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Haskell Tutorial: Datatypes

November 1, 2019
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1 Datatypes

Sometimes we may want to introduce new data types for specific purposes.

1.1 Employee

We introduce the mechanisms that can be used to define our own datatypes by defining a datatype
representing information about an employee.

data EmployeeInfo = Employee String Int Double [String]
deriving (Show)

p = Employee "Joe Sample" 22 186.3 []
print p

Employee "Joe Sample" 22 186.3 []

To define a new datatype, use the keyword data, which is followed by the name of our new type
(also called a type constructor), in our example EmployeeInfo. The type constructor is followed by
the data constructor Employee. The data constructor is used to create a value of the EmployeeInfo
type. Both the type constructor and the data constructor must start with a capital letter. The Int,
Double, String and [String] (that follow after the data constructor Employee) are the compo-
nents/fields of the type. (If you are familiar with an object-oriented language, these components
serve the same purpose as fields for a class).

In this particular example, the name of the type constructor (EmployeeInfo) and the value/data
constructor (Employee) use a different name for you to see which is which. It is common practice
to give them both the same name. There is no ambiguity because the type constructor’s name is
used only in type declaration / type signatures and the value constructor’s name is used in the
actual code (in writing expressions).

The deriving (Show) part asks Haskell to make sure that the new type belongs to the Show type-
class, which implies to derive a show function that renders an instance of our newly defined
datatype into a string. This show function is used by the print function. If there would be no
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deriving (Show), Haskell would not be able to print an instance of our new datatype. We will
talk later more about typeclasses later, so lets not dig deeper here.

Consider the fields from the example above. It is not very clear what the Int, Double, String and
[String] fields mean. To make things as clear as possible, it is possible to introduce synonyms for
existing types at any time. Such synonyms give the type a more descriptive name.

type Age = Int

type Salary = Double

type Name = String

type Manager = [Name]

data EmployeeInfo = Employee Name Age Salary Manager
deriving (Show)

p = Employee "Joe Sample" 22 86123.35 ["Lucy Boss"]
print p

Employee "Joe Sample" 22 86123.35 ["Lucy Boss"]

Data type definitions can be nested. We improve our example by replacing the Age field with a
Birthday field. Using a Birthday in our Employee type has the advantage that the birthday is
immutable while the age changes once every year. Since a date consists of a year, a month, and a
day, we construct another data type to represent dates. (In real projects, you likely want to use a
pre-defined date type.)

type Day = Int

type Month = Int

type Year = Int

data Date = Date Year Month Day
deriving (Show)

type Name = String

type Birthday = Date
type Salary = Double
type Manager = [Name]

data Employee = Employee Name Birthday Salary Manager
deriving (Show)

p = Employee "Joe Sample" (Date 1983 06 17) 86123.35 ["Lucy Boss"]
print p

Employee "Joe Sample" (Date 1983 6 17) 86123.35 ["Lucy Boss"]

New data types can also be alternatives of types. The simplest examples are enumerations. We
can use alternative types to define the sex of a person.



[6]: data Sex = Female | Male | Diverse
deriving (Show)

The Sex datatype has three data constructors, Female, Male and Diverse, separated by a bar sym-
bol (the bar symbol can be read as “or”). The data constructors are commonly referred to as
alternatives or cases. The data constructors can take zero or more arguments.

[6]: data Employee = Worker Name Birthday Sex Salary Manager
| Manager Name Birthday Sex Salary
deriving (Show)

w = Worker "Joe Sample" (Date 1983 06 17) Diverse 86123.35 ["Lucy Boss"]
print p

m = Manager "Lucy Boss" (Date 1967 02 20) Female 113213.23

print m

Employee "Joe Sample" (Date 1983 6 17) 86123.35 ["Lucy Boss"]
Manager "Lucy Boss" (Date 1967 2 20) Female 113213.23

Data type definitions can be recursive, giving us the option to have inductively defined data types.
Lets make the manager of an empoyee another employee so that we can represent a whole em-
ployee hierarchy.

[7]: data Employee = Worker Name Birthday Sex Salary Employee
| Manager Name Birthday Sex Salary
deriving (Show)

lucy :: Employee
lucy = Manager "Lucy Boss" (Date 1967 02 20) Female 113213.23

joe :: Employee
joe = Worker "Joe Sample" (Date 1983 06 17) Diverse 86123.35 lucy

print joe

Worker "Joe Sample" (Date 1983 6 17) Diverse 86123.35 (Manager "Lucy Boss" (Date 1967 2 20) Fema

1.2 Maybe

Type definitions can be parameterized by introducing a type parameter in the type definition. A
common example is the definitions of Maybe in the prelude.

