
Haskell Tutorial: Introduction

September 19, 2019

[2]: :opt no-lint

1 Introduction

Haskell is a statically typed, purely functional programming language with type inference and
lazy evaluation. The first version of Haskell was defined in 1990 and the definition of the Haskell
language is a maintained by the Haskell Committee. Haskell is used widely in academia and
(to a lesser extend) in the industry. Pandoc, a popular tool to convert between different markup
formats, is written in Haskell.

So why is it a neat idea to learn Haskell? There are a couple of possible answers:

• A functional language expands the way you think about programming.
• Haskell makes it easy to reason about programs.
• Haskell is a safe language.
• Haskell is a pure language avoiding side effects.

A popular implementation is the Glasgow Haskell Compiler. It comes with a number of tools.
The most important for beginners are:

• ghci - an interactive Haskell interpreter
• ghc - a Haskell compiler translating Haskell into native machine code
• runghc - a program to run Haskell code as scripts

A tool that can be quite helpful in particular for beginners is hlint. HLint suggests possible
improvements to Haskell source code, often providing suggestions how to simplify code. Another
package we like to use is HUnit, a framework for writing unit test cases.

1.1 Expressions

The easiest way to get started with Haskell is to launch ghci and to type expressions into the
interactive Haskell interpreter. Below are some simple arithmetic expressions. Haskell so far
works as a simple calculator. Note that it can do arbitrary precision integer arithmetic.

[3]: 2 + 5

7

1

https://www.haskell.org/ghc/

[4]: 2 + 5 * 3

17

[5]: (2 + 5) * 3

21

[6]: 2^123

10633823966279326983230456482242756608

Haskell is a functional language and that means that pretty much everything in Haskell are
functions. Even the simple arithmetic expressions above can be seen as function calls written in
infix notation. The + operator, for example, is just a syntactic shorthand refering to a function that
takes two arguments and returns the sum of them. We can actually write the above expressions in
a pure functional representation using prefix notation:

[7]: (+) 2 5

7

[8]: (+) 2 ((*) 5 3)

17

[9]: (*) ((+) 2 5) 3

21

[10]: (^) 2 123

10633823966279326983230456482242756608

Of course, writing arithmetic expressions in prefix notation usually does not make the expres-
sions more readable and hence nobody would do this in production code unless there is a very
specific reason. At the end, the goal of almost every programming effort is to produce code that is
easy to understand and easy to reason about.

Haskell is also a typed language. So far, we only used integral numbers. Lets see what happens
if we devide two numbers.

2

[11]: 6/2

3.0

Apparently, this returns a floating point number. If we want integer division, we have to use
the div function. Note that in Haskell we write the function name followed by its arguments. If
necessary, parenthesis are placed before the function name and after the last argument. This is
different from other programming languages where parenthesis are required to enclose the argu-
ments of a function. In C or C++, one would write div(6, 2) but in Haskell this is simply div 6
2. If parenthesis are necessary in an expression, the function call would be (div 6 2).

[12]: div 6 2

3

Since div is a function that takes two arguments and produces a single result value, we can
write this expression as well in infix notation by enclosing the function name in backticks.

[13]: 6 `div` 2

3

There are predefined functions to test whether a number is even or odd and we can use the ==
operator to test whether two values are equal. In a similar way, we can compare numbers. The
infix operator notation uses the operators < (less than), > (greater than), <= (less than or equal), >=
(greater than or equal), and /= (not equal).

[14]: odd 1

True

[15]: even 1

False

[16]: 1 == 2

False

The results show that the comparison operators (functions) return truth values (True or False).
[17]:

3

1.2 Lists

Lists are the most fundamental data type in Haskell. A list is represented by a comma-separated
sequence of elements surrounded by square brackets. All elements of a list must be of the same
type, i.e., they must all be numbers or they must all be characters and so on. An empty list is
represented by opening and closing square brackets with nothing inbetween.

[18]: []

[]

[19]: [0,1,2,1,3]

[0,1,2,1,3]

Haskell supports an enumeration notation, which is a conveninent way to create longer list
(and even infinite lists, as we will see later).

