
Haskell Tutorial Notes

Alexandru Hambasan
(with some minor edits by Jürgen Schönwälder)

Jacobs University Bremen

September 28, 2018

Haskell - Introduction and Motivation

I Why this programming language?
I It’s fun to write and reason about
I Will most likely change the way you think about programming
I It’s safe (we will see later what this refers to)
I Seasoned Haskell users can read it easily
I It’s pure! (we will also see what this means later on)

Haskell Environment

I GHC (Glasgow Haskell Compiler)
I used for ”real work”
I supports parallel execution
I provides performance analysis and debugging tools
I ghc → compiler for generating fast native code
I ghci → interpreter and debugger
I runghc → program for running Haskell programs as scripts

Note: the last three represent the main components of GHC

Lists, Characters and Strings

I Lists
I they are surrounded by square brackets and elements are

separated by commas
I empty list → []
I all elements must be of the same type
I Haskell supports enumeration notation

i.e. [1..10] = [1,2,3,4,5,6,7,8,9,10]
I concatenate lists using the ++ operator

e.g.: [1, 2, 1] ++ [1, 2] = [1, 2, 1, 1, 2]
I the cons (short for construct) operator adds an element to the

front of a list
symbol for cons → :
e.g.: 1 : [2, 3] = [1, 2, 3]

Note: only the construction < element > : < list > is allowed

Lists, Characters and Strings

I Characters
I Haskell follows the conventions established by C
I single characters are enclosed in single quotes
I ’\n’ → newline character
I ’\t’ → tab character

I Strings
I strings are enclosed in double quotes
I they are a list of characters

e.g.:
ghci> let x = [’s’, ’t’, ’r’, ’i’, ’n’, ’g’]
ghci> x
"string"

I putStrLn function prints a string

Haskell’s Type System
Haskell is a strongly, statically typed programming language where
types can be inferred.
I strongly typed

I Haskell doesn’t automatically cast one type from another; in
contrast with C

I the benefit: catches real errors in the code before they cause
problems

I statically typed
I types are known at compilation time by the

compiler/interpreter
I you can do dynamic typing in Haskell, even though is not as

easy as in other programming languages (say Ruby)
I static typing, in combination with strong typing, makes type

errors impossible to occur at runtime
I types can be inferred

I types can (almost always) be deduced, so you don’t have to
specify them (but you can!)

Basic Types in Haskell

I Char → character
I Bool → boolean value
I Int → on a 32-bit machine, usually it represents a 32 bit

signed integer. On a 64-bit machine, it is usually a 64 bit
signed integer (and so on)

I Integer → a signed integer of unbounded size
I this type is expensive!
I this type gives more reliably correct answer (because it doesn’t

silently overflow).
I Double → used for floating point representation, usually 64

bits wide

Note: Float type also exists, but it is much slower

Lists and Tuples

We have already introduced lists in the slide Lists, Characters and
Strings, but now let us see how we can work with them.
I we will make use of them very often during this course
I note that to apply a function in Haskell, one would write the

name of the function, followed by the arguments (no
parentheses needed)

ghci> odd 5
true
ghci> compare 1 2
LT

I function application has higher precedence than the operators,
so writing compare 1 2 == LT is the same with writing
(compare 1 2) == LT and both expression will evaluate to
True

Lists and Tuples

I head function returns the first element of a list:
ghci> head [1, 2, 3]
1
ghci> head "string"
s

I tail function returns the list without its first element:
ghci> tail [1, 2, 3]
[2, 3]
ghci> tail "string"
tring

Please note how a string is just a list of characters

Lists and Tuples

I length function returns the number of elements in a list
I null function returns true if a list is empty and false otherwise
I last function returns the last element of a list
I init function returns the list without the last element

Problem: Call head function on empty list (i.e.: head []).
What happens? How can we avoid this issue?

