
Introduction to Computer Science Course: CH-232-A
Jacobs University Bremen Date: 2019-11-15
Dr. Jürgen Schönwälder Due: 2019-11-22

ICS 2019 Problem Sheet #10

Problem 10.1: simple cpu machine code (2+2+1 = 5 points)

The following program has been written for the simple central processing unit introduced in class.
The table below shows the initial content of the 16 memory cells. The first column denotes the
memory address.

Machine Code Assembly Code Description
0 001 1 0001
1 010 0 1111
2 001 1 0000
3 101 1 0100
4 110 1 0110
5 111 1 0000
6 001 0 0011
7 100 1 0001
8 010 0 0011
9 001 0 1111

10 011 0 1111
11 010 0 1111
12 110 1 0010
13 000 0 0000 no instruction / data, initialized to 0
14 000 0 0000 no instruction / data, initialized to 0
15 000 0 0000 no instruction / data, initialized to 0

a) Explain what the instructions are doing by filling in the assembly code column. Add meaningful
text to the description column to describe the action performed by an instruction.

b) Explain how the program proceeds with its calculation. Describe the execution of the program.
Which cells change and what is the purpose of the changes? What is the result left in memory
cell 15 when the program stops execution?

c) Can you describe in general terms what the program is doing using a mathematical expres-
sion?

Problem 10.2: ripple counter using d flip flops (2+1 = 3 points)

The following circuit shows a 3-bit ripple counter consisting of three positive edge triggered D flip
flops and a negation gate on the clock input C.

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

Q0 Q1 Q2

C

a) Complete the following timing diagram. Assume that gate delays are very short compared to
the speed of the clock signal (i.e., you can ignore the impact of gate delays).

C

0

Q
0

Q
1

Q
1

Q
2

Q
2

C

Q

b) Can you make ripple counters arbitrary “long” or is there a limit on the number of D flip flops
that can be chained? Explain.

Problem 10.3: type classes (haskell) (1+1 = 2 points)

The following Haskell module defines types for the two-dimensional shapes Rectangle, Circle,
and Triangle.

1 {- |

2 Module: Shape.hs

3 -}

4

5 module Shape where

6

7 data Point = Point { x :: Double, y :: Double } deriving (Show)

8

9 -- Rectangles

10

11 data Rectangle = Rectangle { p1 :: Point, p2 :: Point } deriving (Show)

12

13 -- Circles

14

15 data Circle = Circle { m :: Point, r :: Double } deriving (Show)

16

17 -- Triangles

18

19 data Triangle = Triangle { a :: Point, b :: Point, c :: Point } deriving (Show)

a) Define a type class Area declaring a function area, which returns the area covered by a shape
type as a Double. The types Rectangle, Circle, and Triangle shall become instances of the
Area type class.

b) Define a type class BoundingBox extending the Area type class and declaring a function bbox,
which returns a Rectangle representing the bounding box of a shape. The types Rectangle,
Circle, and Triangle shall become instances of the BoundingBox type class.

Your implementation should at least pass the following test cases:

1 {- |

2 Module: shapetest.hs

3 -}

4

5 module Main where

6

7 import Shape

8 import Test.HUnit

9

10 pa = Point { x = 0, y = 0 }

11 pb = Point { x = 10, y = 10 }

12 pc = Point { x = 0, y = 20 }

13

14 box = Rectangle { p1 = pa, p2 = pb }

15 circle = Circle { m = pa, r = 10 }

16 triangle = Triangle { a = pa, b = pb, c = pc }

17

18 tests = TestList [TestCase (100.0 @=? (Shape.area box))

19 , TestCase (314 @=? (floor (Shape.area circle)))

20 , TestCase (100.0 @=? (Shape.area triangle))

21 , TestCase (100.0 @=? (Shape.area $ Shape.bbox box))

22 , TestCase (400.0 @=? (Shape.area $ Shape.bbox circle))

23 , TestCase (200.0 @=? (Shape.area $ Shape.bbox triangle))]

24

25 main = runTestTT tests

