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Intended Learning Outcomes

• explain basic concepts such as the correctness and complexity of algorithms (including the big O notation);

• illustrate basic concepts of discrete math (sets, relations, functions);

• recall basic proof techniques and use them to prove properties of algorithms;

• explain the representation of numbers (integers, floats), characters and strings, and date and time;

• summarize basic principles of Boolean algebra and Boolean logic;

• describe how Boolean logic relates to logic gates and digital circuits;

• outline the basic structure of a von Neumann computer;

• explain the execution of machine instructions on a von Neumann computer;

• describe the difference between assembler languages and higher-level programming languages;

• define the differences between interpretation and compilation;

• illustrate how an operating system kernel supports the execution of programs;

• determine the correctness of simple programs;

• write simple programs in a pure functional programming language.
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Assessment

• Written examination

• Duration: 120 min

• Scope: All intended learning outcomes of the module

• Module achievement: 50% of the assignments correctly solved

• You can audit the course. To earn an audit, you have to pass a short oral interview
about key concepts introduced in the course at the end of the semester.
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Assignments

• We will post weekly homework assignments

• Assignments reinforce what has been discussed in class

• Assignments will be small individual assignments (but may take time to solve)

• Solving assignments will prepare you for the written examination

• Solutions must be submitted via Moodle

• Teaching Assistants will mark the assignments

• Assignments will tell you whether you understood the material

• Consider forming study groups. It helps to discuss questions and course material in
study groups or to explore different directions to solve an assignment. However,
solutions must be individual submissions. (Discuss the general problem in a study
group, workout the details of the solution yourself.)
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Code of Academic Integrity

• Jacobs University has a “Code of Academic Integrity”
• this is a document approved by the Jacobs community
• you have signed it during enrollment
• it is a law of the university, we take it seriously

• It mandates good behaviours from faculty and students and it penalizes bad ones:
• honest academic behavior (e.g., no cheating)
• respect and protect intellectual property of others (e.g., no plagiarism)
• treat all Jacobs University members equally (e.g., no favoritism)

• It protects you and it builds an atmosphere of mutual respect
• we treat each other as reasonable persons
• the other’s requests and needs are reasonable until proven otherwise
• if others violate our trust, we are deeply disappointed (may be leading to severe and

uncompromising consequences)
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Academic Integrity Committee (AIC)

• The Academic Integrity Committee is a joint committee by students and faculty.

• Mandate: to hear and decide on any major or contested allegations, in particular,
• the AIC decides based on evidence in a timely manner,
• the AIC makes recommendations that are executed by academic affairs,
• the AIC tries to keep allegations against faculty anonymous for the student.

• Every member of Jacobs University (faculty, student, . . . ) can appeal any
academic integrity allegations to the AIC.
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Cheating

• There is no need to cheat, cheating prevents you from learning

• Useful collaboration versus cheating:
• You will be required to hand in your own original code/text/math for all assignments
• You may discuss your homework assignments with others, but if doing so impairs

your ability to write truly original code/text/math, you will be cheating
• Copying from peers, books or the Internet is plagiarism unless properly attributed

• What happens if we catch you cheating?
• We will confront you with the allegation (you can explain yourself)
• If you admit or are silent, we impose a grade sanction and we notify the student

records office
• Repeated infractions are reported to the AIC for deliberation

• Note: Both active cheating (copying from others) and passive cheating (allowing
others to copy) are penalized equally
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Deadlines

• Deadlines will be strict (don’t bother to ask for extensions)

• Make sure you submit the right document. We grade what was submitted, not
what could have been submitted.

• Submit early — avoid last minute changes or software/hardware problems.

• Official excuses by the student records office will extend the deadlines, but not
more than the time covered by the excuse.

• A word on medical excuses: Use them when you are ill. Do not use them as a tool
to gain more time.

• You want to be taken serious if you are seriously ill. Misuse of excuses can lead to a
situation where you are not taken too serious when you deserve to be taken serious.
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Culture of Questions, Answers, and Explanations

• Answers to questions require an explanation even if this is not stated explicitly
• A question like ’Does this algorithm always terminate?’ can in principle be answered

with ’yes’ or ’no’.
• We expect, however, that an explanation is given why the answer is ’yes’ or ’no’,

even if this is not explicitly stated.

• Answers should be written in your own words
• Sometimes it is possible to find perfect answers on Wikipedia or Stack Exchange or

in good old textbooks.
• Simply copying the answer of someone else is plagiarism.
• Copying the answer and providing the reference solves the plagiarism issue but

usually does not show that you understood the answer.
• Hence, we want you to write the answer in your own words.
• Learning how to write concise and precise answers is an important academic skill.
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Culture of Interaction

• I am here to help you learn the material.

• If things are unclear, ask questions.

• If I am going too fast, tell me.

• If I am going too slow, tell me.

• Discussion in class is most welcome – don’t be shy.

• Discussion in tutorials is even more welcome – don’t be shy.

• If you do not understand something, chances are pretty high your neighbor does
not understand either.

• Don’t be afraid of asking teaching assistants or myself for help and additional
explanations.
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Study Material and Forums

• There is no required textbook.

• The slides and notes are available on the course web page.
https://cnds.jacobs-university.de/courses/ics-2019

• We will use the Jacobs Moodle system.
https://moodle.jacobs-university.de/

• General questions should be asked on the Moodle forum.
• Faster responses since many people can answer
• Better responses since people can collaborate on the answer

• For individual questions, send email or come to see me at my office (or talk to me
after class or wherever you find me).
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Software Tools

• You will need a computer to follow this course.

• Get used to standard software tools:
• Good and powerful editors such as emacs or vim
• Unix-like operating systems such as Linux (e.g., Ubuntu)
• Learn how to use a command interpreter (shell) like bash
• Learn to write structured documents using LATEX (great for typesetting math)
• Learn how to maintain an agenda and TODO items (managing your time)
• Get familiar with version control systems (e.g., git)

• Learn how to touch-type (typing without having to look at the keys)
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Links to Further Useful Information

• Sign up for the cs-students@lists.jacobs-university.de mailing list, a low
volume list used primarily for announcements to all CS students:

http://lists.jacobs-university.de/mailman/listinfo

• The handbooks can be found on the registrar’s web page:

http://student-records.user.jacobs-university.de/

undergraduate-program-handbooks/

• The policies can be found on this web page:

https://www.jacobs-university.de/academic-policies
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Part 1: Introduction

1 Computer Science and Algorithms

2 Maze Generation Algorithms

3 String Search Algorithms

4 Complexity, Correctness, Engineering
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Section 1: Computer Science and Algorithms

1 Computer Science and Algorithms

2 Maze Generation Algorithms

3 String Search Algorithms

4 Complexity, Correctness, Engineering
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Computer Science

• Computer science is the study of the principles and use of computers.
[Oxford Dictionary, September 2018]

• Computer science is a branch of science that deals with the theory of computation
or the design of computers.
[Merriam Webster, September 2018]

• Computer science is the study of the theory, experimentation, and engineering that
form the basis for the design and use of computers.
[Wikipedia, September 2018]

• Computer science is the study of computers, including both hardware and software
design.
[Webopedia, September 2018]
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Algorithm

Definition (algorithm)

In computer science, an algorithm is a self-contained sequence of actions to be
performed in order to achieve a certain task.

• If you are confronted with a problem, do the following steps:
• first think about the problem to make sure you fully understand it
• afterwards try to find an algorithm to solve the problem
• try to assess the properties of the algorithms (will it handle corner cases correctly?

how long will it run? will it always terminate?, . . . )
• consider possible alternatives that may have “better” properties
• finally, write a program to implement the most suitable algorithm you have selected

• Is the above an algorithm to find algorithms?
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Algorithmic Thinking

Algorithmic thinking is a collection of abilities that are essential for constructing and
understanding algorithms:

• the ability to analyze given problems

• the ability to specify a problem precisely

• the ability to find the basic actions that are adequate to the given problem

• the ability to construct a correct algorithm using the basic actions

• the ability to think about all possible special and normal cases of a problem

• the ability to assess and improve the efficiency of an algorithm
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Section 2: Maze Generation Algorithms

1 Computer Science and Algorithms

2 Maze Generation Algorithms

3 String Search Algorithms

4 Complexity, Correctness, Engineering
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Maze (33 x 11)

[] [][][][][][][][][][][][][][][][][][][][][][][][][][][][][][][]

[] [] [] [] [] []

[] [] [][][][][][][] [] [][][] [][][][][] [][][] [] [] []

[] [] [] [] [] [] [] [] [] []

[][][][][][][] [] [] [] [] [][][][][] [] [] [][][][][] []

[] [] [] [] [] [] [] [] [] [] [] []

[] [] [] [][][] [][][][][] [] [] [] [][][] [] [] [][][]

[] [] [] [] [] [] [] [] [] []

[] [][][][][][][][][][][][][][][] [][][][][] [][][] [] [] []

[] [] []

[][][][][][][][][][][][][][][][][][][][][][][][][][][][][][][] []
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Problem Statement

Problem:

• Write a program to generate mazes.

• Every maze should be solvable, i.e., it should have a
path from the entrance to the exit.

• We want maze solutions to be unique.

• We want every “room” to be reachable.

Questions:

• How do we approach this problem?

• Are there other properties that make a maze a “good”
or a “challenging” maze?
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Hacking. . .
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Problem Formalization (1/3)

• Think of a maze as a (two-dimensional) grid of rooms
separated by walls.

• Each room can be given a name.

• Initially, every room is surrounded by four walls

• General idea:
• Randomly knock out walls until we get a good maze.
• How do we ensure there is a solution?
• How do we ensure there is a unique solution?
• How do we ensure every room is reachable?

h

a b c d

m

i

e

n

j

f

o

k

g

p

l
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Problem Formalization (2/3)

Lets try to formalize the problem in mathematical terms:

• We have a set V of rooms.

• We have a set E of pairs (x , y) with x ∈ V and y ∈ V
of adjacent rooms that have an open wall between them.

In the example, we have

• V = {a, b, c , d , e, f , g , h, i , j , k , l ,m, n, o, p}
• (a, b) ∈ E and (g , k) ∈ E and (a, c) /∈ E and (e, f ) /∈ E

Abstractly speaking, this is a mathematical structure called a
graph consisting of a set of vertices (also called nodes) and a
set of edges (also called links).
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Why use a mathematical formalization?

• Data structures are typically defined as mathematical structures

• Mathematics can be used to reason about the correctness and efficiency of data
structures and algorithms

• Mathematical structures make it easier to think — to abstract away from
unnecessary details and to avoid “hacking”
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Problem Formalization (3/3)

Definition:

• A maze is a graph G = (V ,E ) with two special nodes,
the start node S and the exit node X .

Interpretation:

• Each graph node x ∈ V represents a room

• An edge (x , y) ∈ E indicates that rooms x and y are
adjacent and there is no wall in between them

• The first special node is the start of the maze

• The second special node is the exit of the maze
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Mazes as Graphs (Visualization via Diagrams)

• Graphs are very abstract objects, we need a good,
intuitive way of thinking about them.

• We use diagrams, where the nodes are visualized as
circles and the edges as lines between them.

• Note that the diagram is a visualization of the graph,
and not the graph itself.

• A visualization is a representation of a structure intended
for humans to process visually.
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Mazes as Graphs (Good Mazes)

Recall, what is a good maze?

• We want maze solutions to be unique.

• We want every room to be reachable.

Solution:

• The graph must be a tree (a graph with a unique root
node and every node except the root node having a
unique parent).

• The tree should cover all nodes (we call such a tree a
spanning tree).

Since trees have no cycles, we have a unique solution.
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Kruskal’s Algorithm (1/2)

General approach:

• Randomly add a branch to the tree if it won’t create a cycle (i.e., tear down a wall).

• Repeat until a spanning tree has been created.

Questions:

• When adding a branch (edge) (x , y) to the tree, how do we detect that the branch
won’t create a cycle?

• When adding an edge (x , y), we want to know if there is already a path from x to
y in the tree (if there is one, do not add the edge (x , y).

• How can we quickly determine whether there is already a path from x to y?
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Kruskal’s Algorithm (2/2)

The Union Find Algorithm successively puts nodes into an equivalence class if there is a
path connecting them. With this idea, we get the following algorithm to construct a
spanning tree:

1. Initially, every node is in its own equivalence class and the set of edges is empty.

2. Randomly select a possible edge (x , y) such that x and y are not in the same
equivalence class.

3. Add the edge (x , y) to the tree and join the equivalence classes of x and y .

4. Repeat the last two steps if there are still multiple equivalence classes.
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Randomized Depth-first Search

Are there other algorithms? Of course there are. Here is a different approach to build a
tree rooted at the start node.

1. Make the start node the current node and mark it as visited.

2. While there are unvisited nodes:
2.1 If the current node has any neighbours which have not been visited:

2.1.1 Choose randomly one of the unvisited neighbours
2.1.2 Push the current node to the stack (of nodes)
2.1.3 Remove the wall between the current node and the chosen node
2.1.4 Make the chosen node the current node and mark it as visited

2.2 Else if the stack is not empty:

2.2.1 Pop a node from the stack (of nodes)
2.2.2 Make it the current node
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Section 3: String Search Algorithms

1 Computer Science and Algorithms

2 Maze Generation Algorithms

3 String Search Algorithms

4 Complexity, Correctness, Engineering
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Problem Statement

Problem:

• Write a program to find a (relatively short) string in a (possibly long) text.

• This is sometimes called finding a needle in a haystack.

Questions:

• How can we do this efficiently?

