Introduction to Computer Science Course: CH08-320101
Jacobs University Bremen Date: 2018-11-07
Dr. Jirgen Schonwalder Due: 2018-11-15

ICS 2018 Problem Sheet #8

Problem 8.1: full adder using different kinds of gates (1+1+1+1 = 4 points)
A full adder digital circuit was introduced in class. It is defined by the following two boolean func-
tions:

S AVBVCiy,
Cout = (AAB)V (CinA(AVB))

a) Write both functions as a disjunction of product terms.

)
b) Write both functions as a conjunction of sum terms.
)
)

c) Write both functions using only not (=) and not-and (1) operations.

d) In adigital circuit, we can easily reuse common terms. Draw a small digital circuit implementing
S and C,,: using NAND gates only.
Problem 8.2: ripple carry adder and carry lookahead adder (haskell) (1+1+2+2 = 6 points)

You task is to implement a ripple carry adder and a carry lookahead adder. Binary numbers will be
represented as a list of Bool values. We break things into small steps:

a) Implement a function bin m n that converts the non-negative integer number n into a list of
Bools. The list returned list will have the length m.

ghci> bin 4 5

[False,True,False,Truel

ghci> bin 8 42
[False,False,True,False,True,False,True,False]

b) Implement a function dec x that converts a list of Bool values into the corresponding non-
negative integer number.

ghci> dec [False,True,False,True]

5

ghci> dec [False,False,True,False,True,False,True,False]
42

¢) Implement the functions faC and fas that receive two input boolean values and a carry boolean
value and calculate the carry (faC) and the sum (fas) of the full adder digital circuit. Use these
two functions to implement rcAdd, a ripple carry adder. For simplicity, rcAdd is not returning
the final carry bit.

ghci> rcAdd [False,True,False,True] [True,False,False,Falsel
[True,True,False,True]

Combining rcAdd with the other functions, you should be able to do computations like this:

ghci> dec (rcAdd (bin 4 5) (bin 4 8))
13

d) Implement the functions haC and haS that receive two input boolean values and calculate the
carry (haC) and the sum (haS) of the half adder digital circuit. Use these two functions to
implement claAdd, a carry lookahead adder. It is sufficient to implement the carry calculator
as a recursive function. For simplicity, c1aAdd is not returning the carry bit.



ghci> claAdd [False,True,False,True] [True,False,False,Falsel
[True,True,False,True]

ghci> dec (claAdd (bin 4 5) (bin 4 8))
13

Submit your Haskell code plus an explanation (in Haskell comments) as a plain text file.



