ICS 2018 Problem Sheet \#2

Even though some proofs may look simple or obvious, make sure you work out the proof details correctly and you write things down using correct mathematical notation. Construct a proof of the requested type.

Problem 2.1: proof by contrapositive
Let n be a natural number. If n is not divisible by 3 , then n is also not divisible by 15 .

Problem 2.2: proof by induction

Let n be a natural number with $n \geq 1$. Proof that the following holds:

$$
1^{2}+3^{2}+5^{2}+\ldots(2 n-1)^{2}=\sum_{k=1}^{n}(2 k-1)^{2}=\frac{2 n(2 n-1)(2 n+1)}{6}
$$

Problem 2.3: rotate a list and produce all possible rotations of a list (haskell) $\quad(1+1=2$ points)
a) Using pattern matching, implement a recursive function rotate :: Int -> [a] -> [a], which left rotates the list given as the second argument by the number of positions indicated by the first argument. Below are some example evaluations of the rotate function:

```
> rotate 0 "abcdef"
"abcdef"
> rotate 1 "abcdef"
"bcdefa"
> rotate 7 "abcdef"
"bcdefa"
> rotate 7 ""
""
```

b) Using your rotate function, implement a function circle :: [a] -> [[a]], which takes a list and returns a list of all possible rotations of the list. Below are some example evaluations of the circle function:

```
> circle ""
[]
> circle "a"
["a"]
> circle "ab"
["ab","ba"]
> circle "abc"
["abc","bca","cab"]
```

Hint: Consider producing a list of the approriate size and then apply the rotate function to the elements of this list in order to produce the result. This can result in a very short functional solution. Another approach is to implement a helper function the produces the nth result list element and to call this helper function successively to produce the result list.