• What do we mean with long?

• What exactly is a string and what is text?
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Problem Formalization

• Let Σ be a finite set, called an alphabet.

• Let k denote the number of elements in Σ.

• Let Σ∗ be the set of all words that can be created out of Σ (Kleene closure of Σ).

• Let t ∈ Σ∗ be a (possible long) text and p ∈ Σ∗ be a (typically short) pattern.

• Let n denote the length of t and m denote the length of p.

• We assume that n� m.

• Find the first occurance of p in t.
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Naive String Search

• Check whether the pattern matches at each text position (going left to right).

• Lowercase characters indicate comparisons that were skipped.

• Example: t = FINDANEEDLEINAHAYSTACK, p = NEEDLE

F I N D A N E E D L E I N A H A Y S T A C K

N e e d l e

N e e d l e

N E e d l e

N e e d l e

N e e d l e

N E E D L E
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Naive String Search Performance

• How “fast” is naive string search?

• Idea: Lets try to count the number of comparisons.

• Problem: The number of comparisons depends on the strings.

• Idea: Consider the worst case possible.

• What is the worst case possible?
• Consider a haystack of length n using only a single symbol of the alphabet (e.g.,

“aaaaaaaaaa” with n = 10).
• Consider a needle of length m which consists of m − 1 times the same symbol

followed by a single symbol that is different (e.g., “aax” with m = 3).

• With n� m, the number of comparisons needed will be roughly n ·m.
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Boyer-Moore: Bad character rule (1/2)

• Idea: Lets compare the pattern right to left instead left to right. If there is a
mismatch, try to move the pattern as much as possible to the right.

• Bad character rule: Upon mismatch, move the pattern to the right until there is a
match at the current position or until the pattern has moved past the current
position.

• Example: t = FINDANEEDLEINAHAYSTACK, p = NEED

F I N D A N E E D L E I N A H A Y S T A C K skip

n e E D 1

n e e D 2

N E E D
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Boyer-Moore: Bad character rule (2/2)

• Example: t = FINDANEEDLEINAHAYSTACK, p = HAY

F I N D A N E E D L E I N A H A Y S T A C K skip

h a Y 2

h a Y 2

h a Y 2

h a Y 2

h a Y 1

H A Y

• How do we decide efficiently how far we can move the pattern to the right?
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Boyer-Moore: Good suffix rule (1/3)

• Idea: If we already matched a suffix and the suffix appears again in the pattern,
skip the alignment such that we keep the good suffix.

• Good suffix rule: Let s be a non-empty suffix already matched in the inner loop. If
there is a mismatch, skip alignments until (i) there is another match of the suffix,
or (ii) a prefix of p matches a suffix of s or (iii) skip until the end of the pattern if
neither (i) or (ii) apply to the non-empty suffix s.

• Example: t = FINDANEEDLEINAHAYSTACK, p = NEEDUNEED

F I N D A N E E D L E I N A H A Y S T A C K skip

n e e d U N E E D 4

n e e d u n e e D
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Boyer-Moore: Good suffix rule (2/3)

• Example: t = FINDANEEDLEINAHAYSTACK, p = EDISUNEED

F I N D A N E E D L E I N A H A Y S T A C K skip

e d i s U N E E D 6

e d i s u n e e D
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Boyer-Moore: Good suffix rule (3/3)

• Example: t = FINDANEEDLEINAHAYSTACK, p = FOODINEED

F I N D A N E E D L E I N A H A Y S T A C K skip

f o o d I N E E D 8

f o o d i n e e D

• How do we decide efficiently how far we can move the pattern to the right?
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Boyer-Moore Rules Combined

• The Boyer-Moore algorithm combines the bad character rule and the good suffix
rule. (Note that both rules can also be used alone.)

• If a mismatch is found,
• calculate the skip sb by the bad character rule
• calculate the skip sg by the good suffix rule

and then skip by s = max(sb, sg ).

• The Boyer-Moore algorithm often does the substring search in sub-linear time.

• However, it does not perform better than naive search in the worst case if the
pattern does occur in the text.

• An optimization by Gali results in linear runtime across all cases.
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Section 4: Complexity, Correctness, Engineering

1 Computer Science and Algorithms

2 Maze Generation Algorithms

3 String Search Algorithms

4 Complexity, Correctness, Engineering
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Complexity of Algorithms

• Questions:
• Which maze generation algorithm is faster?
• Is there a fastest maze generation algorithm?
• What happens if we consider mazes of different sizes or dimensions?
• Instead of measuring execution time (which depends on the speed of the computer

hardware), can we have a more neutral notion of “fast”?

• Computer science is about analyzing the complexity of algorithms.

• Complexity is an abstract measure of computational effort (time complexity) and
memory usage (space complexity).
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Performance and Scaling

• Suppose we have three algorithms to
choose from. For example, consider
algorithms to detect cycles in a graph
of n nodes.

• With n = 50, the exponential
algorithm has an execution time of
more than 35 years.

• For n ≥ 1000, the exponential
algorithm gives us execution times that
are longer than the age of the universe!

size linear quadratic exponential
n 100n µs 7n2 µs 2n µs
1 100 µs 7 µs 2 µs
5 500 µs 175 µs 32 µs

10 1 ms 700 µs 1024 µs
50 5 ms 17.5 ms 13 031.25 d

100 10 ms 70 ms
1000 100 ms 7 s

10 000 1 s 700 s
100 000 10 s 70 000 s
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Big O Notation (Landau Notation)

Definition (asymptotically bounded)

Let f , g : N→ N be two functions. We say that f is asymptotically bounded by g ,
written as f ≤a g , if and only if there is an n0 ∈ N , such that f (n) ≤ g(n) for all
n > n0.

Definition (Landau Sets)

The three Landau Sets O(g),Ω(g),Θ(g) are defined as follows:

• O(g) = {f |∃k ∈ N.f ≤a k · g}
• Ω(g) = {f |∃k ∈ N.k · g ≤a f }
• Θ(g) = O(g) ∩ Ω(g)
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Commonly Used Landau Sets

Landau Set class name rank

O(1) constant 1
O(log2(n)) logarithmic 2
O(n) linear 3
O(n log2(n)) linear logarithmic 4

Landau Set class name rank

O(n2) quadratic 5
O(nk) polynomial 6
O(kn) exponential 7

Theorem (Landau Set Ranking)

The commonly used Landau Sets establish a ranking such that

O(1) ⊂ O(log2(n)) ⊂ O(n) ⊂ O(n log2(n)) ⊂ O(n2) ⊂ O(nk) ⊂ O(ln)

for k > 2 and l > 1.
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Landau Set Rules

Theorem (Landau Set Computation Rules)

We have the following computation rules for Landau sets:

• If k 6= 0 and f ∈ O(g), then (kf ) ∈ O(g).

• If f1 ∈ O(g1) and f2 ∈ O(g2), then (f1 + f2) ∈ O(|g1|+ |g2|).

• If f1 ∈ O(g1) and f2 ∈ O(g2), then (f1f2) ∈ O(g1g2).

Examples:

• f (n) = 42 =⇒ f ∈ O(1)

• f (n) = 26n + 72 =⇒ f ∈ O(n)

• f (n) = 856n10 + 123n3 + 75 =⇒ f ∈ O(n10)

• f (n) = 3 · 2n + 42 =⇒ f ∈ O(2n)
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Correctness of Algorithms and Programs

• Questions:
• Is our algorithm correct?
• Is our algorithm a total function or a partial function?
• Is our implementation of the algorithm (our program) correct?
• What do we mean by “correct”?
• Will our algorithm or program terminate?

• Computer science is about techniques for proving correctness of programs.

• In situations where correctness proofs are not feasible, computer sciences is about
engineering practices that help to avoid or detect errors.
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Partial Correctness and Total Correctness

Definition (partial correctness)

An algorithm starting in a state that satisfies a precondition P is partially correct with
respect to P and Q if results produced by the algorithm satisfy the postcondition Q.
Partial correctness does not require that a result is always produced, i.e., the algorithm
may not always terminate.

Definition (total correctness)

An algorithm is totally correct with respect to P and Q if it is partially correct with
respect to P and Q and it always terminates.
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Deterministic Algorithms

Definition (deterministic algorithm)

A deterministic algorithm is an algorithm which, given a particular input, will always
produce the same output, with the underlying machine always passing through the same
sequence of states.

• Some factors that make an algorithm non-deterministic:
• external state
• user input
• timers
• random values
• hardware errors
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Randomized Algorithms

Definition (randomized algorithm)

A randomized algorithm is an algorithm that employs a degree of randomness as part of
its logic.

• A randomized algorithm uses randomness in order to produce its result; it uses
randomness as part of the logic of the algorithm.

• A perfect source of randomness is not trivial to obtain on digital computers.

• Random number generators often use algorithms to produce so called pseudo
random numbers, sequences of numbers that “look” random but that are not really
random (since they are calculated using a deterministic algorithm).
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Engineering of Software

• Questions:
• Can we identify building blocks (data structures, generic algorithms, design pattern)

that we can reuse?
• Can we implement algorithms in such a way that the program code is easy to read

and understand?
• Can we implement algorithms in such a way that we can easily adapt them to

different requirements?

• Computer science is about modular designs that are both easier to get right and
easier to understand. Finding good software designs often takes time and effort.

• Software engineering is about applying structured approaches to the design,
development, maintenance, testing, and evaluation of software.

• The main goal is the production of software with predictable quality and costs.
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Propositions

Definition (proposition)

A proposition is a statement that is either true or false.

Examples:

• 1 + 1 = 1 (false proposition)

• The sum of the integer numbers 1, . . . , n is equal to 1
2
n(n + 1). (true proposition)

• “In three years I will have obtained a CS degree.” (not a proposition)
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Predicates

• A predicate is a statement that may be true or false depending on the values of its
variables. It can be thought of as a function that returns a value that is either true
or false. Variables appearing in a predicate are quantified:
• A predicate is true for all values of a given set of values.
• A predicate is true for at least one value of a given set of values.

(There exists a value such that the predicate is true.)

• There may be multiple quantifiers and they may be combined (but note that the
order of the quantifiers matters).

• Example: (Goldbach’s conjecture) For every even integer n greater than 2, there
exists primes p and q such that n = p + q.
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Axioms

Definition (axiom)

An axiom is a proposition that is taken to be true.

Definition (Peano axioms for natural numbers)

P1 0 is a natural number.

P2 Every natural number has a successor.

P3 0 is not the successor of any natural number.

P4 If the successor of x equals the successor of y , then x equals y .

P5 If a statement is true for the natural number 0, and if the truth of that statement
for a natural number implies its truth for the successor of that number, then the
statement is true for every natural number.
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Theorems, Lemma, Corollary

Definition (theorem, lemma, corollary)

An important true proposition is called a theorem. A lemma is a preliminary proposition
useful for proving other propositions (usually theorems) and a corollary is a proposition
that follows in just a few logical steps from a theorem.

• There is no clear boundary between what is a theorem, a lemma, or a corollary.

• A proposition for which no proof has been found yet and which is believed to be
true is called a conjecture.
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Mathematical Notation

Notation Explanation

P ∧ Q logical and of propositions P and Q
P ∨ Q logical or of propositions P and Q
¬P negation of proposition P

∀x ∈ S .P the predicate P holds for all x in the set S
∃x ∈ S .P there exists an x in the set S such that the predicate P holds
P ⇒ Q the statement P implies statement Q
P ⇔ Q the statement P holds if and only if (iff) Q holds
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Greek Letters

α Α alpha β Β beta γ Γ gamma
δ Δ delta ε Ε epsilon ζ Ζ zeta
η Η eta θ Θ theta ι Ι iota
κ Κ kappa λ Λ lmapda μ Μ mu
ν Ν nu ξ Ξ xi ο Ο omikron
π Π pi ρ Ρ rho σ Σ sigma
τ Τ tau υ Υ upsilon φ Φ phi
χ Χ chi ψ Ψ psi ω Ω omega
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Mathematical Proof

Definition (mathematical proof)

A mathematical proof of a proposition is a chain of logical deductions from a base set
of axioms (or other previously proven propositions) that concludes with the proposition
in question.

• Informally, a proof is a method of establishing truth. There are very different ways
to establish truth. In computer science, we usually adopt the mathematical notion
of a proof.

• There are a certain number of templates for constructing proofs. It is good style to
indicate at the beginning of the proof which template is used.
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Hints for Writing Proofs

• Proofs often start with scratchwork that can be disorganized, have strange
diagrams, obscene words, whatever. But the final proof should be clear and concise.

• Proofs usually begin with the word “Proof” and they end with a delimiter such as
.

• Make it easy to understand your proof. A good proof has a clear structure and it is
concise. Turning an initial proof into a concise proof takes time and patience.

• Introduce notation carefully. Good notation can make a proof easy to follow (and
bad notation can achieve the opposite effect).

• Revise your proof and simplify it. A good proof has been written multiple times.
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Prove an Implication by Derivation

• An implication is a proposition of the form “If P , then Q”, or P ⇒ Q.

• One way to prove such an implication is by a derivation where you start with P and
stepwise derive Q from it.

• In each step, you apply theorems (or lemmas or corollaries) that have already been
proven to be true.

• Template:

Assume P . Then, . . . Therefore . . . [. . . ] This finally leads to Q.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science December 5, 2019 64 / 256



Prove an Implication by its Contrapositive

• An implication is a proposition of the form “If P , then Q”, or P ⇒ Q.

• Such an implication is logically equivalent to its contrapositive, ¬Q ⇒ ¬P .

