
Introduction to Computer Science Course: CH08-320101
Jacobs University Bremen Date: 2017-11-07
Dr. Jürgen Schönwälder Due: 2017-11-14

ICS Problem Sheet #8

Problem 8.1: full adder using different kinds of gates (1+1+1+1 = 4 points)

A full adder digital circuit was introduced in class. It is defined by the following two boolean func-
tions:

S = A∨̇B∨̇Cin

Cout = (A ∧B) ∨ (Cin ∧ (A∨̇B))

a) Write both functions as a (short) disjunction of product terms.

b) Write both functions as a (short) conjunction of sum terms.

c) Write both functions using only not (¬) and not-and (↑) operations.

d) In a digital circuit, we can easily reuse common terms. What is a small digital circuit imple-
menting S and Cout using NAND gates only?

Problem 8.2: ripple carry adder and carry lookahead adder (haskell) (1+1+2+2 = 6 points)

You task is to implement a ripple carry adder and a carry lookahead adder. Numbers will be
represented as a list of Bool values. We break things into small steps:

a) Implement a function bin m n that converts the non-negative integer number n into a list of
Booleans. The list returned list will have the length m.

ghci> bin 4 5

[False,True,False,True]

ghci> bin 8 42

[False,False,True,False,True,False,True,False]

b) Implement a function dec x that converts a list of Booleans values into the corresponding
non-negative integer number.

ghci> dec [False,True,False,True]

5

ghci> dec [False,False,True,False,True,False,True,False]

42

c) Implement the functions fa_c and fa_s that receive the two input boolean values and a carry
boolean value and calculate the carry (fa_c) and the sum (fa_s) of the full adder digital circuit.
Use these two functions to implement rc_add, a ripple carry adder. For simplicity, rc_add is
not returning the carry bit.

ghci> rc_add [False,True,False,True] [True,False,False,False]

[True,True,False,True]

Combining rc_add with the other functions, you should be able to do computations like this:

ghci> dec (rc_add (bin 4 5) (bin 4 8))

13

d) Implement the functions ha_c and ha_s that receive two input boolean values and calculate
the carry (ha_c) and the sum (ha_s) of the half adder digital circuit. Use these two functions to
implement cla_add, a carry lookahead adder. It is sufficient to implement the carry calculator
as a recursive function. For simplicity, cla_add is not returning the carry bit.

ghci> cla_add [False,True,False,True] [True,False,False,False]

[True,True,False,True]

ghci> dec (cla_add (bin 4 5) (bin 4 8))

13