[8]: data Maybe a = Nothing | Just a
deriving (Show)
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The definition of Maybe has a type as its argument, i.e., the type is parametrized. The Maybe type
can be used to create types that contain a certain typed value or nothing. This helps in situation
where some value is optional or not always defined. Lets take a short excursion by looking at the
standard tail function: it fails if called with a list that has no tail.

tail [1..3]
tail [1]
tail []

[2,3]
(]

Prelude.tail: empty list

Throwing an error is a pretty bad side effect. With Maybe, we have a tool that we can use to write
a safe tail function, which returns Nothing or Just a list.

safeTail :: [a] -> Maybe [al
safeTail [] = Nothing
safeTail (_:xs) = Just xs

safeTail [1..3]
safeTail [1]
safeTail []

Just [2,3]
Just []

Nothing

1.3 Employee (continued)

With this definition of Maybe, we can further improve our Employee type by enabling managers to
be managed by other managers but top-level managers are not managed by anyone. And at this
point, we may want to give up the distinction between managers and workers (since an employee
is a manager once she manages someone).

data Employee = Employee Name Birthday Sex Salary (Maybe Employee)
deriving (Show)

lucy = Employee "Lucy Boss" (Date 1967 02 20) Female 113213.23 Nothing

joe = Employee "Joe Sample" (Date 1983 06 17) Diverse 86123.35 (Just lucy)



print joe
Employee "Joe Sample" (Date 1983 6 17) Diverse 86123.35 (Just (Employee "Lucy Boss" (Date 1967 2

The interpretation is that the manager is either Just Employee or Nothing. The Maybe type is very
widely used to indicate missing values in Haskell.

The last improvement we want to make is to use the record syntax. With the record syntax, we
can give the various fields of our type names. Haskell will then automatically generate functions
that can be used to access the different fields of a type. The record syntax also changes how data
instances are rendered using the show function.

[12]: type Day = Int
type Month = Int
type Year = Int
data Date = Date { year :: Year, month :: Month, day :: Day }
deriving (Show)

type Name = String

type Euro = Double -- never represent money using floating point types ing
—real code

data Sex = Female | Male | Diverse
deriving (Show)

data Employee = Employee { name :: Name
, birthday :: Date
, sex :: Sex
, salary :: Euro
, manager :: Maybe Employee }
deriving (Show)

lucy = Employee { name = "Lucy Boss"
, birthday = Date { year = 1967, month = 02, day = 20 }
, sex = Female
, salary = 113213.23
, manager = Nothing }

joe = Employee { name = "Joe Sample"
, birthday = Date { year = 1983, month = 06, day = 17 }
, sex = Diverse
, salary = 86123.35
, manager = Just lucy }

print joe
print (manager joe)



print lucy
print (manager lucy)

Employee {name = "Joe Sample", birthday = Date {year = 1983, month = 6, day = 17}, sex = Diverse
Just (Employee {name = "Lucy Boss", birthday = Date {year = 1967, month = 2, day = 20}, sex = Fe
Employee {name = "Lucy Boss", birthday = Date {year = 1967, month = 2, day = 20}, sex = Female,

Nothing

1.4 Binary Tree

As another example, let us define a parametric type for a binary tree in order to practice what we
have learned.

[13]: data Tree a = Empty
| Leaf a
| Branch a (Tree a) (Tree a)
deriving (Eq, Show)

t = Branch 'd' (Branch 'b' (Leaf 'a') (Leaf 'c')) (Branch 'f' (Leaf 'e') Empty)
print t

itype t

Branch 'd' (Branch 'b' (Leaf 'a') (Leaf 'c')) (Branch 'f' (Leaf 'e') Empty)
Tree Char

Haskell has derived that t is of type Tree Char. In the definition of Tree, we ask Haskell to derive
the typeclasses Eq and Show. We do this to obtain a show function that takes a Tree value and
converts it into a string so that we can print values. Lets see what happens if we create a Tree of
numbers.

[14]: t = Branch 4 (Branch 2 (Leaf 1) (Leaf 3)) (Branch 6 (Leaf 5) Empty)
print t

:type t

Branch 4 (Branch 2 (Leaf 1) (Leaf 3)) (Branch 6 (Leaf 5) Empty)

forall a. Num a => Tree a
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Haskell derived that s is of type Num a => Tree a, i.e., itis a tree of a type that is constrained to
the Num a typeclass.