• Proving the contrapositive is sometimes easier than proving the original statement.

• Template:

Proof. We prove the contrapositive, if ¬Q, then ¬P . We assume ¬Q. Then,
. . . Therefore . . . [. . . ] This finally leads to ¬P .
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Prove an “if and only if” by two Implications

• A statement of the form “P if and only if Q” is equivalent to the two statements
“P implies Q” and “Q implies P”.

• Split your proof into two parts, the first part proving P ⇒ Q and the second part
proving Q ⇒ P .

• Template:

Proof. We prove P implies Q and vice-versa.

First, we show P implies Q. Assume P . Then, . . . Therefore . . . [. . . ] This finally
leads to Q.

Now we show Q implies P . Assume Q. Then, . . . . Therefore . . . [. . . ] This finally
leads to P .

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science December 5, 2019 66 / 256



Prove an “if and only if” by a Chain of “if and only if”s

• A statement of the form “P if and only if Q” can be shown to hold by constructing
a chain of “if and only if” equivalence implications.

• Constructing this kind of proof is often harder then proving two implications, but
the result can be short and elegant.

• Template:

Proof. We construct a proof by a chain of if-and-only-if implications.

P holds if and only if P ′ holds, which is equivalent to [. . . ], which is equivalent to
Q.
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Breaking a Proof into Cases

• It is sometimes useful to break a complicated statement P into several cases that
are proven separately.

• Different proof techniques may be used for the different cases.

• It is necessary to ensure that the cases cover the complete statement P .

• Template:

Proof. We prove P by considering the cases c1, . . . , cN .

Case 1: Suppose c1. Prove of P for c1.

. . .

Case N : Suppose cN . Prove of P for cN .

Since P holds for all cases c1, . . . cN , the statement P holds.
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Proof by Contradiction

• A proof by contradiction for a statement P shows that if the statement were false,
then some false fact would be true.

• Starting from ¬P , a series of derivations is used to arrive at a statement that
contradicts something that has already been shown to be true or which is an axiom.

• Template:

Proof. We prove P by contradiction.

Assume ¬P is true. Then . . . Therefore . . . [. . . ] This is a contradiction. Thus, P
must be true.
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Proof by Induction

• If we have to prove a statement P on nonnegative integers (or more generally an
inductively defined infinite set), we can use the induction principle.

• We first prove that P is true for the “lowest” element in the set (the base case).

• Next we prove that if P holds for a nonnegative integer n, then the statement P
holds for n + 1 (induction step).

• Since we can apply the induction step m times, starting with the base, we have
shown that P is true for arbitrary nonnegative integers m.

• Template:

Proof. We prove P by induction.

Base case: We show that P(0) is true. [. . . ]

Induction step: Assume P(n) is true. Then, . . . This proves that P(n + 1) holds.
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Sets

• Informally, a set is a well-defined collection of distinct objects. The elements of the
collection can be anything we like the set to contain, including other sets.

• In modern math, sets are defined using axiomatic set theory, but for us the informal
definition above is sufficient.

• Sets can be defined by
• listing all elements in curly braces, e.g., {a, b, c},
• describing all objects using a predicate P, e.g., {x |x ≥ 0 ∧ x < 28},
• stating element-hood using some other statements.

• A set has no order of the elements and every element appears only once.

• The two notations {a, b, c} and {b, a, a, c} are different representations of the
same set.
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Basic Relations between Sets

Definition (basic relations between sets)

Lets A and B be two sets. We define the following relations between sets:

1. (A ≡ B) :⇔ (∀x .x ∈ A⇔ x ∈ B) (set equality)

2. (A ⊆ B) :⇔ (∀x .x ∈ A⇒ x ∈ B) (subset)

3. (A ⊂ B) :⇔ (A ⊆ B) ∧ (A 6≡ B) (proper subset)

4. (A ⊇ B) :⇔ (∀x .x ∈ B ⇒ x ∈ A) (superset)

5. (A ⊃ B) :⇔ (A ⊇ B) ∧ (A 6≡ B) (proper superset)

• Obviously:
• (A ⊆ B) ∧ (B ⊆ A)⇒ (A ≡ B)
• (A ⊆ B)⇔ (B ⊇ A)
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Operations on Sets 1/2

Definition (set union)

The union of two sets A and B is defined as A ∪ B = {x |x ∈ A ∨ x ∈ B}.

Definition (set intersection)

The intersection of two sets A and B is defined as A ∩ B = {x |x ∈ A ∧ x ∈ B}.

Definition (set difference)

The difference of two sets A and B is defined as A \ B = {x |x ∈ A ∧ x 6∈ B}.
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Operations on Sets 2/2

Definition (power set)

The power set P(A) of a set A is the set of all subsets of S , including the empty set
and S itself. Formally, P(A) = {S |S ⊆ A}.

Definition (cartesian product)

The cartesian product of the sets X1, . . . ,Xn is defined as
X1 × . . .× Xn = {(x1, . . . , xn)|∀i .1 ≤ i ≤ n⇒ xi ∈ Xi}.
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Cardinality of Sets

Definition (cardinality)

If A is a finite set, the cardinality of A, written as |A|, is the number of elements in A.

Definition (countably infinite)

A set A is countably infinite if and only if there is a bijective function f : A→ N.

Definition (countable)

A set A is countable if and only if it is finite or countably infinite.
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Relations

Definition (relation)

A relation R over the sets X1, . . . ,Xk is a subset of their Cartesian product, written
R ⊆ X1 × . . .× Xk .

• Relations are classified according to the number of sets in the defining Cartesian
product:
• A unary relation is defined over a single set X
• A binary relation is defined over X1 × X2

• A ternary relation is defined over X1 × X2 × X3

• A k-ary relation is defined over X1 × . . .× Xk
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Binary Relations

Definition (binary relation)

A binary relation R ⊆ A× B consists of a set A, called the domain of R , a set B , called
the codomain of R , and a subset of A× B called the graph of R .

Definition (inverse of a binary relation)

The inverse of a binary relation R ⊆ A× B is the relation R−1 ⊆ B × A defined by the
rule

b R−1 a⇔ a R b.

• For a ∈ A and b ∈ B , we often write a R b to indicate that (a, b) ∈ R .

• The notation a R b is called infix notation while the notation R(a, b) is called the
prefix notation. For binary relations, we commonly use the infix notation.
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Image and Range of Binary Relations

Definition (image of a binary relation)

The image of a binary relation R ⊆ A× B , is the set of elements of the codomain B of
R that are related to some element in A.

Definition (range of a binary relation)

The range of a binary relation R ⊆ A× B is the set of elements of the domain A of R
that relate to at least one element in B .
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Properties of Binary Relations (Endorelations)

Definition
A relation R ⊆ A× A is called

• reflexive iff ∀a ∈ A.(a, a) ∈ R

• irreflexive iff ∀a ∈ A.(a, a) 6∈ R

• symmetric iff ∀a, b ∈ A.(a, b) ∈ R ⇒ (b, a) ∈ R

• asymmetric iff ∀a, b ∈ A.(a, b) ∈ R ⇒ (b, a) 6∈ R

• antisymmetric iff ∀a, b ∈ A.((a, b) ∈ R ∧ (b, a) ∈ R)⇒ a = b

• transitive iff ∀a, b, c ∈ A.((a, b) ∈ R ∧ (b, c) ∈ R)⇒ (a, c) ∈ R

• total iff ∀a, b ∈ A.(a, b) ∈ R ∨ (b, a) ∈ R

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science December 5, 2019 81 / 256



Equivalence, Partial Order, and Strict Partial Order

Definition
equivalence relation A relation R ⊆ A× A is called an equivalence relation on A if and
only if R is reflexive, symmetric, and transitive.

Definition (partial order and strict partial order)

A relation R ⊆ A× A is called a partial order on A if and only if R is reflexive,
antisymmetric, and transitive on A. The relation R is called a strict partial order on A if
and only if it is irreflexive, asymmetric and transitive on A.

Definition (linear order)

A partial order R is called a linear order on A if and only if all elements in A are
comparable, i.e., the partial order is total.
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Summary of Properties of Binary Relations

Let ∼ be a binary relation over A× A and let a, b, c ∈ A arbitrary.

property eq po spo definition = ≤ <

reflexive X X a ∼ a X X
irreflexive X a 6∼ a X

symmetric X a ∼ b ⇒ b ∼ a X
asymmetric X a ∼ b ⇒ b 6∼ a X
antisymmetric X a ∼ b ∧ b ∼ a⇒ a = b X

transitive X X X a ∼ b ∧ b ∼ c ⇒ a ∼ c X X X

eq = equivalence relation, po = partial order, spo = strict partial order

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science December 5, 2019 83 / 256



Section 8: Functions

5 Terminology, Notations, Proofs

6 Sets

7 Relations

8 Functions
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Functions

Definition (partial function)

A relation f ⊆ X × Y is called a partial function if and only if for all x ∈ X there is at
most one y ∈ Y with (x , y) ∈ f . We call a partial function f undefined at x ∈ X if and
only if (x , y) 6∈ f for all y ∈ Y .

Definition (total function)

A relation f ⊆ X × Y is called a total function if and only if for all x ∈ X there is
exactly one y ∈ Y with (x , y) ∈ f .
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Function Properties

Definition (injective function)

A function f : X → Y is called injective if every element of the codomain Y is mapped
to by at most one element of the domain X : ∀x , y ∈ X .f (x) = f (y)⇒ x = y

Definition (surjective function)

A function f : X → Y is called surjective if every element of the codomain Y is
mapped to by at least one element of the domain X : ∀y ∈ Y .∃x ∈ X .f (x) = y

Definition (bijective function)

A function f : X → Y is called bijective if every element of the codomain Y is mapped
to by exactly one element of the domain X . (That is, the function is both injective and
surjective.)
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Operations on Functions

Definition (function composition)

Given two functions f : A→ B and g : B → C , the composition of g with f is defined
as the function g ◦ f : A→ C with (g ◦ f )(x) = g(f (x)).

Definition (function restriction)

Let f be a function f : A→ B and C ⊆ A. Then we call the function
f |C = {(c , b) ∈ f |c ∈ C} the restriction of f to C .
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Lambda Notation of Functions

• It is sometimes not necessary to give a function a name.

• A function definition of the form {(x , y) ∈ X ×Y |y = E}, where E is an expression
(usually involving x), can be written in a shorter lambda notation as λx ∈ X .E .

• Examples:
• λn ∈ N.n (identity function for natural numbers)
• λx ∈ N.x2 (f (x) = x2)
• λ(x , y) ∈ N× N.x + y (addition of natural numbers)

• Lambda calculus is a formal system in mathematical logic for expressing
computation based on function abstraction and application using variable binding
and substitution.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science December 5, 2019 88 / 256



Currying

• Lambda calculus uses only functions that take a single argument. This is possible
since lambda calculus allows functions as arguments and results.

• A function that takes two arguments can be converted into a function that takes
the first argument as input and which returns a function that takes the second
argument as input.

• This method of converting function with multiple arguments into a sequence of
functions with a single argument is called currying.

• The term currying is a reference to the logician Haskell Curry.
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Numbers can be confusing. . .

• There are only 10 people in the world: Those who understand binary and those
who don’t.

• Q: How easy is it to count in binary?
A: It’s as easy as 01 10 11.

• A Roman walks into the bar, holds up two fingers, and says, “Five beers, please.”

• Q: Why do mathematicians confuse Halloween and Christmas?
A: Because 31 Oct = 25 Dec.
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Number Systems in Mathematics

• Numbers can be classified into sets, called number systems, such as the natural
numbers, the integer numbers, or the real numbers.

Symbol Name Description

N Natural 0, 1, 2, 3, 4, . . .
Z Integer . . . , -4, -3, -2, -1, 0, 1, 2, 3, 4, . . .
Q Rational a

b
were a ∈ Z and b ∈ Z and b 6= 0

R Real The limit of a convergent sequence of rational numbers
C Complex a + bi where a ∈ R and b ∈ R and i =

√
−1

• Numbers should be distinguished from numerals, the symbols used to represent
numbers. A single number can have many different representations.
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Numeral Systems for Natural Numbers

• Natural numbers can be represented according to different bases. We commonly
use decimal number (base 10) representations in everyday life.

• In computer science, we also frequently use binary (base 2), octal (base 8), and
hexadecimal (base 16) number representations.

• In general, natural numbers represented in the base b system are of the form:

(anan−1 · · · a1a0)b =
n∑

k=0

akb
k

hex 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12

dec 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

oct 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 21 22

bin 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 10001 10010
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Natural Numbers Literals

• Computer scientists often use special prefix conventions to write natural number
literals in a way that indicates the base:

prefix example meaning description

42 4210 decimal number
0x 0x42 4216 = 6610 hexadecimal number
0 042 428 = 3410 octal number
0b 0b1000010 10000102 = 4210 binary number

• Beware that 42 and 042 may not represent the same number!
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Natural Numbers with Fixed Precision

• Computer systems often work internally with finite subsets of natural numbers.

• The number of bits used for the binary representation defines the size of the subset.

bits name range (decimal) range (hexadecimal)

4 nibble 0-15 0x0-0xf
8 byte, octet, uint8 0-255 0x0-0xff

16 uint16 0-65 535 0x0-0xffff
32 uint32 0-4 294 967 295 0x0-0xffffffff
64 uint64 0-18 446 744 073 709 551 615 0x0-0xffffffffffffffff

• Using (almost) arbitrary precision numbers is possible but usually slower.
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Integer Numbers

• Integer numbers can be negative but surprisingly there are not “more” of them
(even though integer numbers range from −∞ to +∞ while natural numbers only
range from 0 to +∞).

