
Haskell Tutorial: Sets

September 27, 2019

[1]: :opt no-lint

0.1 Ordered Sets

Haskell has support for typed ordered sets with fast insert, delete, and lookup operations. It is
highly recommended to use the set implementation instead of abusing lists to represent ordered
sets. To use the set functions, you have to import Data.Set. It is a recommended to use a quali-
fied import in order to handle name clashes with functions defined by the prelude. And using a
qualified import may also help with readability.

[3]: import qualified Data.Set as Set

A common way to create sets is to create them from a list. But there are also convenient ways
to create an empty set or a set has a single member, called a singleton.

[4]: s0 = Set.empty
s1 = Set.singleton 'c'
s2 = Set.fromList "Hello World"
s3 = Set.fromList ['a'..'z']

The null function can be used to test whether a set is empty while the size function returns
the number of elements of a set.

[5]: map Set.null [s0,s1,s2,s3]
map Set.size [s0,s1,s2,s3]

[True,False,False,False]

[0,1,8,26]

The toAscList function returns the elements of a set as a list in ascending order. Similarly,
toDescList returns the elements of a set as a list in descending order.

[6]: Set.toAscList s3
Set.toDescList s3

"abcdefghijklmnopqrstuvwxyz"

1

"zyxwvutsrqponmlkjihgfedcba"

Set member function can be used to test whether a value is a member of a given list and the
isSubsetOf function can be used to test whether the first set is a subset of the second set.

[8]: map (Set.member 'o') [s0,s1,s2,s3]
map (Set.isSubsetOf s2) [s0,s1,s2,s3]

[False,False,True,True]

[False,False,True,False]

The insert and delete functions can be used to add and delete elements. There is also a
filter function that can be used to create a set from all members of a set where a given predicate
is true.

[8]: Set.null $ Set.delete 42 $ Set.insert 42 $ Set.insert 42 s0
Set.toAscList $ Set.filter (< 'g') s3

True

"abcdef"

You can use the standard set operations union, intersection, and difference. The
isSubsetOf function tests whether the first argument is a subset of the second argument and the
member function tests whether a member is in a set. The disjoint function tests whether two sets
are disjoint, i.e., they have no common elements.

[9]: Set.union s2 s3
Set.intersection s2 s3
Set.difference s2 s3

fromList " HWabcdefghijklmnopqrstuvwxyz"

fromList "delor"

fromList " HW"

Since the sets have an order, it is possible to split sets at a certain elem. Note that the splitting
element is not required to be a member of the set.

[11]: sp = Set.split 'm' s3
Set.elems $ fst sp

2

Set.elems $ snd sp

"abcdefghijkl"

"nopqrstuvwxyz"

[12]: Set.split 32 $ Set.fromList [0,10..60]

(fromList [0,10,20,30],fromList [40,50,60])

Many other funtions like map, filter, take, drop, and various folds are implemented for sets
as well.

Sets are internally represented as balanced ordered binary trees. It is possible to look at the
internal representation by using the showTree function. Note that there may be leaf nodes without
a value.

[7]: putStrLn $ Set.showTree s3

'h'
+--'d'
| +--'b'
| | +--'a'
| | +--'c'
| +--'f'
| +--'e'
| +--'g'
+--'p'

+--'l'
| +--'j'
| | +--'i'
| | +--'k'
| +--'n'
| +--'m'
| +--'o'
+--'t'

+--'r'
| +--'q'
| +--'s'
+--'x'

+--'v'
| +--'u'
| +--'w'
+--'y'

+--|
+--'z'

3

	Ordered Sets