I Naive Idea: Check if there are elements in the list by writing
something like: length xs > 0 then head xs else ’Q’
I the length of a list is not stored explicitly somewhere, so the

function has to go through the entire list and count the
elements ⇒ takes more time than necessary

I Haskell allows us to create infinite lists, so by using length
function careless we might end up in an infinite loop

Lists and Tuples
I Better Approach: use function null instead

I constant time
I makes our code indicate better which property of the list we

really care for
e.g.: if not (null xs) then head xs else ’Q’

I concat function takes a list of lists and concatenate them,
returning one list

I reverse function takes a list and reverse all the elements
within it

I and and or functions can be applied to a list of bools
ghci> or [False, False, True, False]
True
ghci> and [False, True, True]
False

I all and any functions return True if the predicate (taken as an
argument by the function) succeeds on every (or any,
respectively) element of the list

Lists and Tuples
I take function takes a list as an argument and returns a list

containing the first k elements from it
I drop function takes a list and returns it without the first k

elements
I splitAt function splits a list at the given index and returns a

pair containing the two sublists
I elem function returns True if a given value is in the list and

false otherwise
ghci> elem 1 [3, 1, 2]
True

I filter function filter a list.
ghci> filter even [1..10]
[2, 4, 6, 8, 10]

I zip function takes two lists and ”zips” them into a single list
of pairs.

ghci> zip [1, 2, 3] "test"
[(1,t), (2, e), (3, s)]

Lists and Tuples

I A tuple is a fixed size collection of values
I note that the values in a tuple can have different types

I fst function returns the first element of a pair (a 2-tuple)
I snd functions returns the second element of a pair

Functions

I Haskell is a functional language ⇒ functions play a major role
I defining a function can be as simple as:

multiply :: Num a => a -> a -> a
multiply x y = x * y

I the first line represents the function signature
I we will see how to interpret this later when we will be talking

about currying, don’t panic if you don’t understand it now
I you can think at it as: ”As long as type a is a numeric type,

the function takes two arguments of type a and return
something of type a”

I the second line represents the function definition
I as we will see, the definitions can become more complex (i.e.:

can have patterns, let constructions, where constructions, etc)

Functional Programming in Haskell

Now we will learn how to think from a functional programming
point of view and how imperative languages features (say loops)
maps to different functional features (recursion, folds, lazy data
structures). The following topics will be discussed:
I how to think while doing functional programming
I pattern matching
I lambda functions
I recursion
I lazy evaluation
I call-by-value vs call-by-name vs call-by-need
I using Haskell features instead of loops
I monads

Think before you code

If you have previously worked with C, C++, Java, etc, you might
find the functional programming style to be (at least in the
beginning), in a sense, weird and difficult to learn. Here are a few
tips on how to think while doing fp:
I don’t think about a program as a sequence of operations
I think about the relationship between the input and the output
I try to drive simplicity to the maximum.
I think in terms of composition and not in terms of inheritance
I think of side-effects (we will see later on what this refers to)

Pattern Matching
I specifying some patterns to which some data should conform
I check to see if it does
I deconstruct the data according to that pattern
I pattern matching leads to neat code that is easy to read

E.g.:

whoAmI :: Int -> String

whoAmI 1 = "One"
whoAmI 2 = "Two"
whoAmI x = "I am not One or Two"

I please note that the patterns are checked from top to bottom
I patterns should catch all possibilities, otherwise an exception

will be raised for non-exhaustive matching

Pattern Matching

Example: Let us implement functions for extracting the first and
second element of a 3-tuple:

myFirst :: (a, b, c) -> a
myFirst (x, _, _) = x

mySecond :: (a, b, c) -> b
mySecond (_, y, _) = y

I Patterns also work with lists
I the pattern x:xs is used a lot in practice. Here, x binds to the

head of a list and xs binds to the tail of the list.

