
Introduction to Computer Science Course: CH-232-A
Jacobs University Bremen Date: 2020-10-02
Dr. Jürgen Schönwälder Due: 2020-10-09

ICS 2020 Problem Sheet #4

Problem 4.1: prefix order relations (2+2+1 = 5 points)

Let Σ be a finite set (called an alphabet) and let Σ∗ be the set of all words that can be created out
the symbols in the alphabet Σ. (Σ∗ is the Kleene closure of Σ, which includes the empty word ε.)
A word p ∈ Σ∗ is called a prefix of a word w ∈ Σ∗ if there is a word q ∈ Σ∗ such that w = pq. A
prefix p is called a proper prefix if p 6= w.

a) Let �⊆ Σ∗ × Σ∗ be a relation such that p � w for p, w ∈ Σ∗ if p is a prefix of w. Show that � is
a partial order.

b) Let ≺⊂ Σ∗×Σ∗ be a relation such that for p ≺ w for p, w ∈ Σ∗ if p is a proper prefix of w. Show
that ≺ is a strict partial order.

c) Are the two order relations � and ≺ total?

Make sure you write complete proofs for the properties of the order relations. Do not assume
something is ’obvious’ or ’trivial’ — always reason with the definition of the order relation.

Problem 4.2: function composition (2+1+1 = 4 points)

Let A,B and C be sets and let f : A→ B and g : B → C be two functions.

a) Prove the following statement: If g ◦ f is bijective, then f is injective and g is surjective.

b) Find an example demonstrating that g ◦ f is not bijective even though f is injective and g is
surjective.

c) Find an example demonstrating that g ◦ f is bijective even though f is not surjective and g is
not injective.

Problem 4.3: prime numbers with a fixed prime gap (haskell) (1 point)

We call the difference between two successive prime numbers their prime gap. Prime numbers
with a prime gap of 2 are called twin primes while prime numbers with a prime gap of 4 are called
cousing primes. Prime numbers with a prime gap of 6 are called sexy primes.

The predicate isPrime shown below determines whether a number is a prime number of not.

1 isPrime :: Integer -> Bool

2 isPrime n = null [ x | x <- [2..n `div` 2], n `mod` x == 0]

Implement a function primes that takes two arguments a and b and returns the list of all prime
numbers in the interval [a,b]. With that, implement a function gappies that receives three ar-
guments, a prime gap g, a lower interval bound a, and an upper interval bound b. The function
returns all prime number pairs with the prime gap g in the interval [a,b]. By “currying” the first
argument of gappies, we easily obtain the functions twins, cousins, and sexies.

Some sample results so that you can test your implementation:

> twins 1 100

[(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),(59,61),(71,73)]

> cousins 1 100



[(3,7),(7,11),(13,17),(19,23),(37,41),(43,47),(67,71),(79,83)]

> sexies 100 150

[(101,107),(103,109),(107,113),(131,137)]

Below is a template that may serve as a starting point.

1 isPrime :: Integer -> Bool

2 isPrime n = null [ x | x <- [2..n `div` 2], n `mod` x == 0]

3

4 primes :: Integer -> Integer -> [Integer]

5 primes a b = undefined

6

7 gappies :: Integer -> Integer -> Integer -> [(Integer,Integer)]

8 gappies g a b = undefined

9

10 twins = gappies 2

11 cousins = gappies 4

12 sexies = gappies 6