• This can be seen by writing integer numbers in the order 0, 1, -1, 2, -2, . . . , i.e., by
defining a bijective function f : Z→ N (and the inverse function f −1 : N→ Z):

f (x) =

{
2x if x ≥ 0

−2x − 1 if x < 0
f −1(x) =

{
x
2

if x is even
−(x+1)

2
if x is odd

• So we could (in principle) represent integer numbers by implementing this bijection
to natural numbers. But there are more efficient ways to implement integer
numbers if we assume that we use a fixed precision anyway.
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One’s Complement Fixed Integer Numbers (b-1 complement)

• We have a fixed number space with n digits and base b to represent integer
numbers, that is, we can distinguish at most bn different integers.

• Lets represent the numbers 0 . . . bn−1 in the usual way.

• To represent negative numbers, we invert the absolute value (anan−1 · · · a1a0)b by
calculating (a′na

′
n−1 · · · a′1a′0)b with a′i = (b − 1)− ai .

• Example: b = 2, n = 4 : 510 = 01012,−510 = 10102

bin: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

dec: 0 1 2 3 4 5 6 7 -7 -6 -5 -4 -3 -2 -1 -0

• Note that this gives us +0 and -0, i.e., we only represent bn − 1 different integers.

• Negative binary numbers always have the most significant bit set to 1.
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Two’s Complement Fixed Integer Numbers (b complement)

• Like before, we assume a fixed number space with n digits and a base b to
represent integer numbers, that is, we can distinguish at most bn different integers.

• Lets again represent the numbers 0 . . . bn−1 in the usual way.

• To represent negative numbers, we invert the absolute value (anan−1 · · · a1a0)b by
calculating (a′na

′
n−1 · · · a′1a′0)b with a′i = (b − 1)− ai and adding 1 to it.

• Example: b = 2, n = 4 : 510 = 01012,−510 = 10112

bin: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

dec: 0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

• This representation simplifies the implementation of arithmetic operations.

• Negative binary numbers always have the most significant bit set to 1.
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Two’s Complement Fixed Integer Number Ranges

• Most computers these days use the two’s complement internally.

• The number of bits available defines the ranges we can use.

bits name range (decimal)

8 int8 −128 to 127
16 int16 −32 768 to 32 767
32 int32 −2 147 483 648 to 2 147 483 647
64 int64 −9 223 372 036 854 775 808 to 9 223 372 036 854 775 807

• Be careful if your arithmetic expressions overflows/underflows the range!
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Rational Numbers

• Computer systems usually do not natively represent rational numbers, i.e., they
cannot compute with rational numbers at the hardware level.

• Software can, of course, implement rational number data types by representing the
numerator and the denominator as integer numbers internally and keeping them in
the reduced form.

• Example using Haskell (execution prints 5 % 6):

import Data.Ratio

print $ 1%2 + 1%3
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Real Numbers

• Computer systems usually do not natively represent real numbers, i.e., they cannot
compute with real numbers at the hardware level.

• The primary reason is that real numbers like the result of 1
7

or numbers like π have
by definition not a finite representation.

• So the best we can do is to have a finite approximation. . .

• Since all we have are approximations of real numbers, we always make rounding
errors if we use these approximations. If we are not very careful, these rounding
errors can accumulate badly.

• The notion of numeric stability can be used to classify algorithms according how
they propagate rounding errors.
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Floating Point Numbers

• Floating point numbers are useful in situations where a large range of numbers
must be represented with fixed size storage for the numbers.

• The general notation of a (normalized) base b floating point number with precision
p is

s × d0.d1d2 . . . dp−1 × be = s ×
p−1∑
k=0

dkb
−k × be

where b is the basis, e is the exponent, d0, d1, . . . , dp−1 are digits of the mantissa
with di ∈ {0, . . . , b − 1} for i ∈ {0, . . . , p − 1}, s ∈ {1,−1} is the sign, and p is
the precision.
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Floating Point Number Normalization

• Floating point numbers are usually normalized such that d0 is in the range
{1, . . . , b − 1}, except when the number is zero.

• Normalization must be checked and restored after each arithmetic operation since
the operation may denormalize the number.

• When using the base b = 2, normalization implies that the first digit d0 is always 1.
Hence, it is not necessary to store d0 and instead the mantissa can be extended by
one additional bit.

• Floating point numbers are at best an approximation of a real number due to their
limited precision.

• Calculations involving floating point numbers usually do not lead to precise results
since rounding must be used to match the result into the floating point format.
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IEEE 754 Floating Point Formats

precision single (float) double quad

sign 1 bit 1 bit 1 bit
exponent 8 bit 11 bit 15 bit
exponent range [-126. . . 127] [-1022. . . 1023] [-16382. . . 16383]
exponent bias 127 1023 16383
mantissa 23 bit 52 bit 112 bit
total size 32 bit 64 bit 128 bit

decimal digits ≈ 7.2 ≈ 15.9 ≈ 34.0

• IEEE 754 is a widely implemented standard for floating point numbers.

• IEEE 754 floating point numbers use the base b = 2 and as a consequence decimal
numbers such as 1× 10−1 cannot be represented precisely.
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IEEE 754 Exceptions and Special Values

• The standard defines five exceptions, some of them lead to special values:

1. Invalid operation: returns not a number (nan)
2. Division by zero: returns ±infinity (inf)
3. Overflow: returns ±infinity (inf)
4. Underflow: depends on the operating mode
5. Inexact: returns rounded result by default

• Computations may continue if they did produce a special value like nan or inf.

• Hence, it is important to check whether a calculation resulted in a value at all.
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Floating Point Surprises

• Any floating point computation should be treated with the utmost suspicion unless
you can argue how accurate it is. [Alan Mycroft, Cambridge]

• Floating point arithmetic almost always involves rounding errors and these errors
can badly aggregate.

• It is possible to “loose” the reasonably precise digits and to continue calculation
with the remaining rather imprecise digits.

• Comparisons to floating point constants may not be “exact” and as a consequence
loops may not end where they are expected to end.
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Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science December 5, 2019 111 / 256



Importance of Units and Unit Prefixes

• Most numbers we encounter in practice have associated units. It is important to be
very clear about the units used.
• NASA lost a Mars climate orbiter (worth $125 million) in 1999 due to a unit

conversion error.
• An Air Canada plane ran out of fuel in the middle of a flight in 1983 due to a fuel

calculation error while switching to the metric system.

• There is an International System of Units (SI Units) to help you. . .

� Always be clear about units.

� And always be clear about the unit prefixes.
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SI Base Units

Unit Symbol Description

metre m The distance travelled by light in a vacuum in a certain fraction
of a second.

kilogram kg The mass of the international prototype kilogram.
second s The duration of a number of periods of the radiation of the

caesium-133 atom.
ampere A The constant electric current which would produce a certain

force between two conductors.
kelvin K A fraction of the thermodynamic temperature of the triple

point of water.
mole mol The amount of substance of a system which contains atoms

corresponding to a certain mass of carbon-12.
candela cd The luminous intensity of a source that emits monochromatic

radiation.
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SI Derived Units

• Many important units can be derived from the base units. Some have special
names, others are simply defined by a formula over their base units. Some
examples:

Name Symbol Definition Description

herz Hz s−1 frequency
newton N kg m s−1 force

watt W kg m2 s−3 power
volt V kg m2 s−3 A−1 voltage
ohm Ω kg m2 s−2 A−1 resistance

velocity m s−1 speed
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Metric Prefixes (International System of Units)

Name Symbol Base 10 Base 1000 Value

kilo k 103 10001 1000
mega M 106 10002 1 000 000
giga G 109 10003 1 000 000 000
tera T 1012 10004 1 000 000 000 000
peta P 1015 10005 1 000 000 000 000 000
exa E 1018 10006 1 000 000 000 000 000 000

zetta ζ 1021 10007 1 000 000 000 000 000 000 000
yotta Y 1024 10008 1 000 000 000 000 000 000 000 000
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Metric Prefixes (International System of Units)

Name Symbol Base 10 Base 1000 Value

milli m 10−3 1000−1 0.001
micro µ 10−6 1000−2 0.000 001
nano n 10−9 1000−3 0.000 000 001
pico p 10−12 1000−4 0.000 000 000 001

femto f 10−15 1000−5 0.000 000 000 000 001
atto a 10−18 1000−6 0.000 000 000 000 000 001

zepto z 10−21 1000−7 0.000 000 000 000 000 000 001
yocto y 10−24 1000−8 0.000 000 000 000 000 000 000 001
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Binary Prefixes

Name Symbol Base 2 Base 1024 Value

kibi Ki 210 10241 1024
mebi Mi 220 10242 1 048 576
gibi Gi 230 10243 1 073 741 824
tebi Ti 240 10244 1 099 511 627 776
pebi Pi 250 10245 1 125 899 906 842 624
exbi Ei 260 10246 1 152 921 504 606 846 976
zebi Zi 270 10247 1 180 591 620 717 411 303 424
yobi Yi 280 10248 1 208 925 819 614 629 174 706 176
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Characters and Character Encoding

• A character is a unit of information that roughly corresponds to a grapheme,
grapheme-like unit, or symbol, such as in an alphabet or syllabary in the written
form of a natural language.

• Examples of characters include letters, numerical digits, common punctuation
marks, and whitespace.

• Characters also includes control characters, which do not correspond to symbols in
a particular natural language, but instead encode bits of information used to
control information flow or presentation.

• A character encoding is used to represent a set of characters by some kind of
encoding system. A single character can be encoded in many different ways.
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ASCII Characters and Encoding

• The American Standard Code for Information Interchange (ASCII) is a still widely
used character encoding standard.

• Originally, ASCII encodes 128 specified characters into seven-bit natural numbers.
Extended ASCII encodes the 128 specified characters into eight-bit natural
numbers. This makes code points available for additional characters.

• ISO 8859 is a family of extended ASCII codes that support different language
requirements, for example:
• ISO 8859-1 adds characters for most common Western European languages
• ISO 8859-2 adds characters for the most common Eastern European languages
• ISO 8859-5 adds characters for Cyrillic languages

• Unfortunately, ISO 8859 code points overlap, making it difficult to represent texts
requiring many different character sets.
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ASCII Characters and Code Points (decimal)

0 nul 1 soh 2 stx 3 etx 4 eot 5 enq 6 ack 7 bel

8 bs 9 ht 10 nl 11 vt 12 np 13 cr 14 so 15 si

16 dle 17 dc1 18 dc2 19 dc3 20 dc4 21 nak 22 syn 23 etb

24 can 25 em 26 sub 27 esc 28 fs 29 gs 30 rs 31 us

32 sp 33 ! 34 " 35 # 36 $ 37 % 38 & 39 ’

40 ( 41 ) 42 * 43 + 44 , 45 - 46 . 47 /

48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7

56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?

64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G

72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O

80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W

88 X 89 Y 90 Z 91 [ 92 \ 93 ] 94 ^ 95 _

96 ‘ 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o

112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w

120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 del
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Universal Coded Character Set and Unicode

• The Universal Coded Character Set (UCS) is a standard set of characters defined
and maintained by the International Organization of Standardization (ISO).

• The Unicode Consortium produces industry standards based on the UCS for the
encoding. Unicode 12.1 (published May 2019) defines 137 929 characters, each
identified by an unambiguous name and an integer number called its code point.

• The overall code point space is divided into 17 planes where each plane has
216 = 65536 code points. The Basic Multilingual Plane (plane 0) contains
characters of almost all modern languages, and a large number of symbols.

• Unicode can be implemented using different character encodings. The UTF-32
encoding encodes character code points directly into 32-bit numbers (fixed length
encoding). While simple, an ASCII text of size n would become a UTF-32 text of
size 4n.
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Unicode Transformation Format UTF-8

bytes cp bits first cp last cp byte 1 byte 2 bytes 3 byte 4

1 7 U+0000 U+007F 0xxxxxxx
2 11 U+0080 U+07FF 110xxxxx 10xxxxxx
3 16 U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx
4 21 U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

• Variable-length encoding of Unicode code points (cp) in such a way that seven-bit
ASCII becomes valid UTF-8.

• The e symbol with the code point U+20AC (0010 0000 1010 1100 in binary
notation) encodes as 0xE282AC (11100010 10000010 10101100 in binary notation).

• Note that this makes the e more expensive than the $. ,

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science December 5, 2019 123 / 256



Strings

• Let Σ be a non-empty finite set of symbols (or characters), called the alphabet.

• A string (or word) over Σ is any finite sequence of symbols from Σ, including (of
course) the empty sequence.

• Typical operations on strings are length(), concatenation(), reverse(), . . .

• There are different ways to store strings internally. Two common approaches are:
• The sequence is null-terminated, i.e., the characters of the string are followed by a

special NUL character.
• The sequence is length-prefixed, i.e., a natural number indicating the length of the

string is stored in front of the characters.

• In some programming languages, you need to know how strings are stored, in other
languages you happily leave the details to the language implementation.
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System Time and Clocks

• Computer systems usually maintain a notion of system time. The term system time
indicates that two different systems usually have a different notion of system time.

• System time is measured by a system clock, which is typically implemented as a
simple count of the number of ticks that have transpired since some arbitrary
starting date, called the epoch.

• Since internal counting mechanisms are not very precise, systems often exchange
time information with other systems that have “better” clocks or sources of time in
order to converge their notions of time.

• Time is sometimes used to order events, due to its monotonic nature.

