
Introduction to Computer Science Course: CH-232-A
Jacobs University Bremen Date: 2019-10-25
Dr. Jürgen Schönwälder Due: 2019-11-01

ICS 2019 Problem Sheet #7

Problem 7.1: completeness of → and ¬ (2 points)

Proof that the two elementary boolean functions → (implication) and ¬ (negation) are universal,
i.e., they are sufficient to express all possible boolean functions.

Problem 7.2: conjunctive and disjunctive normal form (2+1+3 = 6 points)

Consider the following boolean formula:

ϕ(P,Q,R, S) = (¬P ∨Q) ∧ (¬Q ∨R) ∧ (¬R ∨ S) ∧ (¬S ∨ P)

a) How many interpretations of the variables P,Q,R, S satisfy ϕ? Provide a proof for your answer.

b) Given the interpretations that satisfy ϕ, write the formula for ϕ in disjunctive normal form (DNF).

c) Using the equivalence laws for boolean expressions, derive the DNF representation of ϕ alge-
braically from the CNF representation. Write the derivation down step wise.

Problem 7.3: boolean expressions (haskell) (2 points)

Boolean expressions can be represented in Haskell as shown below:

1 {- |

2 Module: BoolExpr.hs

3

4 -}

5

6 module BoolExpr (Variable, BoolExpr(..), evaluate) where

7

8 type Variable = Char

9

10 data BoolExpr

11 = T

12 | F

13 | Var Variable

14 | Not BoolExpr

15 | And BoolExpr BoolExpr

16 | Or BoolExpr BoolExpr

17 deriving (Show)

18

19 -- evaluates an expression

20 evaluate :: BoolExpr -> [Variable] -> Bool

21 evaluate T _ = True

22 evaluate F _ = False

23 evaluate (Var v) vs = v `elem` vs

24 evaluate (Not e) vs = not (evaluate e vs)

25 evaluate (And e1 e2) vs = evaluate e1 vs && evaluate e2 vs

26 evaluate (Or e1 e2) vs = evaluate e1 vs || evaluate e2 vs

You can evaluate a boolean expression as follows:

> evaluate (And (Var 'a') (Var 'b')) "ab"

True

> evaluate (And (Var 'a') (Var 'b')) "a"

False

The first argument of the function evaluate is the boolean expression and the second argument
is the set of variables that are true. (Variables that do not exist are assumed to be false.)

a) Implement a function variables :: BoolExpr -> [Variable], which returns the list of vari-
ables that appear in a boolean expression. Feel free to use the Haskell union function to en-
sure that there are no duplicates in the list and the Haskell sort function (defind in Data.List)
to ensure the variables are returned in a defined order.

> variables T

""

> variables (Or T F)

""

> variables (Var 'a')

"a"

> variables (And (Var 'a') (Or (Var 'c') (Var 'b')))

"abc"

> variables (And (Var 'a') (Or (Var 'a') (Var 'a')))

"a"

b) Implement a function subsets :: [Variable] -> [[Variable]], which returns all subsets
of the set of variables passed to the function. Use this function to implement truthtable ::

BoolExpr -> [([Variable], Bool)], which returns the entire truth table.

> subsets "abc"

["","c","b","bc","a","ac","ab","abc"]

> truthtable (And (Var 'a') (Or (Var 'c') (Var 'b')))

[("",False),("c",False),("b",False),("bc",False),("a",False),("ac",True),("ab",True),("abc",True)]

Submit your Haskell code plus an explanation (in Haskell comments) as a plain text file.

