ICS 2021 Problem Sheet \#3

Problem 3.1: cartesian products
Prove or disprove the following two propositions:
a) $(A \cap B) \times(C \cap D)=(A \times C) \cap(B \times D)$
b) $(A \cup B) \times(C \cup D)=(A \times C) \cup(B \times D)$

Problem 3.2: reflexive, symmetric, transitive
For each of the following relations, determine whether they are reflexive, symmetric, or transitive. Provide a reasoning.
a) The absolute difference of the integer numbers a and b is less than or equal to 3 .

$$
R=\{(a, b)|a, b \in \mathbb{Z} \wedge| a-b \mid \leq 3\}
$$

b) The last digit of the decimal representation of the integer numbers a and b is the same.

$$
R=\{(a, b) \mid a, b \in \mathbb{Z} \wedge(a \bmod 10)=(b \bmod 10)\}
$$

Problem 3.3: total, injective, surjective, bijective functions

$$
\text { (1+1 = } 2 \text { points) }
$$

Are the following functions total, injective, surjective, or bijective? Expain why or why not.
a) $f: \mathbb{N} \mapsto \mathbb{N}$ with $f(x)=2 x^{2}$
b) $f: \mathbb{R} \mapsto \mathbb{R}$ with $f(x)=x^{2}+6$

Problem 3.4: function composition
Given the functions $f(x)=x+1 . g(x)=2 x$, and $h(x)=x^{2}$, determine an expression for the following function compositions:
a) $f \circ g$
b) $f \circ h$
c) $g \circ f$
d) $g \circ h$
e) $h \circ f$
f) $h \circ g$
g) $f \circ(g \circ h)$
h) $h \circ(g \circ f)$

Your list comprehensions should be correct, they do not have to be efficient. You are not getting points for a list comprehension simply returning a hard coded solution list. In other words, your list comprehensions should continue to function correctly if parameters are changed.
a) Write a list comprehension that returns all positive factors of the number 210. Try to write the list comprehension in such a way that 210 can easily be replaced by a different number.
b) Write a list comprehension that returns a list of Pythagorean triads (a, b, c), where a, b, c are positive integers in the range $1 . .100$ and the Pythagorean triad is defined as $a^{2}+b^{2}=c^{2}$. The list should not contain any "duplicates" where a and b are swapped. If the list contains (3, 4, 5) (since $3^{2}+4^{2}=25=5^{2}$), then is should not also include $(4,3,5)$.

