
Introduction to Computer Science Course: CH08-320101
Jacobs University Bremen Date: 2018-11-15
Dr. Jürgen Schönwälder Due: 2018-11-22

ICS 2018 Problem Sheet #9

Problem 9.1: simple cpu machine code (2+2 = 4 points)

The following program has been written for the simple central processing unit introduced in class.
The table below shows the initial content of the 16 memory cells. The first column denotes the
memory address.

Machine Code Assembly Code Description
0 001 1 0001
1 010 0 1111
2 001 1 0000
3 101 1 0100
4 110 1 0110
5 111 1 0000
6 001 0 0011
7 100 1 0001
8 010 0 0011
9 001 0 1111

10 011 0 1111
11 010 0 1111
12 110 1 0010
13 000 0 0000 no instruction / data, initialized to 0
14 000 0 0000 no instruction / data, initialized to 0
15 000 0 0000 no instruction / data, initialized to 0

a) Explain what the instructions are doing by filling in the assembly code column. Add meaningful
text to the description column to describe the action performed by an instruction.

b) Explain how the program proceeds with its calculation. Describe the control flow of the pro-
gram. Which cells change and what is the purpose of the changes? What is the result left in
memory cell 15 when the program stops execution?

Problem 9.2: fold function duality theorems (2+2+2 = 6 points)

The fold functions compute a value form a list by applying an operator to the list elements and by
using a neutral element. The foldl function assumes that the operator is left associative, the foldr
function assumes that the operatore is right associative. For example, the function call

foldl (+) 0 [3,5,2,1]

results in the computation of ((((0+3)+5)+2)+1) and the function call

foldr (+) 0 [3,5,2,1]

results in the computation of (3+(5+(2+(1+0)))). The value computed by the fold functions may be
more complex than a simple scalar. It is very well possible to construct a new list as part of the
fold. For example:

map' :: (a -> b) -> [a] -> [b]

map' f xs = foldr (\x acc -> f x : acc) [] xs

The evaluation of map' (+3) [1,2,3] results in the list [4,5,6]. There are several duality theo-
rems that can be stated for the fold functions. Prove the following three duality theorems:

a) Let op be an associative operation with e as the neutral element:

op is associative: (x op y) op z = x op (y op z)

e is neutral element: e op x = x and x op e = x

Then the following holds for finite lists xs:

foldr op e xs = foldl op e xs

b) Let op1 and op2 be two operations for which

x `op1` (y `op2` z) = (x `op1` y) `op2` z

x `op1` e = e `op2` x

holds. Then the following holds for finite lists xs:

foldr op1 e xs = foldl op2 e xs

c) Let op be an associative operation and xs a finite list. Then

foldr op a xs = foldl op' a (reverse xs)

holds with

x op' y = y op x

