
Haskell Tutorial: Functors, Applicatives, Monads

November 26, 2019

[1]: :opt no-lint
import Control.Applicative
import Control.Monad

1 Functors

A very basic concept of Haskell is the application of a function to a value.

[2]: (*5) 2

10

Sometimes, we have values that are contained in a certain context. For example, Just 2 is the
value 2 contained in the context Just. Another example is the value 2 contained in a list: [2]. We
cannot directly apply the function (*5) to Just 2 or [2] since we first have to obtain the value 2
from its context. You can think of the context as a box that contains a value. For lists, we already
know that we can apply a function to all list elements by using the map function. A generalization
of map is the function fmap :: (a -> b) -> f a -> f b.

[3]: map (*5) [2]
fmap (*5) [2]
fmap (*5) (Just 2)
fmap (*5) Nothing

[10]

[10]

Just 10

Nothing

Types that implement fmap are called functors. A functor is formally defined as a type class:

1

[4]: -- class Functor f where
-- fmap :: (a -> b) -> f a -> f b

Types implementing the Functor type class, i.e., types that are instances of the Functor type class,
implement fmap in a way that is consistent with the nature of the context.

[5]: fmap' :: (a -> b) -> [a] -> [b]
fmap' _ [] = []
fmap' f (x:xs) = f x : map f xs

fmap' :: (a -> b) -> Maybe a -> Maybe b
fmap' f (Just x) = Just $ f x
fmap' f Nothing = Nothing

Haskell commonly defines the special operator <$> for fmap.

[6]: (<$>) :: Functor f => (a -> b) -> f a -> f b
(<$>) = fmap

fmap (*5) [2]
(*5) <$> [2]
fmap (*5) (Just 2)
(*5) <$> (Just 2)

[10]

[10]

Just 10

Just 10

Interestingly, functions are functors as well. Hence, we can apply fmap to functions, giving us
function composition.

[7]: f = fmap (*5) (+5)
g = (*5) <$> (+5)
h = (*5) . (+5)

f 0
g 0
h 0

25

2

25

25

Types implementing the Functor type class have to implement fmap such that the following func-
tor laws hold (id is the identity function):

[8]: -- fmap id = id
-- fmap (f . g) = fmap f . fmap g

2 Applicative

The Applicative type class extends the Functor type class. While the Functor type class assumes
that the values are wrapped in a context (a box), Applicative also supports functions wrapped in
a context (a box). The Applicative type class is defined as follows:

[9]: -- class Functor f => Applicative f where
-- pure :: a -> f a
-- (<*>) :: f (a -> b) -> f a -> f b

The function pure takes a value and puts it into the context (a box). The operator (<*>) applies a
function in a context to a value in a context and it returns a value in a context.

[10]: Just (*5) <*> Just 2
[(*5)] <*> [2]

[(*1),(*2),(*3)] <*> [1..3]

Just 10

[10]

[1,2,3,2,4,6,3,6,9]

The following example combines <$> (fmap) with <*>. The first parenthesis applies the (*) func-
tion to Just 5, which givs us the function Just (*5). This function is then applied to Just 2,
which gives us Just 10.

[11]: ((*) <$> (Just 5)) <*> (Just 2)

Just 10

Types implementing the Applicative type class have to implement the <*> operator and the func-
tion pure such that the following applicative laws hold (id is the identity function):

3

[12]: -- pure id <*> v = v
-- pure f <*> pure x = pure (f x)
-- u <*> pure y = pure ($ y) <*> u
-- u <*> (v <*> w) = pure . <*> u <*> v <*> w

The last applicative law says that <*> is associative.

3 Monads

The Monad type class extends the Applicative type class. It defines a function return that puts
a value into a monad and a function (>>=) called bind that takes a value in a monad (a box), a
function that takes a value and returns a value in a possibly different monad, and returns the later
monadic value.

[13]: -- class Applicative m => Monad m where
-- return :: a -> m a
-- (>>=) :: m a -> (a -> m b) -> m b

To illustrate this idea, we use the type Maybe, which happens to be an instance of the Monad type
class. Lets start with a function that takes and Integer and returns a Maybe Integer.

[14]: half :: Integer -> Maybe Integer
half x = if even x

then Just (x `div` 2)
else Nothing

half 8

Just 4

Unfortunately, we cannot compose half with itself since half takes an Integer but returns a
boxed value. This is where the bind operator can help. (Note that return is a rather confusing
name for what the function does.) There is another operator (=<<), which swaps the first two
arguments, which is sometimes handy. Note that the operators kind of indicate how the value is
flowing through a sequence of functions.

[15]: Just 8 >>= half
Just 4 >>= half
Just 2 >>= half
Just 1 >>= half

return 8 >>= half >>= half >>= half >>= half
half =<< half =<< half =<< half =<< return 8

Just 4

Just 2

4

Just 1

Nothing

Nothing

Nothing

Types implementing the Monad type class have to implement the >>= operator and the function
return such that the following monad laws hold (id is the identity function):

[16]: -- return a >>= f = f a
-- m >>= return = m
-- (m >>= f) >>= g == m >>= (\x -> f x >>= g)

Monds play an important role in Haskell since they can be used to encapsulate side effects. For
example, the IO Monad takes care of input and output operations. The getLine :: IO String
function takes no arguments and returns an IO action to read a string from the input. The putStrLn
:: String -> IO String takes a string and returns an IO action to print it. These functions can
be chained together:

[17]: getLine >>= putStrLn

some input typed in here

In case the result of a chained function is not needed, one can use the then (>>) operator.

[18]: putStr "Hello" >> putStr " " >> putStrLn "World"

Hello World

Haskell has a special notation for monads, the do notation. Using the do notation, code manipu-
lating monads starts to look like imperative code. Hence, some people call monads programmable
semicolons since semicolons are often used to sequence statements in imperative languages. How-
ever, in Haskell, the behaviour of monads is programmable.

[19]: do
putStr "Hello"
putStr " "
putStrLn "World"

do
line <- getLine
putStrLn line

5

Hello World

some more input typed in here

4 Summary

Below is a summary of the operators defined by the type classes discussed here. Recall that a
Monad type is also Applicative and that an Applicative type is also a Functor.

[20]: -- (<$>) :: (a -> b) -> f a -> f b -- Functor
-- (<*>) :: f (a -> b) -> f a -> f b -- Applicative
-- (=<<) :: (a -> m b) -> m a -> m b -- Monad
-- (>>=) :: m a -> (a -> m b) -> m b -- Monad

6

	Functors
	Applicative
	Monads
	Summary