• In distributed systems, this has its limitations and therefore the notion of logical
clocks has been invented. (Logical clocks do not measure time, they only help to
order events.)
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Calendar Time

• System time can be converted into calendar time, a reference to a particular time
represented within a calendar system.

• A popular calendar is the Gregorian calendar, which maps a time reference into a
year, a month within the year, and a day within a month.

• The Gregorian calendar was introduced by Pope Gregory XIII in October 1582.

• The Coordinated Universal Time (UTC) is the primary time standard by which the
world regulates clocks and time.

• Due to the rotation of the earth, days start and end at different moments. This is
reflected by the notion of a time zone, which is essentially an offset to UTC.

• The number of time zones is not static and time zones change occasionally.
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ISO 8601 Date and Time Formats

• Different parts of the world use different formats to write down a calendar time,
which can easily lead to confusion.

• The ISO 8601 standard defines an unambiguous notation for calendar time.

• ISO 8601 in addition defines formats for durations and time intervals.

name format example

date yyyy-mm-dd 2017-06-13
time hh:mm:ss 15:22:36
date and time yyyy-mm-ddThh:mm:ss[±hh:mm] 2017-06-13T15:22:36+02:00
date and time yyyy-mm-ddThh:mm:ss[±hh:mm] 2017-06-13T13:22:36+00:00
date and time yyyy-mm-ddThh:mm:ssZ 2017-06-13T13:22:36Z
date and week yyyy-Www 2017-W24
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Logic can be confusing. . .

• If all men are mortal and Socrates is a man, then Socrates is mortal.

• I like Pat or I like Joe.
If I like Pat, I like Joe.
Do I like Joe?

• If cats are dogs, then the sun shines.

• “Logic is the beginning of wisdom, not the end of it.”
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Boolean Variables

• Boolean logic describes objects that can take only one of two values.

• The values may be different voltage levels {0,V+} or special symbols {F ,T} or
simply the digits {0, 1}.
• In the following, we use the notation B = {0, 1}.
• In artificial intelligence, such objects are often called propositions and they are

either true or false.

• In mathematics, the objects are called Boolean variables and we use the symbols
X1,X2,X3, . . . for them.

• The main purpose of Boolean logic is to describe (or design) interdependencies
between Boolean variables.
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Interpretation of Boolean Variables

Definition (Boolean variables)

A Boolean variable Xi with i ≥ 1 is an object that can take on one of the two values 0
or 1. The set of all Boolean variables is X = {X1,X2,X3, . . .}.

Definition (Interpretation)

Let D be a subset of X. An interpretation I of D is a function I : D→ B.

• The set X is very large. It is often sufficient to work with a suitable subset D of X.

• An interpretation assigns to every Boolean variable a value.

• An interpretation is also called a truth value assignment.
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Boolean ∧ Function (and)

X Y X ∧ Y
0 0 0
0 1 0
1 0 0
1 1 1

• The logical and (∧) can be viewed as a function that
maps two Boolean values to a Boolean value:

∧ : B× B→ B

• A truth table defines a Boolean operation (or function)
by listing the result for all possible arguments.

• In programming languages like C or C++ (and even Haskell), the operator && is
often used to represent the ∧ operation.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science December 5, 2019 134 / 256



Boolean ∨ Function (or)

X Y X ∨ Y
0 0 0
0 1 1
1 0 1
1 1 1

• The logical or (∨) can be viewed as a function that
maps two Boolean values to a Boolean value:

∨ : B× B→ B

• Each row in the truth table corresponds to one
interpretation.

• A truth table simply lists all possible interpretations.

• In programming languages like C or C++ (and even Haskell), the operator || is
often used to represent the ∨ operation.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science December 5, 2019 135 / 256



Boolean ¬ Function (not)

X ¬X
0 1
1 0

• The logical not (¬) can be viewed as a unary function
that maps a Boolean value to a Boolean value:

¬ : B→ B

• The ¬ operation simply flips a Boolean value.

• In programming languages like C or C++, the operator ! is often used to represent
the ¬ operation (in Haskell you can use the function not).
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Boolean → Function (implies)

X Y X → Y
0 0 1
0 1 1
1 0 0
1 1 1

• The logical implication (→) can be viewed as a function
that maps two Boolean values to a Boolean value:

→: B× B→ B

• The implication represents statements of the form “if X
then Y ” (where X is called the precondition and Y the
consequence).

• The logical implication is often confusing to ordinary mortals. A logical implication
is false only if the precondition is true, but the consequence it asserts is false.

• The claim “if cats eat dogs, then the sun shines” is logically true.
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Boolean ↔ Function (equivalence)

X Y X ↔ Y
0 0 1
0 1 0
1 0 0
1 1 1

• The logical equivalence ↔ can be viewed as a function
that maps two Boolean values to a Boolean value:

↔: B× B→ B

• In programming languages like C or C++ (and even Haskell), the operator == is
often used to represent the equivalence function as an operation.
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Boolean ∨̇ Function (exclusive or)

X Y X ∨̇Y
0 0 0
0 1 1
1 0 1
1 1 0

• The logical exclusive or ∨̇ can be viewed as a function
that maps two Boolean values to a Boolean value:

∨̇ : B× B→ B

• Another commonly used symbol for the exclusive or is ⊕.
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Boolean ↑ Function (not-and)

X Y X ↑ Y
0 0 1
0 1 1
1 0 1
1 1 0

• The logical not-and (nand) or ↑ can be viewed as a
function that maps two Boolean values to a Boolean
value:

↑: B× B→ B
• The ↑ function is also called Sheffer stroke.

• While we use the functions ∧, ∨, and ¬ to introduce more complex Boolean
functions, the Sheffer stroke is sufficient to derive all elementary Boolean functions
from it.

• This is important for digital circuits since all you need are not-and gates.
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Boolean ↓ Function (not-or)

X Y X ↓ Y
0 0 1
0 1 0
1 0 0
1 1 0

• The logical not-or (nor) ↓ can be viewed as a function
that maps two Boolean values to a Boolean value:

↓: B× B→ B

• The ↓ function is also called Quine arrow.

• The ↓ (nor) is like ↑ (nand) sufficient to derive all elementary Boolean functions.
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Boolean Functions

• Elementary Boolean functions (¬,∧,∨) can be composed to define more complex
functions.

• An example of a composed function is

ϕ(X ,Y ) := ¬(X ∧ Y )

which is a function ϕ : B× B→ B and means “first compute the ∧ of X and Y,
then apply the ¬ on the result you got from the ∧”.

• Boolean functions can take a large number of arguments. Here is a function taking
three arguments:

ϕ(X ,Y ,Z ) := (¬(X ∧ Y ) ∨ (Z ∧ Y ))

• The left hand side of the notation above defines the function name and its
arguments, the right hand side defines the function itself by means of a formula.
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Boolean Functions

Definition (Boolean function)

A Boolean function ϕ is any function of the type ϕ : Bk → B, where k ≥ 0.

• The number k of arguments is called the arity of the function.

• A Boolean function with arity k = 0 assigns truth values to nothing. There are two
such functions, one always returning 0 and the other always returning 1. We simply
identify these two arity-0 functions with the truth value constants 0 and 1.

• The truth table of a Boolean function with arity k has 2k rows. For a function with
a large arity, truth tables become quickly unmanageable.
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Syntax of Boolean formulas (aka Boolean expressions)

Definition (Syntax of Boolean formulas)

Basis of inductive definition:

1a Every Boolean variable Xi is a Boolean formula.

1b The two Boolean constants 0 and 1 are Boolean formulas.

Induction step:

2a If ϕ and ψ are Boolean formulas, then (ϕ ∧ ψ) is a Boolean formula.

2b If ϕ and ψ are Boolean formulas, then (ϕ ∨ ψ) is a Boolean formula.

2c If ϕ is a Boolean formula, then ¬ϕ is a Boolean formula.
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Semantics of Boolean formulas

Definition (Semantics of Boolean formulas)

Let D ⊆ X be a set of Boolean variables and I : D→ B an interpretation. Let Φ(D) be
the set of all Boolean formulas which contain only Boolean variables that are in D. We
define a generalized version of an interpretation I∗ : Φ(D)→ B.

Basis of the inductive definition:

1a For every Boolean variable X ∈ D, I∗(X ) = I(X ).

1b For the two Boolean constants 0 and 1, we set I∗(0) = 0 and I∗(1) = 1.
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Semantics of Boolean formulas

Definition (Semantics of Boolean formulas (cont.))

Induction step, with ϕ and ψ in Φ(D):

2a

I∗((ϕ ∧ ψ)) =

{
1 if I∗(ϕ) = 1 and I∗(ψ) = 1

0 otherwise

2b

I∗((ϕ ∨ ψ)) =

{
1 if I∗(ϕ) = 1 or I∗(ψ) = 1

0 otherwise

2c

I∗(¬ϕ) =

{
1 if I∗(ϕ) = 0

0 if I∗(ϕ) = 1
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Tautology and contradiction

Definition (adapted interpretation)

An interpretation I : D→ B is adapted to a Boolean formula ϕ if all Boolean variables
that occur in ϕ are contained in D.

Definition (tautologies and contradictions)

A Boolean formula ϕ is a tautology if for all interpretations I, which are adapted to ϕ,
it holds that I(ϕ) = 1. A Boolean formula is a contradiction if for all interpretations I,
which are adapted to ϕ, it holds that I(ϕ) = 0.
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Satisfying a Boolean formula

Definition (satisfying a Boolean formula)

An interpretation I which is adapted to a Boolean formula ϕ is said to satisfy the
formula ϕ if I(ϕ) = 1. A formula ϕ is called satisfiable if there exists an interpretation
which satisfies ϕ.

The following two statements are equivalent characterizations of satisfiability:

• A Boolean formula is satisfiable if and only if its truth table contains at least one
row that results in 1.

• A Boolean formula is satisfiable if and only if it is not a contradiction.
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Equivalence of Boolean formulas

Definition (equivalence of Boolean formulas)

Let ϕ, ψ be two Boolean formulas. The formula ϕ is equivalent to the formula ψ,
written ϕ ≡ ψ, if for all interpretations I, which are adapted to both ϕ and ψ, it holds
that I(ϕ) = I(ψ).

• There are numerous “laws” of Boolean logic which are stated as equivalences.
Each of these laws can be proven by writing down the corresponding truth table.

• Boolean equivalence “laws” can be used to “calculate” with logics, executing
stepwise transformations from a starting formula to some target formula, where
each step applies one equivalence law.
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Equivalence laws

Proposition (equivalence laws)

For any Boolean formulas ϕ, ψ, χ, the following equivalences hold:

1. ϕ ∧ 1 ≡ ϕ and ϕ ∨ 0 ≡ ϕ (identity)

2. ϕ ∨ 1 ≡ 1 and ϕ ∧ 0 ≡ 0 (domination)

3. (ϕ ∧ ϕ) ≡ ϕ and (ϕ ∨ ϕ) ≡ ϕ) (idempotency)

4. (ϕ ∧ ψ) ≡ (ψ ∧ ϕ) and (ϕ ∨ ψ) ≡ (ψ ∨ ϕ) (commutativity)

5. ((ϕ ∧ ψ) ∧ χ) ≡ (ϕ ∧ (ψ ∧ χ)) and ((ϕ ∨ ψ) ∨ χ) ≡ (ϕ ∨ (ψ ∨ χ)) (associativity)

6. ϕ∧ (ψ∨χ) ≡ (ϕ∧ψ)∨ (ϕ∧χ) and ϕ∨ (ψ∧χ) ≡ (ϕ∨ψ)∧ (ϕ∨χ) (distributivity)

7. ¬¬ϕ ≡ ϕ (double negation)

8. ¬(ϕ ∧ ψ) ≡ (¬ϕ ∨ ¬ψ) and ¬(ϕ ∨ ψ) ≡ (¬ϕ ∧ ¬ψ) (de Morgan’s laws)

9. ϕ ∧ (ϕ ∨ ψ) ≡ ϕ and ϕ ∨ (ϕ ∧ ψ) ≡ ϕ (absorption laws)
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Literals

Definition (literals)

A literal Li is a Boolean formula that has one of the forms Xi , ¬Xi , 0, 1, ¬0, ¬1, i.e., a
literal is either a Boolean variable or a constant or a negation of a Boolean variable or a
constant. The literals Xi , 0, 1 are called positive literals and the literals ¬Xi , ¬0, ¬1 are
called negative literals.

Definition (monomial)

A monomial (or product term) is a literal or the logic and (product) of literals.

Definition (clause)

A clause (or sum term) is a literal or the logic or (sum) of literals.
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Conjunctive Normal Form

Definition (conjunctive normal form)

A Boolean formula is said to be in conjunctive normal form (CNF) if it is a conjunction
of disjunctions of literals.

• Examples of formulas in CNF:
• X1 (this is a short form of (1 ∨ 1) ∧ (X1 ∨ 0)
• X1 ∧ X2 (this is a short form of (X1 ∨ X1) ∧ (X2 ∨ X2))
• X1 ∨ X2 (this is a short form of (1 ∨ 1) ∧ (X1 ∨ X2))
• ¬X1 ∧ (X2 ∨ X3) (this is a short form of (0 ∨ ¬X1) ∧ (X2 ∨ X3))
• (X1 ∨ ¬X2) ∧ (¬X1 ∨ X2)

• We typically write the short form, leaving out trivial expansions into full CNF form.
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Disjunctive Normal Form

Definition (disjunctive normal form)

A Boolean formula is said to be in disjunctive normal form (DNF) if it is a disjunction of
conjunctions of literals.