Example: Here is a function that sums elements from a list:
sumElements :: Num t => [t] -> t
sumElements [] = 0
sumElements (x:xs) = x + sumElements xs

Guards

I resemble an if statement in C
I test for some condition

Example:

whereAmI :: Int -> String
whereAmI age

| age <= 4 = "You are at home"
| age <= 15 = "You are at primary school"
| age <= 19 = "You are at high-school"
| age <= 23 = "You are at university"
| otherwise = "You are at work!"

Note: there is no = after function name and its parameters

Where constructions

I the where clause allows us to introduce local variables and
functions (another mechanism that allows us to do this are let
expression, see next slide)

Example:

addFourNumbers :: Int -> Int -> Int -> Int -> Int
addFourNumbers x y z k = a + b

where a = x + y
b = z + k

Let bindings

I syntax: let < bindings > in < expression >
I let bindings are local (i.e. they cannot be used across guards)

Example:

ghci> let (a, b, c) = (10, 20, 30) in a+b+c
60

I note that it is possible to do pattern matching with let
bindings (as we did above)

Case expressions

I syntax:

case expression of pattern_1 -> result_1
pattern_2 -> result_2
pattern_3 -> result_3
. . .

I expression is matched against the given patterns

Case Expressions

Example: Let us see in this example how we can use case
expressions instead of pattern matching on parameters in function
definitions. Note that both samples of code do the same thing!

tail’ :: [a] -> [a]
tail’ [] = error "No tail"
tail’ (x:xs) = xs

tail’ :: [a] -> [a]
tail’ xs = case xs of [] -> error "No tail"

(x:xs) -> xs

Lambda Functions
I note that Haskell is entirely build on lambda calculus
I also called anonymous functions
I they are helper functions without a name
I syntax:

\<argument> -> <function body>

I the backslash character is pronounced lambda and it is used
because of its visual resemblance with the Greek letter lambda
(λ)

I an example of a lambda function:
Prelude> (\x -> xˆ2) 2
4

I lambda functions behave (although there are some restrictions
on how to define them, see next point) like functions with
names

I a lambda function can only have a single clause in its
definition

Lambda Functions
I as we cannot have multiple clauses with lambda functions, we

must be sure that our pattern covers all cases, otherwise
runtime errors will occur

example: Let us implement an unsafe tail function

tail’ :: [t] -> [t]
tail’ = \(_:xs)->xs

Please remark that if we would call our tail’function on the empty
list, we will get a non-exhaustive patterns in lambda definition.

Note: the ’ in the end of a function is read prime
and is a common notation for different versions of a function

I be mindful when you use them!
I we will rarely use lambda functions in this course, instead we

will concentrate more on partial function (see next slide)

Partial Functions and Currying

In Haskell, all functions take only one argument

Question: How can this statement be valid? We have seen that
some functions (like take function) take 2 arguments.
Answer: In order to understand how the functions like take
actually behave, we have to understand the concept of currying.

Let’s have a look at take type signature:

take :: Int -> [a] -> [a]

I notice that take has in its signature only one parameter (i.e.
an Int)

I after the Int argument is applied, a function is returned that
takes a list as the argument.

Partial Functions and Currying

Let us implement a function that returns the first 3 elements of a
list:

take3’ :: [a] -> [a]
take3’ = take 3

Prelude> take3’ [1..]
[1,2,3]

I notice that take3’ < list > and take 3 < list > mean the
same thing and return the same result

Partial Functions and Currying

From a mathematical point of view, currying a function expression
means successively splitting away arguments from the right to the
left. I.e.:
f (x1, x2) = f ′(x1)(x2)
I here, f’ takes one argument (i.e.: x1) and returns a function

that takes as argument x2

In the general case of currying an m -ary function expression:
f (x1, x2, ..xm) = f m−1(x1)(x2)..(xm)

This is exactly what Haskell does!

