ICS 2020 Problem Sheet #6

Problem 6.1: completeness of \rightarrow and \neg

Prove that the two elementary boolean functions \rightarrow (implication) and \neg (negation) are universal, i.e., they are sufficient to express all possible boolean functions.

Problem 6.2: boolean equivalence laws

Simplify the following Boolean formulas by repeatedly applying Boolean equivalence laws. (The simplified formulas contain at most one \land or \lor .) Indicate in every step which law you have applied. You obtain points for the derivation, not for the result alone.

- a) $\varphi(A,B) = (\neg A \lor \neg B) \land (\neg A \lor B) \land (A \lor \neg B)$
- b) $\varphi(A, B, C) = (A \land \neg B) \lor (A \land \neg B \land C)$
- c) $\varphi(A, B, C, D) = (A \lor \neg (B \land A)) \land (C \lor (D \lor C))$
- d) $\varphi(A, B, C) = (\neg (A \land B) \lor \neg C) \land (\neg A \lor B \lor \neg C)$
- e) $\varphi(A, B) = (A \lor B) \land (\neg A \lor B) \land (A \lor \neg B) \land (\neg A \lor \neg B)$

Problem 6.3: conjunctive and disjunctive normal form

(2+1 = 3 points)

Consider the following boolean formula:

 $\varphi(P,Q,R,S) = (\neg P \lor Q) \land (\neg Q \lor R) \land (\neg R \lor S) \land (\neg S \lor P)$

- a) How many interpretations of the variables P, Q, R, S satisfy φ ? Provide a proof for your answer (e.g., by providing a truth table).
- b) Given the interpretations that satisfy φ , write the formula for φ in disjunctive normal form (DNF).

Course: CH-232-A Date: 2020-10-16 Due: 2020-10-23

(2 points)

(1+1+1+1+1 = 5 points)