• Examples of formulas in DNF:
• X1 (this is a short form of (0 ∧ 0) ∨ (X1 ∧ 1))
• X1 ∧ X2 (this is a short form of (0 ∧ 0) ∨ (X1 ∧ X2))
• X1 ∨ X2 (this is a short form of (X1 ∧ X1) ∨ (X2 ∧ X2))
• (¬X1 ∧ X2) ∨ (¬X1 ∧ X3)
• (¬X1 ∧ ¬X2) ∨ (X1 ∧ X2)

• We typically write the short form, leaving out trivial expansions into full DNF form.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science December 5, 2019 156 / 256



Equivalence of Normal Forms

Proposition (CNF equivalence)

Every Boolean formula ϕ is equivalent to a Boolean formula χ in conjunctive normal
form.

Proposition (DNF equivalence)

Every Boolean formula ϕ is equivalent to a Boolean formula χ in disjunctive normal
form.

• These two results are important since we can represent any Boolean formula in a
“shallow” format that does not need any “deeply nested” bracketing levels.
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Obtaining a DNF from a Truth Table

• Given a truth table, a DNF can be obtained by writing down a conjunction of the
input values for every row where the result is 1 and connecting all obtained
conjunctions together with a disjunction.

X Y X ∨̇Y
0 0 0
0 1 1
1 0 1
1 1 0

• 2nd row: ¬X ∧ Y

• 3rd row: X ∧ ¬Y
• χ = (¬X ∧ Y ) ∨ (X ∧ ¬Y )
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Obtaining a CNF from a Truth Table

• Given a truth table, a CNF can be obtained by writing down a disjunction of the
negated input values for every row where the result is 0 and connecting all obtained
disjunctions together with a conjunction.

X Y X ∨̇Y
0 0 0
0 1 1
1 0 1
1 1 0

• 1st row: X ∨ Y

• 4th row: ¬X ∨ ¬Y
• χ = (X ∨ Y ) ∧ (¬X ∨ ¬Y )
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Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science December 5, 2019 160 / 256



Cost of Boolean Expressions and Functions

Definition (cost of boolean expression)

The cost C (e) of a boolean expression e is the number of operators in e.

Definition (cost of boolean function)

The cost C (f ) of a boolean function f is the minimum cost of boolean expressions
defining f , C (f ) = min{C (e)|e defines f }.

• We can find expressions of arbitrary high cost for a given boolean function.

• How do we find an expression with minimal cost for a given boolean function?
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Implicants and Prime Implicants

Definition (implicant)

A product term P of a Boolean function ϕ of n variables is called an implicant of ϕ if
and only if for every combination of values of the n variables for which P is true, ϕ is
also true.

Definition (prime implicant)

An implicant of a function ϕ is called a prime implicant of ϕ if it is no longer an
implicant if any literal is deleted from it.

Definition (essential prime implicant)

A prime implicant of a function ϕ is called an essential prime implicant of ϕ if it covers
a true output of ϕ that no combination of other prime implicants covers.
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Quine McCluskey Algorithm

QM-0 Find all implicants of a given function (e.g., by determining the DNF from a truth
table or by converting a boolean expression into DNF).

QM-1 Repeatedly combine non-prime implicants until there are only prime implicants left.

QM-2 Determine a minimum sum of prime implicants that defines the function. (This
sum not necessarily includes all prime implicants.)

• We will further detail the steps QM-1 and QM-2 in the following slides.

• See also the complete example in the notes.
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Finding Prime Implicants (QM-1)

PI-1 Classify and sort the minterms by the number of positive literals they contain.

PI-2 Iterate over the classes and compare each minterms of a class with all minterms of
the following class. For each pair that differs only in one bit position, mark the bit
position as a wildcard and write down the newly created shorter term combining
two terms. Mark the two terms as used.

PI-3 Repeat the last step if new combined terms were created.

PI-4 The set of minterms or combined terms not marked as used are the prime
implicants.

• Note: You can only combine minterms that have the wildcard at the same position.
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Finding Minimal Sets of Prime Implicants (QM-2)

MS-1 Identify essential prime implicants (essential prime implicants cover an implicant
that is not covered by any of the other prime implicants)

MS-2 Find a minimum coverage of the remaining implicants by the remaining prime
implicants

• Note that multiple minimal coverages may exist. The algorithm above does not
define which solution is returned in this case.

• There are additional ways to cut the search space by eliminating rows or columns
that are “dominated” by other rows or columns.
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Logic Statements

• A common task is to decide whether statements of the form
if premises P1 and ... and Pm hold, then conclusion C holds

are true.

• The premises Pi and the conclusion C are expressed in some logic formalism, the
simplest is Boolean logic (also called propositional logic).

• Restricting us to Boolean logic here, the statement above can be seen as a Boolean
formula of the following structure

(ϕ1 ∧ . . . ∧ ϕm)→ ψ

and we are interested to find out whether such a formula is true, i.e., whether it is
a tautology.
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Tautology and Satisfiability

• Recall that a Boolean formula τ is a tautology if and only if τ ′ = ¬τ is a
contradiction. Furthermore, a Boolean formula is a contradiction if and only if it is
not satisfiable. Hence, in order to check whether

τ = (ϕ1 ∧ . . . ∧ ϕm)→ ψ (1)

is a tautology, we may check whether

τ ′ = ¬((ϕ1 ∧ . . . ∧ ϕm)→ ψ) (2)

is unsatisfiable.

• If we show that τ ′ is satisfiable, we have disproven τ .
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Tautology and Satisfiability

• Since ϕ→ ψ ≡ ¬(ϕ ∧ ¬ψ), we can rewrite the formulas as follows:

τ = (ϕ1 ∧ . . . ∧ ϕm)→ ψ = ¬(ϕ1 ∧ . . . ∧ ϕm ∧ ¬ψ) (3)

τ ′ = ¬((ϕ1 ∧ . . . ∧ ϕm)→ ψ) = (ϕ1 ∧ . . . ∧ ϕm ∧ ¬ψ) (4)

• To disprove τ , it is often easier to prove that τ ′ is satisfiable.

• Note that τ ′ has a homogenous structure. If we transform the elements
ϕ1, . . . , ϕm, ψ into CNF, then the entire formula is in CNF.

• If τ ′ is in CNF, all we need to do is to invoke an algorithm that searches for
interpretations I which satisfy a formula in CNF. If there is such an interpretation,
τ is disproven, otherwise, if there is no such interpretation, then τ is proven.
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Satisfiability Problem

Definition (satisfiability problem)

The satisfiability problem (SAT) is the following computational problem: Given as input
a Boolean formula in CNF, compute as output a “yes” or “no” response according to
whether the input formula is satisfiable or not.

• It is believed that there is no polynomial time solution for this problem.
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Recall elementary boolean operations and functions

• Recall the elementary boolean operations AND (∧), OR (∨), and NOT (¬) as well
as the boolean functions XOR (∨̇), NAND (↑), and NOR (↓).

X ∨̇Y := (X ∨ Y ) ∧ ¬(X ∧ Y )

X ↑ Y := ¬(X ∧ Y )

X ↓ Y := ¬(X ∨ Y )

• For each of these elementary boolean operations or functions, we can construct
digital gates, for example, using transistors in Transistor-Transistor Logic (TTL).

• Note: NAND and NOR gates are called universal gates since all other gates can be
constructed by using multiple NAND or NOR gates.
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Logic gates implementing logic functions

NOT (¬) AND (∧) OR (∨)

A out
A
B

Q
A
B

Q

XOR (∨̇) NAND (↑) NOR (↓)
A
B

Q
A
B

Q
A
B

Q

• There are different sets of symbols for logic gates (do not get confused if you look
into other sources of information).

• The symbols used here are the ANSI (American National Standards Institute)
symbols.
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Combinational Digital Circuits

Definition (combinational digital circuit)

A combinational digital circuit implements pure boolean functions where the results
only depends on the inputs.

• Examples of elementary combinational digitial circuits are circuits to add n-bit
numbers, to multiply n-bit numbers, or to compare n-bit numbers.

• Combinational digital circuits are pure since their behavior solely depends on the
well-defined inputs of the circuit.
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Addition of decimal and binary numbers

2 0010 3 0011 8 1000

+ 5 + 0101 + 3 + 0011 + 3 + 0011

11 1

--- ------ --- ------ --- ------

7 0111 6 0110 11 1011

• We are used to add numbers in the decimal number system.

• Adding binary numbers is essentially the same, except that we only have the digits
0 and 1 at our disposal and “carry overs” are much more frequent.
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Adding two bits (half adder)

• The half adder adds two single binary digits A and B .

• It has two outputs, sum (S) and carry (C ).

A B C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

S = A∨̇B

C = A ∧ B

A
B

S

C
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Adding two bits (full adder)

• A full adder adds two single bit digits A and B and accounts for a carry bit Cin.

• It has two outputs, sum (S) and carry (Cout).

A B Cin Cout S
0 0 0 0 0
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0
0 0 1 0 1
0 1 1 1 0
1 0 1 1 0
1 1 1 1 1

S = (A∨̇B)∨̇Cin

Cout = (A ∧ B) ∨ (Cin ∧ (A∨̇B))

A
B
Cin

S

Cout
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Adding N Bits (ripple carry adder)

• And N-bit adder can be created using multiple full adders.
• Each full adder inputs a Cin, which is the Cout of the previous adder.
• Each carry bit “ripples” to the next full adder.

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

AdderC3 C2 C1 C0C4

A3 B3 A2 B2 A1 B1 A0 B0

S3 S2 S1 S0
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Adding N Bits (carry-lookahead adder)

• A carry-lookahead adder uses a special circuit to calculate the carry bits.

• Half adder are used add the input bits and to feed the carry-lookahead circuit

• Half adder are used to finally add the carry bits.
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Multiplication of Decimal and Binary Numbers

11 * 13 1011 * 1101

------- -----------

11 1011

+ 33 + 1011

------- + 0000

143 + 1011

-----------

10001111

• We an reduce multipliation to repeated additions.

• Multiplication by 2n is a left shift by n positions.
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Sequential Digital Circuits

Definition (sequential digital circuit)

A sequential digital circuit implements a non-pure boolean functions where the results
depend on both the inputs and the current state of the circuit.

Definition (asynchronous sequential digital circuit)

A sequential digitial circuit is asynchronous if the state of the circuit and the results can
change anytime in response to changing inputs.

Definition (synchronous sequential digital circuit)

A sequential digitial circuit is synchronous if the state of the circuit and the results can
change only at discrete times in response to a clock signal.
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Basic Properties of Memory

Memory should have at least three properties:

1. It should be able to hold a value.

2. It should be possible to read the value that was saved.

3. It should be possible to change the value that was saved.

We start with the simplest case, a one-bit memory:

1. It should be able to hold a single bit.

2. It should be possible to read the bit that was saved.

3. It should be possible to change the bit that was saved.
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SR Latch using NOR Gates

S R Q Q̄ Q Q̄
0 0 0 1 0 1
0 0 1 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
0 1 0 1 0 1
0 1 1 0 0 1

Q

Q

R

S

• Setting the inputs to S = 1 ∧ R = 0 sets the stored bit (Q = 1).

• Setting the inputs to R = 1 ∧ S = 0 clears the stored bit (Q = 0).

• The stored bit does not change while R = 0 ∧ S = 0.
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SR Latch using NAND Gates

S R Q Q̄ Q Q̄
1 1 0 1 0 1
1 1 1 0 1 0
0 1 0 1 1 0
0 1 1 0 1 0
1 0 0 1 0 1
1 0 1 0 0 1

Q

Q

S

R

• Setting the inputs to S = 0 ∧ R = 1 sets the stored bit (Q = 1).

• Setting the inputs to R = 0 ∧ S = 1 clears the stored bit (Q = 0).

• The stored bit does not change while R = 1 ∧ S = 1.

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science December 5, 2019 186 / 256



Gated SR Latch using NAND Gates

C S R Q Q̄ Q Q̄
0 x x 0 1 0 1
0 x x 1 0 1 0
1 1 1 0 1 0 1
1 1 1 1 0 1 0
1 0 1 0 1 1 0
1 0 1 1 0 1 0
1 1 0 0 1 0 1
1 1 0 1 0 0 1

Q

Q

R

S

SR Latch

(R)

(S)

C

• The control input C enables the SR latch.
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D Latch using NAND Gates

C D Q Q̄ Q Q̄
0 0 0 1 0 1
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 0 1 0
1 0 x x 0 1
1 1 x x 1 0

Q

Q

D

C

• There is no illegal input signal combination anymore.
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D Flip-Flop (Master Slave)

D Q

QC

D Q

QC

Q

Q

D

C

• Edge-triggered D flip-flops propage changes from the master to the slave latch on
either the rising edge of a clock signal or the falling edge of the clock signal.
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Von Neumann computer architecture

• Control unit contains an instruction register and
a program counter

• Arithmetic/logic unit (ALU) performs integer
arithmetic and logical operations

• Program instructions and data is stored in a
memory unit

• Processor registers provide small amount of
storage as part of a central processing unit

• The central processing unit (CPU) carries out the actual computations
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Computer system bus (data, address, and control)

Memory Input and
Output

Control bus

Address bus

Data bus S
ys

te
m

 b
us

CPU

• The data bus transports data (primarily between registers and main memory).

• The address bus selects which memory cell is being read or written.