Map Function

I map takes a function and applies it to every element of a list
I because it takes a function as its argument, we refer to it as a

higher-order function

Example:

Prelude> map (\x->x*x) [1..10]
[1,4,9,16,25,36,49,64,81,100]

Let us see how we can implement our own version of map:
myMap f [] = []
myMap f (x:xs) = f x : myMap f xs

Left Fold Function
I the foldl function takes

I a ”step” function
I an initial value for its accumulator
I a list

I what foldl is doing is call the step function on the current
accumulator and an element of the list, then the new
accumulator value is passed to itself recursively to consume
the rest of the list.

Example: Let us implement our sum function (see slides about
recursion) using foldl

foldSum xs = foldl step_funct 0 xs
where step_funct accumulator x = accumulator + x

When using foldl, you should think about:
I what should be the initial value of the accumulator

I in this case, it was 0
I how to update the accumulator

I in this case we used the function step-funct

Right Fold Function

I called foldr
I same as foldl, but instead folding from left, it folds from the

right of a list
I in practice one would nearly always use foldl’ instead of foldl

in order to avoid memory leaks caused by the non-strict
evaluation that Haskell provides.

Defining New Datatypes
Sometimes we might want to construct new data types for specific
purposes.
Example: a datatype that represents the basic characteristics of a
person

data PersonInfo = Person Int Double String [String]
deriving (Show)

I to define a new datatype, use the keyword data
I PersonInfo is the name of our new type (it is called a type

constructor)
I after the type is defined we use its type constructor to refer it
I Person is the data constructor

I it’s used to create a value of the PersonInfo type

Note: Both the type constructor and the data constructor must start with a
capital letter

Defining New Datatypes

I the Int, Double, String and [String] (that follows after Person)
are the components/fields of the type
I if you are familiar with an object-oriented language, these

components serve the same purpose as fields for a class
I in this case the Int represents the age of a person, the Double

represents the height, the String field is the name of the
person and [String] are the names of his/her parents

I the meaning of deriving (Show) will be explained later, so for
now just remember that you need to write it into a type
declaration in order to be able to print the value within ghci

Defining New Datatypes
I to create a new value of type PersonInfo, we treat the data

constructor as a function.
Example: Let us create a new value of type PersonInfo that
represents a 49 years old person whose name is Eliot, his parents
are Alice and Bob and is 181.49 meters high.

newPerson = Person 49 181.49 "Eliot" ["Alice", "Bob"]

I in this particular case, the name of the type constructor
(PersonInfo) and the value/data constructor (Person) are
different only for you to see which is which.

I it is common practice to give them both the same name
I there is no ambiguity because:

I the type constructor’s name is used only in type declaration/
type signature

I the value constructor’s name is used in the actual code (in
writing expressions)

Defining New Datatypes

I it’s possible to introduce synonyms for an existing type at any
time

I it might give the type a more descriptive name

Example: Consider the fields from the example above. It is not
very clear what the Int, Double, String and [String] mean,
therefore we should try to make things as clear as possible.

type Age = Int
type Height = Double
type Name = String
type ParentsNames = [String]

data PersonInfo = Person Age Height Name ParentsName
deriving (Show)

Algebraic Datatypes

I an example of an algebraic datatype is the Bool

data Bool = True | False

I notice that the Bool datatype has 2 value constructors, True
and False, separated by a | (this symbol can be read as or)

I when a type has more than 1 value constructor, these are
referred as alternatives/cases.

I the value constructors of an algebraic datatype can take zero
or more arguments.

Algebraic Datatypes

Example: Consider (and please excuse the macabreness) the
following case, where we can have an alive person (then we need
to store all of his/her properties), a dying person (we only need
his/her age) or a dead person (we need to know nothing):

type Age = Int
type Height = Double
type Name = String
type ParentsName = [String]

data PersonInfo = AlivePerson Age Height Name
| DyingPerson Age
| DeadPerson

deriving (Show)

Parameterized Types

I we have seen that lists have a polymorphic type (i.e.: the
elements of a list can be of any type)

I to achieve this when we construct our own datatypes, we
make use of a type called Maybe

data Maybe a = Just a
| Nothing

I in this case, a represents a type variable!
I therefore, Maybe takes another type as its parameter
I you can create specific types such as Maybe [Char], Maybe

Int, etc..