[20]: [1..10]
[0,5..20]
[10,9..1]

[1,2,3,4,5,6,7,8,9,10]

[0,5,10,15,20]

[10,9,8,7,6,5,4,3,2,1]

More complicated lists can be created using list comprehensions. List comprehensions mimic
what we know from mathematics. In mathematics, if we want to define the set of odd numbers
between 1 and 10, we could write {x|x ∈ {1, .., 10} and x is odd}. This is how this idea can be
translated into Haskell:

[21]: [x | x <- [1..10], odd x]

[1,3,5,7,9]

If we want the list of squares of all odd numbers between 1 and 10, we can simply apply a
function. In mathematics, we would write {x2|x ∈ {1, .., 10} and x is odd}. For readability, we
use the infix operator notation. (As an exercise, rewrite this example in prefix notation.)

[22]: [x^2 | x <- [1..10], odd x]

[1,9,25,49,81]

It is possible to create more complex list comprehensions with variables ranging over multiple
lists:

4

[23]: [x + y | x <- [1..5], y <- [1..3], x == y]

[2,4,6]

Lists can be concatenated using the ++ operator.
[24]: [1..5] ++ [6..10]

[1,2,3,4,5,6,7,8,9,10]

The elements of a list have a defined order and a certain element can appear multiple times in
a list. Hence, lists should not be confused with sets. Since lists maintain an order, it makes sense
to talk about the first element of a list or the last element of a list. The head function returns the
first element of a list while the tail function returns the list without its first element. The last
function returns the last element of a list while the init function returns the list without the last
element.

[25]: head [1..10]

1

[26]: tail [1..10]

[2,3,4,5,6,7,8,9,10]

[27]: last [1..10]

10

[28]: init [1..10]

[1,2,3,4,5,6,7,8,9]

The : operator (often called the cons operator) prepends a head element to a list. In other
words, the (:) function takes as first argument an element and as second argument a list and it
returns the list with the element prepended. Do not confuse this with the (++) function, which
takes two lists and returns the concatenation of these two lists.

[29]: head [1..10] : tail [1..10]

[1,2,3,4,5,6,7,8,9,10]

Note that the : operator is right associative. This makes it easy to use the cons operator
repeatedly to create a list.

5

[30]: 1 : 2 : 3 : []

[1,2,3]

The null function returns True if a list is empty and False otherwise. This gives us a conve-
nient (and fast) way to test whether a list is empty. The length function returns the number of
elements in a list.

[31]: null [1..10]

False

[32]: length [1..10]

10

Since Haskell allows us to create infinite lists (yes it does!), it is strongly recommended to use
null to test whether a list is empty. The evaluation of the expression length [1..] == 0 will not
terminate since the calculation of the length of an infinite list will not terminate.

[33]: null [1..]

False

[34]: null [x | x <- [1..10], x == 2^x]

True

There are more predefined useful list functions. Some frequently used functions are:

• The concat function takes a list of lists and concatenates them
• The reverse function takes a list and reverses all elements in it
• The take function takes a list and a number n and returns the first n elements (or fewer if the

list has less than n elements)
• The drop function takes a list and a number n and returns the tail after removing the first n

elements (or an empty list if the list has less than n elements)
• The elem function returns True if a given value is in the list and False otherwise
• The map function takes a function and list and applies the function to all elements of the list
• The filter function takes a function returning either True or False and a list and returns all

elements of the list for which the function applied to the list element returns True

The last two functions as examples of higher order functions. Higher order functions take func-
tions as arguments or return functions. Programming with higher order functions is extremely
powerful and they often replace simple loops that you may know from imperative programming.

6

[35]: concat [[1..3], [4..7],[8..10]]

[1,2,3,4,5,6,7,8,9,10]

[36]: reverse "hello world"

"dlrow olleh"

[37]: take 5 [1..10]

[1,2,3,4,5]

[38]: drop 5 [1..10]

[6,7,8,9,10]

[39]: elem 5 [1..10]

True

[40]: map even [1..10]

[False,True,False,True,False,True,False,True,False,True]

[41]: filter odd [1..10]

[1,3,5,7,9]

[42]: filter (< 7) [1..10]

[1,2,3,4,5,6]

The last example shows something rather special. We want to select all numbers from the
list that are less than 7. To do this, we take the operator < and we fix the second argument to
the constant 7. This gives us a function that has only a single argument and we apply this new
function too all list elements in order to produce the result. The technique applied here is called
currying and rather fundamental in Haskell. Currying encourages programmers to solve generic
problems and then the generic solution can be tailored easily to solve a given task at hand. In the

7

example, we take the generic “less than” operator and we curry it down to the much more specific
“less than 7” function.

We finish this section with introducing the indexing operator !!. The indexing operator takes
two arguments, the first argument is a list and the second argument is an index number. The
operator returns the element of the list at the index position. (The first element of a list has the
index position 0.) An index number that is not present in the list leads to an error. Hence, seasoned
Haskell programmers often try to avoid the indexing operator in order to write pure functions that
have no side effects.