• The control bus activates components and steers the data flow over the data bus
and the usage of the address bus.
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Simple Central Processing Unit

• Real CPUs usually have multiple
registers

• Real CPUs support memory outside of
the CPU itself

• Real CPUs have different instruction
sets for different privilege levels

• Real CPUs have special digital circuits
for floating point arithmetic or
cryptographic operations
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Instruction cycle (fetch – decode – execute cycle)

while True:

advance_program_counter();

instruction = fetch();

decode(instruction);

execute(instruction);

• The CPU runs in an endless
loop fetching instructions,
decoding them, and executing
them.

• The set of instructions a CPU
can execute is called the
CPU’s machine language

• Typical instructions are to add two N-bit numbers, to test whether a certain register
is zero, or to jump to a certain position in the ordered list of machine instructions.

• An assembly programming language is a mnemonic representation of machine code.
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Simple Machine Language

Op-code Mnemonic Function
001 LOAD Load the value of the operand into the accumulator
010 STORE Store the value of the accumulator at the address specified by

the operand
011 ADD Add the value of the operand to the accumulator
100 SUB Subtract the value of the operand from the accumulator
101 EQUAL If the value of the operand equals the value of the Accumu-

lator, skip the next instruction
110 JUMP Jump to a specified instruction by setting the program counter

to the value of the operand
111 HALT Stop execution

• Each instruction of the machine language is encoded into 8 bits:
• 3 bits are used for the op-code
• 1 bit indicates whether the operand is a constant (1) or a memory address (0)
• 4 bits are used to carry a constant or a memory address (the operand)
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Program #1 in our simple machine language

# Machine Code Assembly Code Description
0 001 1 0010 LOAD #2 Load the value 2 into the accumulator
1 010 0 1101 STORE 13 Store the value of the accumulator in memory location 13
2 001 1 0101 LOAD #5 Load the value 5 into the accumulator
3 010 0 1110 STORE 14 Store the value of the accumulator in memory location 14
4 001 0 1101 LOAD 13 Load the value of memory location 13 into the accumulator
5 011 0 1110 ADD 14 Add the value of memory location 14 to the accumulator
6 010 0 1111 STORE 15 Store the value of the accumulator in memory location 15
7 111 0 0000 HALT Stop execution

• An animation of the execution of this program can be found here:
http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html

• What is the equivalent C program?
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Program #2 in our simple machine language

# Machine Code Assembly Code Description
0 001 1 0101 LOAD #5 Load the value 5 into the accumulator
1 010 0 1111 STORE 15 Store the value of the accumulator in memory location 15
2 001 1 0000 LOAD #0 Load the value 0 into the accumulator
3 101 0 1111 EQUAL 15 Skip next instruction if accumulator equal to memory location 15
4 110 1 0110 JUMP #6 Jump to instruction 6 (set program counter to 6)
5 111 0 0000 HALT Stop execution
6 011 1 0001 ADD #1 Add the value 1 to the accumulator
7 110 1 0011 JUMP #3 Jump to instruction 3 (set program counter to 3)

• An animation of the execution of this program can be found here:
http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html

• What is the equivalent C program?
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Part 6: System Software

25 Interpreter and Compiler

26 Operating Systems
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Section 25: Interpreter and Compiler

25 Interpreter and Compiler

26 Operating Systems
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Are there better ways to write machine or assembler code?

• Observations:
• Writing machine code or assembler code is difficult and time consuming.
• Maintaining machine code or assembler code is even more difficult and time

consuming (and most cost is spent on software maintenance).

• A high-level programming language is a programming language with strong
abstraction from the low-level details of the computer.

• Rather than dealing with registers and memory addresses, high-level languages deal
with variables, arrays, objects, collections, complex arithmetic or boolean
expressions, subroutines and functions, loops, threads, locks, and other abstract
computer science concepts, with a focus on usability over optimal program
efficiency.
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Simple C program to add two numbers

/* C source code

(C is a compiled procedural programming language) */

int main()

{

int a = 5;

int b = 2;

int c = a + b;

return c;

}
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Disassembled machine code (without optimizations)

# compile without optimization (gcc) and look at the machine code

# gcc (Debian 4.7.2-5) 4.7.2 on Linux

00000000004004ac <main>:

4004ac: 55 push %rbp

4004ad: 48 89 e5 mov %rsp,%rbp

4004b0: c7 45 fc 05 00 00 00 movl $0x5,-0x4(%rbp)

4004b7: c7 45 f8 02 00 00 00 movl $0x2,-0x8(%rbp)

4004be: 8b 45 f8 mov -0x8(%rbp),%eax

4004c1: 8b 55 fc mov -0x4(%rbp),%edx

4004c4: 01 d0 add %edx,%eax

4004c6: 89 45 f4 mov %eax,-0xc(%rbp)

4004c9: 8b 45 f4 mov -0xc(%rbp),%eax

4004cc: 5d pop %rbp

4004cd: c3 retq

4004ce: 90 nop

4004cf: 90 nop
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Disassembled machine code (with optimizations)

# compile with optimization (gcc -O2) and look at the machine code

# gcc (Debian 4.7.2-5) 4.7.2 on Linux

00000000004003a0 <main>:

4003a0: b8 07 00 00 00 mov $0x7,%eax

4003a5: c3 retq

4003a6: 90 nop

4003a7: 90 nop
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Compiler

Compiler front-end for language 1 Compiler front-end for language 2

void
usage (char *name)
{
   printf ("Usage:\n");
   printf ("%s -a [-c file",
name};
#ifdef LOFI
   printf ("[-g] [-s] ");
#endif   
   printf ("[-g what] [-r]
[-u file [type]]");
#ifdef LOFI
   printf (" [-z size] ");
#endif

public class OddEven {
   private int input;
   public OddEven() {
      input = Integer.parseInt()
   }
   public void calculate() {
      if (input % 2 == 0)
         System.out.println("Even");
      else
         System.out.printin("Odd");
   }
   public void main(String[] args) {
   }
}

Language 1 source code Language 2 source code

Lexical Analyzer (Scanner)

Syntax/Semantic
Analyzer (Parser)

Intermediate-code
Generator

Lexical Analyzer (Scanner)

Syntax/Semantic
Analyzer (Parser)

Intermediate-code
Generator

Intermediate code optimizer

Non-optimized intermediate code Non-optimized intermediate code

Optimized intermediate code

Target-1
Code Generator

Target-2
Code Generator

Target-1 machine code Target-2 machine code

• lexical analysis
⇒ sequence of token

• syntax analysis
⇒ parse tree

• semantic analysis
⇒ abstract syntax tree

• optimization
⇒ enhanced abstract syntax tree

• code generation
⇒ object code
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Abstract Syntax Tree Example

condition

body

else-bodyif-body

while

variable
name: b

constant

value: 0

compare

op: ≠

branch

compare

op: >
assign

bin op
op: − 

assign

bin op
op: − 

statement
sequence

return

variable
name: a

variable
name: a

variable
name: a

variable
name: a

variable
name: a

variable
name: b

variable
name: b

variable
name: b

variable
name: b

condition

Euclidean algorithm to find the greatest
common divisor of a and b:

while (b != 0):

if (a > b):

a = a - b

else:

b = b - a

return a
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Backus-Naur-Form and Formal Languages

The syntax of programming languages is often defined using syntax rules. A common
notation for syntax rules is the Backus-Naur-Form (BNF):

• Terminal symbols are enclosed in quotes

• Non-terminal symbols are enclosed in <>

• A BNF rule consists of a non-terminal symbol followed by the defined-as operator
::= and a rule expression

• A rule expression consists of terminal and non-terminal symbols and operators; the
empty operator denotes contatenation and the | operator denotes an alternative

• Parenthesis may be used to group elements of a rule expression

A set of BNF rules has a non-terminal starting symbol.
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Interpreter

• A basic interpreter parses a statement, executes it, and moves on to the next
statement (very similar to a fetch-decode-execute cycle).

• More advanced interpreter do a syntactic analysis to determine syntactic
correctness before execution starts.

• Properties:
• Highly interactive code development (trial-and-error coding)
• Limited error detection capabilities before code execution starts
• Interpretation causes a certain runtime overhead
• Development of short pieces of code can be very fast

• Examples: command interpreter (shells), scripting languages
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Compiler and Interpreter

[1] Source Code --> Interpreter

[2] Source Code --> Compiler --> Machine Code

[3] Source Code --> Compiler --> Byte Code --> Interpreter

[4] Source Code --> Compiler --> Byte Code --> Compiler --> Machine Code

• An interpreter is a computer program that directly executes source code written in a higher-level
programming language.

• A compiler is a program that transforms source code written in a higher-level programming
language (the source language) into a lower-level computer language (the target language).
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Virtual Machines and Emulators

• A virtual machine (VM) is an emulation of a particular computer system. Virtual
machines operate based on the computer architecture and functions of a real
computer.

• An emulator is hardware or software or both that duplicates (or emulates) the
functions of one computer system (the guest) in another computer system (the
host), different from the first one, so that the emulated behavior closely resembles
the behavior of the real system (the guest).

⇒ Virtual machines were invented in the 1970s and reinvented in the 1990s.

⇒ Virtual machines have been an enabler for cloud computing since they are easy to
start / stop / clone / migrate and they separate the software implementing services
form the underlying hardware.
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Hardware vs. System Software vs. Application Software

a
p

p
li
c
a
ti

o
n

operating system kernel

digital circuits, CPUs, busses, memory, ...

machine language

system calls, file systems, ...

compiler, linker, libraries, shells, daemons, ...

library calls, command languages

h
a
rd

w
a
re

s
y
s
te

m
 s

o
ft

w
a
re

browser, office software, databases, games, libraries, ...

human (graphical, voice, web) and physical world interfaces

s
o

ft
w

a
re
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Section 26: Operating Systems

25 Interpreter and Compiler

26 Operating Systems
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Operating System Kernel Functions

• Execute many programs concurrently (instead of just one program at a time)

• Assign resources to running programs (memory, CPU time, . . . )

• Ensure a proper separation of concurrent processes

• Enforce resource limits and provide means to control processes

• Provide logical filesystems on top of block-oriented raw storage devices

• Control and coordinate input/output devices (keyboard, display, . . . )

• Provide basic network communication services to applications

• Provide input/output abstractions that hide device specifics

• Enforce access control rules and privilege separation

• Provide a well defined application programming interface (API)
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OS Abstraction #1: Processes and Process Lifecycle

Definition (process)

An instance of a computer program that is being executed is called a process.

• The OS kernel maintains information about each running process and assigns
resources and ensures protection of concurrently running processes.

• In Unix-like Operating Systems

- a new process is created by “cloning” (forking) an already existing process
- a process may load a new program image (machine code) to execute
- a terminating process returns a number to its parent process
- a parent process can wait for child processes to terminate

⇒ A very basic command interpreter can be written in a few lines of Python code.
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OS Abstraction #1: Processes and Process Lifecycle

write(prompt)

time

fork()

exec("date")

wait()read(...)

date

bash

write(...) exit(0)

read(...)

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science December 5, 2019 214 / 256



OS Abstraction #1: Processes and Process Lifecycle

while (1) {

show_prompt(); /* display prompt */

read_command(); /* read and parse command */

pid = fork(); /* create new process */

if (pid < 0) { /* continue if fork() failed */

perror("fork");

continue;

}

if (pid != 0) { /* parent process */

waitpid(pid, &status, 0); /* wait for child to terminate */

} else { /* child process */

execvp(args[0], args, 0); /* execute command */

perror("execvp"); /* only reach on exec failure */

_exit(1); /* exit without any cleanups */

}

}
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OS Abstraction #2: File Systems

• Files are persistent containers for the storage of data

• Unstructured files contain a sequence of bytes

• Applications interpret the content of a file in a specific way

• Files also have meta data (owner, permissions, timestamps)

• Hierarchical file systems use directories to organize files into a hierarchy

• Names of files and directories at one level of the hierarchy usually have to be unique

• The operating system maps the logical structure of a hierarchical file system to a
block-oriented storage device

• The operating system must ensure file system integrity

• The operating system may support compression and encryption of file systems
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OS Abstraction #2: File Systems (Unix)

..

2

4 5

76

8 9

..

..

bin

etc

ls vi

usr vmunix

.

.

. .

..

• The logical structure of a typical Unix
file system

• The . in a directory always refers to
the directory itself

• The .. in a directory always refers to
the parent directory, except in the root
directory

• A link is a reference of a file system
object from a directory

• Any file system changes need to
maintain the integrity of these links

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science December 5, 2019 217 / 256



OS Abstraction #2: File and Directory Operations (Unix)

File operations

open() open a file
read() read data from the

current file position
write() write data at the cur-

rent file position
seek() seek to a file position
stat() read meta data
close() close an open file
unlink() remove a link to a file

Directory operations

mkdir() create a directory
rmdir() delete a directory
chdir() change to a directory

opendir() open a directory
readdir() read a directory entry
closedir() close a directory
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OS Abstraction #3: Inter-process Communication

• Communication between processes:
• Signals (software interrupts)
• Pipes (local unidirectional byte streams)
• Sockets (local and global bidirectional byte or datagram streams)
• Shared memory (memory regions shared between multiple processes)
• Message queues (a queue of messages between multiple processes)
• . . .

• Sockets are the basic inter-process communication abstraction used for
communication between processes over the Internet
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Part 7: Software Correctness

27 Software Specification

28 Software Verification

29 Automation of Software Verification
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Section 27: Software Specification
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28 Software Verification

29 Automation of Software Verification
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Formal Specification and Verification

Definition (formal specification)

A formal specification uses a formal (mathematical) notation to provide a precise
definition of what a program should do.