Typeclasses

I a very powerful feature of Haskell
I they are not a type themselves, but rather describe a set of

types that have a common interface
I if you are familiar with an OOP language, type classes are for

types what classes are for objects
I the methods in a typeclass correspond to virtual functions in

C++, meaning each instance of the type class might have its
own implementation of that method

In the following example, we will try to implement our own
equality test function (i.e. our own version of ==).
class BasicEq a where

isEqual :: a -> a -> Bool

Note: the example is taken from a Real World Haskell book

Typeclasses
I class BasicEq a where simply means we define a typeclass

called BasicEq where a is the type variable.
I on the second line, we declared the function

I it is not mandatory to also define the functions, but you can
do so

I you can declare/define several functions
Now, let us look at the type of our function. To do so, we load the
code in ghci and check for its type.
I to load a file in ghci, open ghci and type :load theFileName
I to check for a type of a function of variable, type :type

functionName
*Main> :type isEqual
isEqual :: BasicEq a => a -> a -> Bool

I everything that is before the symbol ⇒ is called a type
constraint

I you can read it as: ”As long as type a is an instance of
BasicEq, the function takes two arguments of the same type
and return a Bool”

Typeclasses

Let’s define a new data type and then see how we can make it an
instance of BasicEq type class.
data Color = White | Black

deriving (Show)

instance BasicEq Color where
isEqual White White = True
isEqual Black Black = True
isEqual _ _ = False

I since we did not provide a default implementation (i.e.
defining the function within the typeclass) for the function
isEqual, we had to write one when we declared type Color as
being an instance of typeclass BasicEq

I the advantage of having a typeclass is that we can, for
example, use our isEqual function on any other type we
declare to be an instance of BasicEq typeclass

Show and Read
I both Show and Read are built-in typeclasses

Show
I this typeclass is used to convert values of another type

(usually the numbers) to their String representation
I most important function in the Show typeclass is the show

function.
I examples of the show function:

Prelude> show True
"True"
Prelude> show 10
"10"
Prelude> show [(1,2), (1,5), (2,1)]
"[(1,2),(1,5),(2,1)]"

I you can easily define a Show instance for your type:
instance Show Color where

show Black = "Black"
show White = "White"

Show and Read
I you can also derive an instance for your type by using deriving

(Show) as we had in the first example
I Haskell supports automatic derivation for the following

typeclasses: Show, Read, Bounded, Enum, Eq, Ord
I automatic derivation is not always possible even for these

typeclasses

Read
I most important function in the Read typeclass is the read

function
I takes a string, parses it and returns the data of any type that

is a member of Read
I some examples of using read

Prelude> (read "12")::Int
12
Prelude> (read "12")::Double
12.0
Prelude> (read "[1,2,3]")::[Int]
[1,2,3]

Recursion
I a program technique in which a function calls itself
I one of the most powerful techniques in functional

programming
I characteristics:

I Base (or Terminating) Step: a version of the problem that is
simple enough that the routine can solve it and simply return a
value, without calling itself again

I Recursive Step: the function calls itself and while doing so, it
solves a smaller problem

I it is the programming equivalent of mathematical induction

Example: Let us look at a simple Haskell implementation of a
recursive function that computes the sum of the first n numbers.

sum :: Int -> Int
sum 0 = 0
sum n = n + sum(n-1)

Tail Recursion
In functional programming (so also in Haskell) recursion replaces
the well-known for and while loops that imperative languages have.

Problem: In contrast with the loops from an imperative language,
a recursive function would require linear space instead of constant
space. The reason behind this is that a recursive function allocates
some space each time it applies itself, in order to know where to
return.

Idea: Use tail recursion!