[43]: [1..] !! 9

10

1.3 Characters and Strings

A character value is defined by writing the character surrounded by single quotes. Hence, 'a'
represents the character a. Haskell supports unicode and hence it is no problem to write funny
characters in Haskell code. (Whether doing so is a good idea is a different discussion.) Special
characters like newlines are represented by escape sequences that start with a backslash. For
example, the escape sequence '\n' represents a newline character while the escape sequence '\\'
represents the backslash character.

[44]: 'a'

'a'

[45]: '\n'

'\n'

A string is simply a list of characters. Since string literals appear quite frequently, there is a
special notation for string literals (lists of characters). A string literal is a possibly empty sequence
of characters surrounded by double quotes.

[46]: "this is a string"

"this is a string"

Since a string literal defines a list of characters, we can use list functions on strings.
[47]: length "this is a string"

16

[48]: "this " ++ "is " ++ "a " ++ "string"

"this is a string"

8

[49]: null ""

True

[50]: head "foo"
tail "foo"
last "foo"
init "foo"

'f'

"oo"

'o'

"fo"

Comparison operators are defined for characters and strings. On strings, the operators do
lexicographic comparison.

[51]: 'a' < 'b'
'b' < 'a'
"aa" < "ab"
"21" < "111"
21 < 11

True

False

True

False

False

9

1.4 Tuples

Tuples are another way to pack multiple values together. Tuples are represented by the values
contained in the tuple separated by comma and enclosed in parenthesis. There are some key dif-
ferences between lists and tuples: - Tuples have a fixed number of values and they are immutable.
It is not possible to add values to a tuple or to remove values from a tuple. Tuples are useful in
situations where the number of elements is fixed. For example, an edge in a graph can be repre-
sented by the two nodes connected by the edge. - The values of a tuple can be of different types.
A tuple can easily contain a number, a string, another tuple, and a list.

[52]: (42, "answer", ('a', "string"), [1..10])

(42,"answer",('a',"string"),[1,2,3,4,5,6,7,8,9,10])

Pairs are tuples that have two elements. For pairs, we have predefined functions that can be
used to access the first (fst) and the second (snd) element of a pair.

[53]: fst ("one", 2)

"one"

[54]: snd ("one", 2)

2

A uesful function to create lists of pairs is zip. The zip function takes two lists and returns a
list of pairs: The first element of the first list is paired with the first element of the second list, the
second element of the first list is paired with the second element of the second list and so on. This
continues until one of the lists has been exhausted.

[55]: zip [1..] ["apple", "peach", "pear"]

[(1,"apple"),(2,"peach"),(3,"pear")]

Lists of tuples can also be created using list comprehensions. Lets create a list of pairs where
the second element is a square of the first element and each element is in the range [1..10].

[56]: [(a,b) | a <- [1..10], b <- [1..10], b == a^2]

[(1,1),(2,4),(3,9)]

10

1.5 Types

Haskell is a strongly and statically typed programming language. This means that every value
has an associated type. Think of types as a set of values with defined operations on them. For
example, take the set of integral numbers. It is natural to think of these numbers as a type.

• strongly typed

– Haskell does not automatatically cast a value from one type into a different type
– By avoiding automatic type conversions, some programming error can be cached before

they cause problems

• statically typed

– types are known at compilation type by the compiler / interprefer
– static typing, in combination with strong typing, makes type errors impossible to occur

at runtime

• type inference

– Haskell can infer type information and hence the programmer does not have to specify
types explicitely for all values (or functions)

Even though Haskell can infer types, we will always specify the type signatures of functions
explicitely as this is good practice and captures that intention of the programmer. Some of the core
Haskell types are:

• Char: characters (unicode)
• Bool: one of the two boolean values True and False
• Int: small signed integer number, usually restricted to 64 bits or 32 bits (platform specific)
• Integer: integer numbers of arbitrary precision (well, bounded by the available memory)
• Double: floating point numbers, usually 64-bits wide
• Rational: rational numbers

We can be explicit that a certain value (or expression) has a certain type. The :: operator
indicates that the value on the left side of the operator is to be understood as having the type
defined on the right side of the operator.

[57]: 42 :: Double

42.0

[58]: 3 / 2 - 1 / 4 :: Rational

5 % 4

The last example says that we want the expression to return a rational number. The Haskell
notation 5 % 4 represents the rational number commonly written as the fraction 5

4 in mathematics.
While we can define the type of values and expressions, we usally do not do this and rely on
Haskell’s type inference to determine the type of values and expressions.

