

Landau Set class name rank

O(n2) quadratic 5
O(nk) polynomial 6
O(kn) exponential 7

Theorem (Landau Set Ranking)

The commonly used Landau Sets establish a ranking such that

O(1) ⊂ O(log2(n)) ⊂ O(n) ⊂ O(n log2(n)) ⊂ O(n2) ⊂ O(nk) ⊂ O(ln)

for k > 2 and l > 1.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 239 / 246

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

Commonly Used Landau Sets

O(1)
O(log n)

O(n)
O(n log n)

O(n
2
)

O(2
n
)

227

Landau Set Rules

Theorem (Landau Set Computation Rules)

We have the following computation rules for Landau sets:

• If k 6= 0 and f ∈ O(g), then (kf) ∈ O(g).

• If f1 ∈ O(g1) and f2 ∈ O(g2), then (f1 + f2) ∈ O(|g1|+ |g2|).

• If f1 ∈ O(g1) and f2 ∈ O(g2), then (f1f2) ∈ O(g1g2).

Examples:

• f (n) = 42 =⇒ f ∈ O(1)

• f (n) = 26n + 72 =⇒ f ∈ O(n)

• f (n) = 856n10 + 123n3 + 75 =⇒ f ∈ O(n10)

• f (n) = 3 · 2n + 42 =⇒ f ∈ O(2n)

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 240 / 246

228

Big O Notation (Usage)

• The Big O Notation describes the limiting behavior of a function when the
argument tends towards a particular value of infinity.

• We classify a function describing the (time or space) complexity of an algorithm by
determining the closest Landau Set it belongs to.

• Use O classes for worst case complexity, use Ω classes for best case complexity.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 241 / 246

229

Computability

33 Landau Sets and Big O Notation

34 Computability

35 Computational Complexity

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 242 / 246

230

Turing Completeness and Equivalence

Definition (Turing complete)

A system of data-manipulation rules (such as a computer’s instruction set, a
programming language, or a cellular automaton) is said to be Turing complete or
computationally universal if it can be used to simulate any Turing machine.

Definition (Turing equivalent)

Two computers P and Q are called Turing equivalent if P can simulate Q and Q can
simulate P .

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 243 / 246

231

Church-Turing Thesis

Definition (Church-Turing thesis)

The ChurchTuring thesis states that a function on the natural numbers is computable
by a human being following an algorithm, ignoring resource limitations, if and only if it
is computable by a Turing machine.

• The Church-Turing thesis is a conjecture.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 244 / 246

For further information:

• https://en.wikipedia.org/wiki/ChurchTuring_thesis

232

https://en.wikipedia.org/wiki/Church–Turing_thesis

Halting Problem

Definition (halting problem)

The halting problem is a decision problem: Given an arbitrary program and an input to
the program, decide whether the program will eventually halt when run with that input.

• It is impossible to decide the halting problem. The proof uses a diagonalization
argument. Here is an outline of the basic idea. . .

1. Assume that the halting problem for any program can be solved by a machine H.
2. Using H, construct a machine G that goes into an endless loop if H determines that

an algorithm halts.
3. Feed the program G as input to G :

• If G halts, then H decided that G does not halt, which is a contradiction.
• If G does not halt, then H decided the G does halt, which is a contradiction.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 245 / 246

For further information:

• https://en.wikipedia.org/wiki/Halting_problem

233

https://en.wikipedia.org/wiki/Halting_problem

Computational Complexity

33 Landau Sets and Big O Notation

34 Computability

35 Computational Complexity

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science February 7, 2018 246 / 246

234

	I Introduction and Examples
	Computer Science and Algorithms
	Maze Generation Algorithms
	String Search Algorithms
	Complexity, Correctness, Engineering

	II Discrete Mathematics
	Propositions, Axioms, Theorems, Proofs
	Sets
	Relations
	Functions

	III Number Systems, Units, Characters, Date and Time
	Natural Numbers
	Integer Numbers
	Rational and Real Numbers
	Floating Point Numbers
	International System of Units
	Characters and Strings
	Date and Time

	IV Boolean Algebra and Logic
	Elementary Boolean Operations and Functions
	Boolean Functions and Formulas
	Boolean Algebra Equivalence Laws
	Normal Forms (CNF and DNF)
	Complexity of Boolean Formulas
	Boolean Logic and the Satisfiability Problem

	V Computer Architecture and System Software
	Logic Gates and Digital Circuits
	Von Neumann Computer Architecture
	Interpreter and Compiler
	Operating Systems

	VI Automata and Formal Languages
	Finite State Machines
	Pushdown Automata
	Turing Machines
	Formal Languages

	VII Computability and Computational Complexity
	Landau Sets and Big O Notation
	Computability