Question: What is tail recursion?
I a recursive function where the final result of the function itself

is final result of the recursive call
I Haskell detects tail recursive calls and makes them run in

constant space (TCO)

Note: TCO stands for Tail Call Optimization

Tail Recursion
Let us implement the above recursive function as a tail recursive
function.

sum2 :: Int -> Int
sum2 x =

tailSum x 0
where tailSum 0 a = a

tailSum n a = tailSum(n-1)(a+n)

I Note that sum2 wraps a call to the function tailSum that is
tail recursive.

I The tailSum function has another parameter a that is called
an accumulator and which holds the values from previous calls.

Mutual Recursion

I often useful to define functions simultaneously, each of them
calling the other (and maybe itself) in order to compute the
result

I such functions → mutually recursive

Example: Let us implement a function for testing whether a
(positive) number is odd or even. Usually, in practice, one would
test if the number is congruent to 0 mod 2, but for the sake of
example, we will not do that here.

odd :: Int → Bool
odd 0 = False
odd n = even (n-1)

even :: Int → Bool
even 0 = True
even n = odd (n-1)

Lazy Evaluation

I expressions are evaluated only at their (first) use
I it’s a trade-off

I the code is more modular
I it can become confusing how evaluation proceeds in the

program
I in order to fully understand how lazy-evaluation works in

Haskell, the following sub-topics have to be understood:
I graph reduction
I normal form and weak head normal form
I evaluation order
I space and time usage using lazy-evaluation

Note: the subtopics above will be discussed on the whiteboard

Call-by-Value vs Call-by-Name vs Call-by-Need

The relationship between call-by-value and call-by-name can be
explained by the following theorems
I Church Rosser (1): For a purely functional language, if

call-by-value evaluation and call-by-name evaluation both
yield a well-defined result then they yield the same result.

I Church Rosser (2): If a well-defined result exists for an
expression then the call-by-name evaluation strategy will find
it where, in some cases, call-by-value evaluation will not.

I Haskell uses call-by-need by default. Arguments are not
evaluated when the function is called, but when the
arguments are needed. These evaluations are also stored, such
that the next time they are required, the cached values can be
looked up.

Call-by-Value vs Call-by-Name vs Call-by-Need

I in contrast, functions that use call-by-name substitute the
arguments in the function body in an unevaluated form ⇒ the
same expression might end up being evaluated multiple times

I functions that use call-by-value form of evaluation, evaluate
the arguments once the function is called.

Please note:
I some languages that are eager evaluated (meaning they use

call-by-value form of evaluation, C for example) use
short-circuit evaluation in some cases.
Take for example the short-circuit operator && and the
boolean C expression (A && B). B will be evaluated, only if
the first argument is not enough to determine the overall
boolean value (i.e.: if A is true). This resembles, in a sense,
the call-by-need form of evaluation.

I Haskell can be forced to do call-by-value evaluation.

Side effects

I a side effect allows the behavior of a function to change the
global state of a system

I changing the global state of a system might mean:
I printing something on the terminal
I writing data on the disk
I changing the value of a global variable

I if a function’s output depends entirely on the input we
explicitly provide, we say that the function is pure
I this means that the function not only has to have no

side-effects, but has to also be idempotent
I in Haskell, we can only look at a type signature of a function

and see if it is pure or impure
I an impure function will have the type of the result starting

with an IO

putStrLn :: String -> IO ()

Pure vs. Impure
Question: Should you choose to write code in a pure language or
an impure one?

Answer: It very much depends on what you are trying to achieve
and what context you are in.
I impure functional programming offers a set of features such as

exceptions, state and continuations
I in pure functional programming it is easier to reason about

the correctness of your code and you have the benefit of
lazy-evaluation

I don’t forget that Haskell has deep roots into mathematics and
sometimes when writing code you will be put in the position
to think from a mathematical point of view

I if you want to modify your program that is written in a pure
functional programming, you might need to restructure much
of your code, where in a impure functional programming you
could ease the change by using its features

Exceptions

On the last slide, we mentioned exceptions as being part of the
features an impure programming language provides.