11

In order to get used to types, it is useful to inspect what Haskell knows about types. In ghci
or this notebook, it is possible to enquire the runtime system about the type information of an
expression. This is done by sending the :type command to the runtime (the command may be
abbreviated to :t as long as there is no other runtime command that starts with a t).

[59]: :type 'a'

Char

[60]: :type "hello"

[Char]

[61]: :type []

forall a. [a]

[62]: :type head

forall a. [a] -> a

[63]: :type map

forall a b. (a -> b) -> [a] -> [b]

The last example says that map is a function that takes a function mapping from type a to
type b and a list of values of type a and it returns a list of values of type b. Since a and b are not
constrained, the map function can be used for arbitrary types a and b.

1.6 Functions

Since Haskell is a functional language, the programmer primarily defines functions. Defining a
function can be very simple. Lets define a function that takes a single number and returns the
square of the number, i.e., f (x) = x2.

[64]: f x = x^2

[65]: f 4

16

[66]: f 25

625

We can use the newly defined function to define more functions. Lets define g(x) = f (x)− 8.

12

[67]: g x = f x - 8

[68]: g 4

8

While this all works as one would expect, we never really specified that the argument of f
must be a number. Still, if we try to invoke f on the character c, Haskell provides us with a
type error. What happens here is that Haskell has inferred that the function f is not defined for
characters, because the function definition uses an expression that is not defined for characters.
The error message may not be readable yet but the point here is that this is an error that is thrown
at compile time and before execution starts. This means that the programmer is required to fix the
problem in the code before it can be run and do harm.

[69]: f 'c'

No instance for (Num Char) arising from a use of `f'
Possible fix: add an instance declaration for (Num Char)
In the expression: f 'c'
In an equation for `it': it = f 'c'

It is good practice to not rely on Haskell’s type inference for functions and to define the type
signature of a function explicitly. This way, you also help Haskell’s type inference since you declare
the intended type of a function. Here is an example how you define an explicit type signature for
a function.

[70]: f :: Integer -> Integer
f x = x^2

[71]: f 1234

1522756

The type signature of f now says: f has a type that takes a value of type Integer and returns
a value of type Integer. While we have defined f for Integer numbers above, it might be useful
to define f also for Int numbers or all possible numbers. We can do this easily in Haskell.

[72]: f :: Num a => a -> a
f x = x^2

[73]: f 5

25

[74]: f 5.0

25.0

13

[75]: f (5 :: Rational)

25 % 1

The type signature now says that f receives a value of a numeric type a and it returns a value
of the same numeric type a. The a in the type signature is a type variable; it holds the name
of a numeric type. Our new definition of f is a polymorphic function since it can be appliedd
to arguments with different types. As the examples above show, the type of the argument of
the function f determines the type of the value returned by the function: f is either a function
receiving an integer number and returning an integer number or it is a function receiving a floating
point number and returning a floating point number, or it is a function receiving a rational number
and returning a rational number.

Since we now know how to define functions, we are essentially ready to start functional pro-
gramming. But hey, what about all those things that are common in other programming languages
like variables, conditional statements, loops? Well, you do not need them because there are func-
tional equivalents (such as pattern matching, guards, recursion, higher order functions, monads)
that provide you with a rich toolbox to implement arbitrary algorithms as functions in Haskell. If
you are new to programming, you might find that learning functional programming is not very
difficult. If, however, you have quite some experience with imperative programming languages,
then learning Haskell may become a certain challenge since you have to learn to look at pro-
gramming from a somewhat different perspective. While things may appear initially in a sense
weird or difficult, you will hopefully soon start to realize the power of a functional programming
style and carry it over even when you write code in an imperative programming language. Many
iterative programming languages have been recently extended to better support functional pro-
gramming. The recent interest in functional programming is also driven by the fact that functional
programs are much easier to turn into concurrent programs than imperative programs since there
is no mutable state and functions are pure, i.e., they do not cause side effects.

Here are a few tips on how to think as a functional programmer:

• Do not think about a program as a sequence of operations
• Try to think about the relationship between input and output
• Try to drive simplicity to a maximum
• Think in terms of composition and not in terms of inheritance
• Think about side-effects and how to separate them from the functional core of a program

14

	Introduction
	Expressions
	Lists
	Characters and Strings
	Tuples
	Types
	Functions