Lets now define a function values :: Tree a -> [a] that takes a tree and returns all values
stored in the tree as a list. Note that this function works for any type that can be used with the
tree type. We can use this function with a tree of strings or a tree of numbers, i.e., this function is
polymorphic.

values :: Tree a -> [al
values Empty = []
values (Leaf x) = [x]

values (Branch x 1 r) = values 1 ++ [x] ++ values T

t = Branch 'd' (Branch 'b' (Leaf 'a') (Leaf 'c')) (Branch 'f' (Leaf 'e') Empty)
print E values t

t = Branch 4 (Branch 2 (Leaf 1) (Leaf 3)) (Branch 6 (Leaf 5) Empty)
print E values t

"abcdef"
[1’2’3’4’5’6]

The values function can be implemented in different ways since the tree may be traversed in three
different ways: * pre-order (NLR): 1. Return the value of the current node (N) 1. Return the values
of the left subtree (L) 1. Return the values of the right subtree (R) * in-order (LNR): 1. Return the
values of the left subtree (L) 1. Return the value of the current node (N) 1. Return the values of
the right subtree (R) * post-order (LRN): 1. Return the values of the left subtree (L) 1. Return the
values of the right subtree (R) 1. Return the value of the current node (IN)

Perhaps we should have three traversal functions.

preOrderValues :: Tree a -> [al

preOrderValues Empty = []

preOrderValues (Leaf x) = [x]

preOrderValues (Branch x 1 r) = [x] ++ preOrderValues 1 ++ preOrderValues r

inOrderValues :: Tree a -> [a]

inOrderValues Empty = []

inOrderValues (Leaf x) = [x]

inOrderValues (Branch x 1 r) = inOrderValues 1 ++ [x] ++ inOrderValues r

postOrderValues :: Tree a -> [al]

postOrderValues Empty = []

postOrderValues (Leaf x) = [x]

postOrderValues (Branch x 1 r) = postOrderValues 1 ++ postOrderValues r ++ [x]
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t = Branch 'd' (Branch 'b' (Leaf 'a') (Leaf 'c')) (Branch 'f' (Leaf 'e') Empty)
print E preOrderValues t

print E in0OrderValues t

print E postOrderValues t

"dbacfe"
"abcdef"
"acbefd"

We can also define a functionmap :: (a -> b) -> Tree a -> Tree b applying a function to all
values stored in leaves of our tree.

map :: (a -> b) -> Tree a -> Tree b

map f Empty = Empty

map f (Leaf x) = Leaf (f x)

map f (Branch x 1 r) = Branch (f x) (map f 1) (map f r)

t = Branch 4 (Branch 2 (Leaf 1) (Leaf 3)) (Branch 6 (Leaf 5) Empty)
print E map (+1) t

Branch 5 (Branch 3 (Leaf 2) (Leaf 4)) (Branch 7 (Leaf 6) Empty)

In a similar way, we can define a foldr function that takes a function to reduce a tree value and
an already reduced value, a zero value, and a tree and returns the reduced value.

foldr :: (a ->b ->b) -> b -> Tree a -> b
foldr _ z Empty = z

foldr f z (Leaf x) = f x z
foldr £ z (Branch x 1 r) = foldr f (f x (foldr f z r)) 1

t = Branch 4 (Branch 2 (Leaf 1) (Leaf 3)) (Branch 6 (Leaf 5) Empty)
print E foldr (+) 0 t
print E foldr (%) 1 t

21
720

Note that our in-order values function is a special case of a fold over the tree.



[19]: values :: Tree a -> [a]
values = foldr (:) []

t = Branch 'd' (Branch 'b' (Leaf 'a') (Leaf 'c')) (Branch 'f' (Leaf 'e') Empty)
print E values t

"abcdef"

Since Tree is also an instance of the Eq typeclass, we can test trees for equality.

[20]: t = Branch 4 (Branch 2 (Leaf 1) (Leaf 3)) (Branch 6 (Leaf 5) Empty)
r = map (+1) t
print E t=r
print E t /=1

False
True
[30]: draw :: Show a => Tree a -> String
draw t = pfxDraw "" t where
pfxDraw p Empty = p ++ "+:\n"
pfxDraw p (Leaf x) = p ++ "+-" ++ show x ++ "\n"

pfxDraw p (Branch x 1 r) = center ++ left ++ right where
center = p ++ "+-" ++ show x ++ "\n"
left = pfxDraw (p ++ " ") 1
right = pfxDraw (p ++ " ") r

t = Branch 4 (Branch 2 (Leaf 1) (Leaf 3)) (Branch 6 (Leaf 5) Empty)
putStr E draw t

+-4
+-2
+-1
+-3
+-6
+-5
+:
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