
Introduction to Computer Science Course: CH-232-A
Jacobs University Bremen Date: 2019-09-20
Dr. Jürgen Schönwälder Due: 2019-09-27

ICS 2019 Problem Sheet #2

Even though some proofs may look simple or obvious, make sure you work out the proof details
correctly and you write things down using correct mathematical notation. Construct a proof of the
requested type.

Problem 2.1: proof by contrapositive (2 points)

Let n be a natural number. If n is not divisible by 3, then n is also not divisible by 15.

Problem 2.2: proof by induction (4 points)

Let n be a natural number with n ≥ 1. Prove that the following holds:

12 + 32 + 52 + . . . (2n− 1)2 =

n∑
k=1

(2k − 1)2 =
2n(2n− 1)(2n+ 1)

6

Problem 2.3: leap year in the Gregorian calendar (haskell) (1+1 = 2 points)

In the Gregorian calendar, a leap year occurs if (i) the year is a multiple of four and (ii) the year is
not divisible by 100 or (iii) the year is divisible by 400. Note that (ii) and (iii) overlap but (iii) takes
precedence. Write a Haskell function isLeapYear to determine whether a year is a leap year or
not.

a) Write a isLeapYear function using a Boolean expression involving the Boolean operators &&

(and), || (or), and the Boolean function not.

b) Write a isLeapYear’ function using guards and without any usage of the Boolean operators
&& (and), || (or), and the Boolean function not.

The Haskell function div returns how many times the first number can be divided by the second
one and the function mod returns the remainder of an integer division.

Explain how you have tested your isLeapYear and isLeapYear’ functions.

Problem 2.4: rotate a list and produce all possible rotations of a list (haskell) (1+1 = 2 points)

a) Using pattern matching, implement a recursive function rotate :: Int -> [a] -> [a], which
left rotates the list given as the second argument by the number of positions indicated by the
first argument. Below are some example evaluations of the rotate function:

> rotate 0 "abcdef"

"abcdef"

> rotate 1 "abcdef"

"bcdefa"

> rotate 7 "abcdef"

"bcdefa"

> rotate 7 ""

""

b) Using your rotate function, implement a function circle :: [a] -> [[a]], which takes a
list and returns a list of all possible rotations of the list. Below are some example evaluations
of the circle function:

> circle ""

[]

> circle "a"

["a"]

> circle "ab"

["ab","ba"]

> circle "abc"

["abc","bca","cab"]

Hint: Consider producing a list of the approriate size and then apply the rotate function to the
elements of this list in order to produce the result. This can result in a very short functional
solution. Another approach is to implement a helper function the produces the nth result list
element and to call this helper function successively to produce the result list.

Submit your Haskell source code as a plain text file.

