ICS 2020 Problem Sheet \#4

Problem 4.1: prefix order relations
Let Σ be a finite set (called an alphabet) and let Σ^{*} be the set of all words that can be created out the symbols in the alphabet Σ. (Σ^{*} is the Kleene closure of Σ, which includes the empty word ϵ.) A word $p \in \Sigma^{*}$ is called a prefix of a word $w \in \Sigma^{*}$ if there is a word $q \in \Sigma^{*}$ such that $w=p q$. A prefix p is called a proper prefix if $p \neq w$.
a) Let $\preceq \subseteq \Sigma^{*} \times \Sigma^{*}$ be a relation such that $p \preceq w$ for $p, w \in \Sigma^{*}$ if p is a prefix of w. Show that \preceq is a partial order.
b) Let $\prec \subset \Sigma^{*} \times \Sigma^{*}$ be a relation such that for $p \prec w$ for $p, w \in \Sigma^{*}$ if p is a proper prefix of w. Show that \prec is a strict partial order.
c) Are the two order relations \preceq and \prec total?

Make sure you write complete proofs for the properties of the order relations. Do not assume something is 'obvious' or 'trivial' - always reason with the definition of the order relation.

Problem 4.2: function composition
($2+1+1=4$ points $)$
Let A, B and C be sets and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions.
a) Prove the following statement: If $g \circ f$ is bijective, then f is injective and g is surjective.
b) Find an example demonstrating that $g \circ f$ is not bijective even though f is injective and g is surjective.
c) Find an example demonstrating that $g \circ f$ is bijective even though f is not surjective and g is not injective.

Problem 4.3: prime numbers with a fixed prime gap (haskell)
We call the difference between two successive prime numbers their prime gap. Prime numbers with a prime gap of 2 are called twin primes while prime numbers with a prime gap of 4 are called cousing primes. Prime numbers with a prime gap of 6 are called sexy primes.

The predicate isPrime shown below determines whether a number is a prime number of not.

```
1 isPrime :: Integer -> Bool
2 isPrime n = null [ x | x <- [2..n `div` 2], n `mod` x == 0]
```

Implement a function primes that takes two arguments a and b and returns the list of all prime numbers in the interval $[a, b]$. With that, implement a function gappies that receives three arguments, a prime gap g, a lower interval bound a, and an upper interval bound b. The function returns all prime number pairs with the prime gap g in the interval [a,b]. By "currying" the first argument of gappies, we easily obtain the functions twins, cousins, and sexies.

Some sample results so that you can test your implementation:

```
> twins 1 100
[(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),(59,61),(71,73)]
> cousins 1 100
```

$[(3,7),(7,11),(13,17),(19,23),(37,41),(43,47),(67,71),(79,83)]$
> sexies 100150
$[(101,107),(103,109),(107,113),(131,137)]$

Below is a template that may serve as a starting point.

```
isPrime :: Integer -> Bool
isPrime n = null [ x | x <- [2..n `div` 2], n `mod` x == 0]
primes :: Integer -> Integer -> [Integer]
primes a b = undefined
gappies :: Integer -> Integer -> Integer -> [(Integer,Integer)]
gappies g a b = undefined
twins = gappies 2
cousins = gappies 4
sexies = gappies 6
```

