
Introduction to Computer Science Course: CH-232-A
Jacobs University Bremen Date: 2021-01-08
Dr. Jürgen Schönwälder Due: 2021-01-15

ICS 2020 Problem Sheet #13

This sheet is only for students who failed to reach the 50% module achievements.

Problem 13.1: sum formula (2 points)

Prove that 1 + 4 + . . .+ (3n− 2) =
1

2
n(3n− 1) for n ∈ N and n > 0.

Problem 13.2: equivalence relation (2 points)

Let A = N+ × N+ be the set of pairs of positive natural numbers. Let ∼ ⊆ A × A be a binary
relation on A. The tuple ((a, b), (c, d)) is an element of ∼ if and only if ad = bc (the product of a and
d is equal to the product of b and c).

Show that ∼ is an equivalence relation (i.e., ∼ is reflexive, symmetric and transitive). For each
property, first state what you are trying to show before you provide the argument.

Problem 13.3: not-or is a universal boolean function (2 points)

Prove that not-or (↓) is a universal boolean function by showing and proving how ↓ can be used to
implement the Boolean functions ∧,∨,¬.

Problem 13.4: operating system processes (1+1 = 2 points)

The following C program creates multiple processes. Assume that all system calls succeed at
runtime (error handling code has been left out for brevity).

#include <unistd.h>

int main()

{

pid_t pid;

pid = fork();

if (fork() == 0) {

fork();

if (pid != 0) {

execlp("date", "date", NULL);

}

}

return 0;

}

a) Draw a tree diagram showing the processes created during the execution of the program (in-
clude the initial process created when the program is started in your diagram). For each pro-
cess in the diagram, indicate what the variable pid contains.

b) How many times will the program print the current date and time? Explain. How many pro-
cesses return from the main() function of the program? Explain.

Problem 13.5: functional programming in haskell (1+1 = 2 points)

a) Write a function divisors :: Int -> [Int] that returns the list of proper divisors of a given
number x. The result of divisors x includes 1, but not the number x itself. For example:



Prelude> divisors 6

[1,2,3]

Prelude> divisors 12

[1,2,3,4,6]

Prelude> divisors 15

[1,3,5]

Prelude> divisors 1

[]

Prelude> divisors 2

[1]

Recall that the Haskell function div gives you the result of an integer division (truncated toward
negative infinity) and the function mod gives you the integer modulus (remainder of an integer
division).

b) Consider the following function definition:

m f xs = foldr g [] xs

where g y ys = (f y) : ys

How is the expression m (*2) [1..3] evaluated? Explain step-by-step how the expression is
expanded and how the result is produced. Describe what the function m is doing, i.e., to which
standard Haskell function it relates.


