
Introduction to Computer Science Course: CH-232-A
Jacobs University Bremen Date: 2020-11-20
Dr. Jürgen Schönwälder Due: 2020-11-27

ICS 2020 Problem Sheet #11

Problem 11.1: fork system call (2+3 = 5 points)

Consider the following C program:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

static void action(int m, int n)

{

printf("(%d,%d)\n", m, n);

if (n > 0) {

if (fork() == 0) {

action(m, n-1);

exit(0);

}

}

}

int main(int argc, char *argv[])

{

for (int i = 1; i < argc; i++) {

int a = atoi(argv[i]);

action(a, a);

}

return 0;

}

a) Assume the program has been compiled into cnt and that all system calls succeed at runtime.
How many child processes are created for the following invocations of the program? Explain
how you arrived at your answer

(1) ./cnt

(2) ./cnt 1

(3) ./cnt 2

(4) ./cnt 1 2 3

b) Remove the line exit(0) and compile the program again. What is printed to the terminal and
How many child processes are created for the following invocations of the program? Explain
how you arrived at your answer.

(1) ./cnt 1

(2) ./cnt 2

(3) ./cnt 1 2

(4) ./cnt 1 2 3

Problem 11.2: stack frames and tail recursion (1+1 = 2 points)

As discussed in class, function calls require to allocate a stack frame on the call stack. A simple
recursive function with a recursion depth n requires the allocation of n stack frames, i.e., the
memory complexity grows linear with the recursion depths. In order to improve performance,
compilers of high-level programming languages try to optimize the execution of recursive functions.

If a function does a function call as the last action of the function, then this function call can reuse
the current stack frame. A recursive function that has this behaviour is called tail recursive. (See
also Tail Recursion Explained - Computerphile on YouTube.)

Below is a definition of the function pow :: Integer -> Integer -> Integer calculating the
function pow(x, n) = xn.

1 pow :: Integer -> Integer -> Integer

2 pow x n

3 | n == 0 = 1

4 | n == 1 = x

5 | otherwise = x * pow x (n-1)

a) The function pow has a linear time complexity. Define a recursive function pow', which has a
logarithmic time complexity. You can utilize the following law:

pow(x, n) =

{
x

n
2 · xn

2 if n is even
x · xn−1 otherwise

b) Define a tail recursive function pow'' with a logarithmic time complexity.

Problem 11.3: evaluation of arithmetic expressions (1+2 = 3 points)

Arithmetic expressions are often represented as a tree structure within a compiler. We use an infix
notation:

data Ops = Plus | Minus | Mult

data Exp a = Val a | Op (Exp a) Ops (Exp a)

Below is an example of an expression using this above data type definitions.

expr = Op (Val 5) Plus (Op (Op (Val 3) Minus (Val 11)) Mult (Val 2))

a) Implement a function display :: (Show a) => Exp a -> String that returns a proper
string representation. For example, display expr returns (5 + ((3 - 11) * 2)).

b) Modify the data type definitions so that a division can be represented in an arithmetic expres-
sion. Implement a function eval :: (Integral a) => Exp a -> Maybe a that returns just a
value or nothing if a division by zero occurs.

https://www.youtube.com/watch?v=_JtPhF8MshA