Question: What are exceptions anyway?

Answer: Consider the mathematical case of 1 / 0.
I you want a way to say: Hey, this shouldn’t have happened

I in the context of programming, this means throwing an
exception

I you want a way to handle the case, now that has happened
I this means handling an exception

Exceptions

Are exceptions pure or impure? Do the output of the functions
that use them depend only on the explicit input?
I throwing an exception is pure

I because throwing the exception doesn’t make the output of
the function dependent of something else ⇒ the function is
still pure

I catching an exception is impure
I consider the case where we would return 1 if the computations

within the functions succeed and 0 if they don’t. Notice that
in this case, the function’s output depends on outside
circumstances (i.e.: not only on the input) such as memory
runout, the other programs that are running on the machine,
etc

Note: Because of the time and space constraints, I have tried to
keep the explanations as brief as possible, but there is more to
argue about this!

Monads

The topic of monads is sometimes deemed to be hard to
understand because it is a very abstract concept.

Don’t worry if you don’t fully understand the following slides, but
it is important to get an overall idea!

Motivation: Why do we need monads?
I we would like to program only using functions

I but how can we establish the function executing order?
I how to we deal with functions that fail? exceptions are not

functions and we’ve seen that handling an exception is not
pure

I code reuse
I eliminate boilerplate (same section of code included in more

places within the program) code

IO Monad
Programs process the data from the outside and return the results
back to the outside world ⇒ the I/O system is very important for
a program.

Consider the following program:

main = do
putStrLn "Please enter your name"
name <- getLine
putStrLn $ "Hello " ++ name ++ "!"

I putStrLn is used for printing a string followed by a newline
character

I getLine reads a line from the standard input
I the operator

<-
binds the value from an IO action to a name

IO Monad

Let us look at the signatures of putStrLn and and getLine

putStrLn :: String -> IO()

getLine :: IO String

What is IO() meaning? What about IO String?
I anything of the type IO t is called an IO action

I note that t can be any type
I the () means an empty tuple and in this case it indicates that

the function putStrLn has no return value
I it is pronounced unit

Actions
What are actions?
I anything of type IO is an action
I an action is something we do that modifies the state of the

real world
I print something to the terminal
I read input from the console
I establish a network connection
I many others

I an action can be created, assigned and passed anywhere, like
numbers, strings or functions

I they produce an effect when performed, but not when
evaluated

I by executing an action of type IO t we will perform an I/O
and get a result of type t

I you can perform an I/O action only from within other I/O
actions

I main is an I/O action with type IO ()

IO Monad
I the execution of a Haskell program begins with main
I all I/O in Haskell programs is driven from the top at main
I this mechanism allows to isolate side effects

I perform I/O (which is not pure) within IO actions
I call pure functions from there

I do is how you define a sequence of actions
I indentation matters!

Why is it important to isolate impure code?
I unanticipated side-effects and the misunderstanding of the

circumstances in which functions might return different results
for the same input cause many errors in programs

I isolating impure code (i.e. code that has side effects) allows
the programmers to know which part of the code might alter
the state of the system or the world

I because of this, some compilers might be able to provide a
level of automatic parallelism (don’t worry if you don’t know
what this is)

I/O - Files

import System.IO
import Data.Char(isLetter)

main :: IO ()
main = do

inputHandle <- openFile "input.txt" ReadMode
outputHandle <- openFile "output.txt" WriteMode
main_loop inputHandle outputHandle
hClose inputHandle
hClose outputHandle

main_loop :: Handle -> Handle -> IO()
main_loop inH outH =

do inEOF <- hIsEOF inH
if inEOF

then return ()
else do inCh <- hGetChar inH

if (isLetter inCh)
then do hPutChar outH inCh

main_loop inH outH
else main_loop inH outH

I/O - Files

I the code above represents a simple program that reads the
characters from a file and prints all characters that are letters
in another file

I the program begins by using openFile which returns a file
handle

I in the end of the program hClose is used in order to close the
handle

I you need to import the System.IO module when working with
files because these functions (openFile, hClose, etc..) are
defined there

I in the main loop function we check if we reached the end of
the file, if not we proceed with reading a character and
checking if it is a letter (for that we need isLetter function
defined in Data.Char module). If it is, we print it in the
output file. We continue recursively to process the file.

