ICS 2019 Problem Sheet \#9

Problem 9.1: full adder using different kinds of gates
A full adder digital circuit was introduced in class. It is defined by the following two boolean functions:

$$
\begin{aligned}
S & =A \dot{\vee} B \dot{\vee} C_{\text {in }} \\
C_{\text {out }} & =(A \wedge B) \vee\left(C_{\text {in }} \wedge(A \dot{\vee} B)\right)
\end{aligned}
$$

a) Write both functions as a disjunction of product terms.
b) Write both functions as a conjunction of sum terms.
c) Write both functions using only not (\neg) and not-and (\uparrow) operations.
d) In a digital circuit, we can easily reuse common terms. Draw a small digital circuit implementing S and $C_{\text {out }}$ using NAND gates only.

Problem 9.2: fold function duality theorems
The fold functions compute a value over a list by applying an operator to the list elements and a neutral element. The foldl function assumes that the operator is left associative, the foldr function assumes that the operatore is right associative. For example, the function call

```
foldl (+) 0 [3,5,2,1]
```

results in the computation of $((((0+3)+5)+2)+1)$ and the function call

```
foldr (+) 0 [3,5,2,1]
```

results in the computation of $(3+(5+(2+(1+0))))$. The value computed by the fold functions may be more complex than a simple scalar. It is very well possible to construct a new list as part of the fold. For example:

```
map' :: (a -> b) -> [a] -> [b]
map' f xs = foldr (\x acc -> f x : acc) [] xs
```

The evaluation of map' (+3) [1,2,3] results in the list $[4,5,6]$. There are several duality theorems that can be stated for the fold functions. Prove the following three duality theorems:
a) Let op be an associative operation with e as the neutral element:

```
op is associative: (x op y) op z = x op (y op z)
e is neutral element: e op x = x and x op e = x
```

Then the following holds for finite lists xs :

```
foldr op e xs = foldl op e xs
```

b) Let op1 and op2 be two operations for which

```
x `op1` (y `op2` z) = (x `op1` y) `op2` z
x `op1` e = e `op2` x
```

holds. Then the following holds for finite lists xs:

```
foldr op1 e xs = foldl op2 e xs
```

c) Let op be an associative operation and xs a finite list. Then

```
foldr op a xs = foldl op' a (reverse xs)
```

holds with
x op' $\mathrm{y}=\mathrm{y}$ op x