Definition (formal verification)

A formal verification uses logical rules to mathematically prove that a program satisfies
a formal specification.

• For many non-trivial problems, creating a formal, correct, and complete
specification is a problem by itself.

• A bug in a formal specification leads to programs with verified bugs.
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Floyd-Hoare Triple

Definition (hoare triple)

Given a state that satisfies precondition P , executing a program C (and assuming it
terminates) results in a state that satisfies postcondition Q. This is also known as the
“Hoare triple”:

{P} C {Q}

• Invented by Charles Anthony (“Tony”) Richard Hoare with original ideas from
Robert Floyd (1969).

• Hoare triple can be used to specify what a program should do.

• Example:
{X = 1} X := X + 1 {X = 2}
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Partial Correctness and Total Correctness

Definition (partial correctness)

An algorithm starting in a state that satisfies a precondition P is partially correct with
respect to P and Q if results produced by the algorithm satisfy the postcondition Q.
Partial correctness does not require that always a result is produced, i.e., the algorithm
may not always terminate.

Definition (total correctness)

An algorithm is totally correct with respect to P and Q if it is partially correct with
respect to P and Q and it always terminates.
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Hoare Notation Conventions

1. The symbols V , V1, . . . , Vn stand for arbitrary variables. Examples of particular
variables are X , Y , R etc.

2. The symbols E , E1, . . . , En stand for arbitrary expressions (or terms). These are
expressions like X + 1,

√
2 etc., which denote values (usually numbers).

3. The symbols S , S1, . . . , Sn stand for arbitrary statements. These are conditions
like X < Y , X 2 = 1 etc., which are either true or false.

4. The symbols C , C1 , . . . , Cn stand for arbitrary commands of our programming
language; these commands are described in the following slides.

• We will use lowercase letters such as x and y to denote auxiliary variables (e.g., to
denote values stored in variables).
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Hoare Assignments

• Syntax: V := E

• Semantics: The state is changed by assigning the value of the term E to the
variable V . All variables are assumed to have global scope.

• Example: X := X + 1
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Hoare Skip Command

• Syntax: SKIP

• Semantics: Do nothing. The state after execution the SKIP command is the same
as the state before executing the SKIP command.

• Example: SKIP
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Hoare Command Sequences

• Syntax: C1; . . . ;Cn

• Semantics: The commands C1, . . . ,Cn are executed in that order.

• Example: R := X ;X := Y ;Y := R
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Hoare Conditionals

• Syntax: IF S THEN C1 ELSE C2 FI

• Semantics: If the statement S is true in the current state, then C1 is executed. If S
is false, then C2 is executed.

• Example: IF X < Y THEN M := Y ELSE M := X FI
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Hoare While Loop

• Syntax: WHILE S DO C OD

• Semantics: If the statement S is true in the current state, then C is executed and
the WHILE-command is repeated. If S is false, then nothing is done. Thus C is
repeatedly executed until the value of S becomes false. If S never becomes false,
then the execution of the command never terminates.

• Example: WHILE ¬(X = 0) DO X := X − 2 OD
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Termination can be Tricky

1: function collatz(X )
2: while X > 1 do
3: if (X%2) 6= 0 then
4: X ← (3 · X ) + 1
5: else
6: X ← X/2
7: end if
8: end while
9: return X

10: end function

• Collatz conjecture: The program will eventually return the number 1, regardless of
which positive integer is chosen initially.
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Specification can be Tricky

• Specification for the maximum of two variables:

{T} C {Y = max(X ,Y )}

• C could be:

IF X > Y THEN Y := X ELSE SKIP FI

• But C could also be:

IF X > Y THEN X := Y ELSE SKIP FI

• And C could also be:

Y := X

• Use auxiliary variables x and y to associate Q with P :

{X = x ∧ Y = y} C {Y = max(x , y)}
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Section 28: Software Verification

27 Software Specification

28 Software Verification

29 Automation of Software Verification
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Floyd-Hoare Logic

• Floyd-Hoare Logic is a set of inference rules that enable us to formally proof partial
correctness of a program.

• If S is a statement, we write ` S to mean that S has a proof.

• The axioms of Hoare logic will be specified with a notation of the following form:

` S1, . . . ,` Sn

` S

• The conclusion S may be deduced from ` S1, . . . ,` Sn, which are the hypotheses
of the rule.

• The hypotheses can be theorems of Floyd-Hoare logic or they can be theorems of
mathematics.
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Precondition Strengthening

• If P implies P ′ and we have shown {P ′} C {Q}, then {P} C {Q} holds as well:

` P → P ′, ` {P ′} C {Q}
` {P} C {Q}

• Example: Since ` X = n→ X + 1 = n + 1, we can strengthen

` {X + 1 = n + 1} X := X + 1 {X = n + 1}

to
` {X = n} X := X + 1 {X = n + 1}.
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Postcondition Weakening

• If Q ′ implies Q and we have shown {P} C {Q ′}, then {P} C {Q} holds as well:

` {P} C {Q ′}, ` Q ′ → Q

` {P} C {Q}

• Example: Since X = n + 1→ X > n, we can weaken

` {X = n} X := X + 1 {X = n + 1}

to
` {X = n} X := X + 1 {X > n}

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science December 5, 2019 236 / 256



Weakest Precondition

Definition (weakest precondition)

Given a program C and a postcondition Q, the weakest precondition wp(C ,Q) denotes
the largest set of states for which C terminates and the resulting state satisfies Q.

Definition (weakest liberal precondition)

Given a program C and a postcondition Q, the weakest liberal precondition wlp(C ,Q)
denotes the largest set of states for which C leads to a resulting state satisfying Q.

• The “weakest” precondition P means that any other valid precondition implies P .

• The definition of wp(C ,Q) is due to Dijkstra (1976) and it requires termination
while wlp(C ,Q) does not require termination.
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Strongest Postcondition

Definition (stronges postcondition)

Given a program C and a precondition P , the strongest postcondition sp(C ,P) has the
property that ` {P} C {sp(C ,P)} and for any Q with ` {P} C {Q}, we have
` sp(C ,P)→ Q.

• The “strongest” postcondition Q means that any other valid postcondition is
implied by Q (via postcondition weakening).
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Assignment Axiom

• Let P[E/V ] (P with E for V ) denote the result of substituting the term E for all
occurances of the variable V in the statement P .

• An assignment assigns a variable V an expression E :

` {P[E/V ]} V := E {P}

• Example:
{X + 1 = n + 1} X := X + 1 {X = n + 1}
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Specification Conjunction and Disjunction

• If we have shown {P1} C {Q1} and {P2} C {Q2}, then {P1 ∧ P2} C {Q1 ∧ Q2}
holds as well:

` {P1} C {Q1}, ` {P2} C {Q2}
` {P1 ∧ P2} C {Q1 ∧ Q2}

• We get a similar rule for disjunctions:

` {P1} C {Q1}, ` {P2} C {Q2}
` {P1 ∨ P2} C {Q1 ∨ Q2}

• These rules allows us to prove ` {P} C {Q1 ∧ Q2} by proving both ` {P} C {Q1}
and ` {P} C {Q2}.
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Skip Command Rule

• Syntax: SKIP

• Semantics: Do nothing. The state after execution the command SKIP is the same
as the state before executing the command SKIP .

• Skip Command Rule:

` {P} SKIP {P}
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Sequence Rule

• Syntax: C1; . . . ;Cn

• Semantics: The commands C1, . . . ,Cn are executed in that order.

• Sequence Rule:

` {P} C1 {R}, ` {R} C2 {Q}
` {P} C1;C2 {Q}

The sequence rule can be easily generalized to n > 2 commands:

` {P} C1 {R1}, ` {R1} C2 {R2}, . . . , ` {Rn−1} Cn {Q}
` {P} C1;C2; . . . ;Cn {Q}
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Conditional Command Rule

• Syntax: IF S THEN C1 ELSE C2 FI

• Semantics: If the statement S is true in the current state, then C1 is executed. If S
is false, then C2 is executed.

• Conditional Rule:

` {P ∧ S} C1 {Q}, ` {P ∧ ¬S} C2 {Q}
` {P} IF S THEN C1 ELSE C2 FI {Q}
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While Command Rule

• Syntax: WHILE S DO C OD

• Semantics: If the statement S is true in the current state, then C is executed and
the WHILE-command is repeated. If S is false, then nothing is done. Thus C is
repeatedly executed until the value of S becomes false. If S never becomes false,
then the execution of the command never terminates.

• While Rule:

` {P ∧ S} C {P}
` {P} WHILE S DO C OD {P ∧ ¬S}

P is an invariant of C whenever S holds. Since executing C preserves the truth of
P , executing C any numbner of times also preserves the truth of P .
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Section 29: Automation of Software Verification

27 Software Specification

28 Software Verification

29 Automation of Software Verification
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Proof Automation

• Proving even simple programs manually takes a lot of effort

• There is a high risk to make mistakes during the process

• General idea how to automate the proof:

(i) Let the human expert provide annotations of the specification (e.g., loop invariants)
that help with the generation of proof obligations

(ii) Generate proof obligations automatically (verification conditions)
(iii) Use automated theorem provers to verify some of the proof obligations
(iv) Let the human expert prove the remaining proof obligations (or let the human

expert provide additional annotations that help the automated theorem prover)

• Step (ii) essentially compiles an annotated program into a conventional
mathematical problem.
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Annotations

• Annotations are required

(i) before each command Ci (with i > 1) in a sequence C1;C2; . . . ;Cn, where Ci is not
an assignment command and

(ii) after the keyword DO in a WHILE command (loop invariant)

• The inserted annotation is expected to be true whenever the execution reaches the
point of the annotation.

• For a properly annotated program, it is possible to generate a set of proof goals
(verification conditions).

• It can be shown that once all generated verification conditions have been proved,
then ` {P} C {Q}.
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Generation of Verification Conditions

• Assignment {P} V := E {Q}:
Add verification condition P → Q[E/V ].

• Conditions {P} IF S THEN C1 ELSE C2 FI {Q}
Add verification conditions generated by {P ∧ S} C1 {Q} and {P ∧ ¬S} C2 {Q}
• Sequences of the form {P} C1; . . . ;Cn−1; {R} Cn {Q}

Add verification conditions generated by {P} C1; . . . ;Cn−1 {R} and {R} Cn {Q}
• Sequences of the form {P} C1; . . . ;Cn−1; V := E {Q}

Add verification conditions generated by {P} C1; . . . ;Cn−1 {Q[E/V ]}
• While loops {P} WHILE S DO {R} C OD {Q}

Add verification conditions P → R and R ∧ ¬S → Q
Add verificiation conditions generated by {R ∧ S} C {R}
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Total Correctness

• We assume that the evaluation of expressions always terminates.

• With this simplifying assumption, only WHILE commands can cause loops that
potentially do not terminate.

• All rules for the other commands can simply be extended to cover total correctness.

• The assumption that expression evaluation always terminates is often not true.
(Consider recursive functions that can go into an endless recursion.)

• We have so far also silently assumed that the evaluation of expressions always
yields a proper value, which is not the case for a division by zero.

• Relaxing our assumptions for expressions is possible but complicates matters
significantly.
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Rules for Total Correctness [1/4]

• Assignment axiom
` [P[E/V ]] V := E [P]

• Precondition strengthening

` P → P ′, ` [P ′] C [Q]

` [P] C [Q]

• Postcondition weakening

` [P] C [Q ′], ` Q ′ → Q

` [P] C [Q]
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Rules for Total Correctness [2/4]

• Specification conjunction

` [P1] C [Q1], ` [P2] C [Q2]

` [P1 ∧ P2] C [Q1 ∧ Q2]

• Specification disjunction

` [P1] C [Q1], ` [P2] C [Q2]

` [P1 ∨ P2] C [Q1 ∨ Q2]

• Skip command rule

[P] SKIP [P]

Jürgen Schönwälder (Jacobs University Bremen) Introduction to Computer Science December 5, 2019 251 / 256



Rules for Total Correctness [3/4]

• Sequence rule

` [P] C1 [R1], ` [R1] C2 [R2], . . . , ` [Rn−1] Cn [Q]

` [P] C1;C2; . . . ;Cn [Q]

• Conditional rule
` [P ∧ S ] C1 [Q], ` [P ∧ ¬S ] C2 [Q]

` [P] IF S THEN C1 ELSE C2 FI [Q]
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Rules for Total Correctness [4/4]

• While rule

` [P ∧ S ∧ E = n] C [P ∧ (E < n)], ` P ∧ S → E ≥ 0

` [P] WHILE S DO C OD [P ∧ ¬S ]

E is an integer-valued expression
n is an auxiliary variable not occuring in P , C , S , or E

• A prove has to show that a non-negative integer, called a variant, decreases on
each iteration of the loop command C .
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Generation of Termination Verification Conditions

• The rules for the generation of termination verificiation conditions follow directly
from the rules for the generation of partial correctness verificiation conditions,
except for the while command.

• To handle the while command, we need an additional annotation (in square
brackets) that provides the variant expression.

• For while loops of the form {P} WHILE S DO {R} [E ] C OD {Q} add the
verification conditions

P → R

R ∧ ¬S → Q

R ∧ S → E ≥ 0

and add verificiation conditions generated by {R ∧ S ∧ (E = n)} C {R ∧ (E < n)}
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Termination and Correctness

• Partial correctness and termination implies total correctness:

` {P} C {Q}, ` [P] C [T]

` [P] C [Q]

• Total correctness implies partial correctness and termination:

` [P] C [Q]

` {P} C {Q}, ` [P] C [T]
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