I/O - Files

I openFile function takes as arguments a String (i.e. the file
name) and a IOMode (it specifies how the file will be
managed)

I the following table (taken from Real World Haskell book)
shows the possible values of a IOMode

I if you want to open a binary file, use openBinaryFile function
instead

I/O - Files

I to close file handles use hClose function
I do not forget to close the opened files!
I when you read and write to a file, a record of the current

position is maintained and once you do a reading this position
is incremented

I hTell function returns the current position
I hSeek function allows you to change the current position

Note: we will not discuss hSeek and hTell as we will not make use of them

I if you will ever need Haskell for real world projects, you should
know that there is also a Lazy I/O approach which you might
want to read about

Monads
On previous slides we discussed the IO monad, but we focused
more on the I/O actions and how to perform them, we haven’t
really defined what monads are. We will firstly have a look on
what a monad is from a mathematical perspective.
I a monad is a triple: (M, unitM, bindM)

I M is a type constructor (see the slides where we introduced
new data types)

I unitM and bindM are polymorphic functions with the following
signatures:

unitM :: a -> M a
bindM :: M a -> (a -> M b) -> M b

I unitM takes a value of type a into its corresponding monadic
representation

I bindM function simply makes the result from the previous
computation to become the argument of the next one; it is a
way to sequence actions and its correspondent in Haskell is
the operator >>= (we will talk later about sequencing in Haskell)

Monads

I the triple has to satisfy 3 laws:
I left unit
I right unit
I associativity

Note: As I believe a further discussion about monads from a
mathematical point of view would be beyond the scope of this
tutorial, I would encourage you (in case you want to want to know
more on this) to read The essence of functional programming
which is a very fine paper on monads written by the one who
introduced them to Haskell.

Monads
Before explaining what is a monad, let us simply have a look on
the monads we have seen so far (maybe, until now, you didn’t
know they are monads):
I lists
I Maybe
I IO monad

The monads are simply type classes that supports at least:
I a binding operation (represented by >>=)
I a wrapping operation (represented by return())

If we look into >>= signature:
(>>=) :: Monad m => m a -> (a -> m b) -> m b

I m a is called a monadic value; a is the old type (i.e.: an Int, a
Bool, etc) wrapped by the monad m
I it is exactly the meaning of IO Int, IO Bool, etc..
I people usually see the monads as containers, boxes

Sequencing

When we talked about do on slide 59, we said that it is just a way
to sequence actions. We can also chain actions by using the
operators >> and >>=.

I >> operator sequences two actions together: the first action is
performed, its result is discarded and then the second action is
performed

I >>= operator sequences two actions together: the first action
is performed, its result becomes the argument for a second
function that returns an action

Consider the program given as an example on slide 56, let us try to
write it without using do:
main =

putStrLn "Please enter your name" >>
getLine >>=
(\name -> putStrLn ("Hello " + name + "!"))

Return()

I in Haskell, return does not have the same meaning as in other
languages you might be familiar with

I return is used in Haskell to wrap data in a monad
I it is the equivalent of the unitM function that we saw earlier
I it does not abort the execution and can be used anywhere in

the program
I it is, in a sense, the opposite of the operator < − which is

used to pull out the data from a monad

If you write a function whose result depends on the I/O, you must
wrap it in a IO monad.
Example
isRaining :: IO Bool
isRaining =

do putStrLn "Is it raining outside? (y/n)"
input <- getChar
return (input == ’y’)

References

I Real World Haskell by Bryan O’Sullivan, Donald Stewart,
John Goerzen

I The essence of functional programming by Philip Wadler

