ICS 2022 Problem Sheet \#8

Problem 8.1: digital circuit analysis
You are given the following digital circuit. The circuit may as well be found online at http:// simulator.io/board/pu8qlKwg1J/3 (but there is no guarantee that it persists).

a) Write down the truth table defining the outputs y_{0}, y_{1}, and y.
b) Write down short boolean expressions defining y_{0}, y_{1}, and y.
c) Describe in your own words what the circuit is doing and how it might be used.

Problem 8.2: dice display
Too many students waiting inside the coffee bar to obtain drinks and snacks was found to be problematic and as a consequence the number of people waiting to be served got limited to seven. You got the task to create a display showing how many students are inside and you decided to build a display out of light emitting diodes (LEDs) that can be powered by a very tiny solar panel. Your display resembles the form of a dice with LEDs positioned as follows:

```
a b c
    d
e f g
```

The numbers 0 to 7 are displayed as follows (a star indicates a LED producing light, a circle indices an LED currently off).

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $*$ | 0 | 0 | $*$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0 | | | $*$ | | | 0 | | | $*$ | |
| 0 | 0 | 0 | 0 | 0 | 0 | $*$ | 0 | 0 | $*$ | 0 | 0 |
| $*$ | 0 | $*$ | $*$ | 0 | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ |
| | 0 | | | $*$ | | | 0 | | | $*$ | |
| $*$ | 0 | $*$ | $*$ | 0 | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ |

Your display is driven by three input lines x_{2}, x_{1}, x_{0} indicating a binary number.
a) Write a truth table defining the necessary boolean functions.
b) Provide (simple) boolean expressions for the boolean functions.
c) Create a digital circuit using https://simulator.io/.

Submit an image of your digital circuit and a link resolving to your digital circuit.
Problem 8.3: decimal to binary and binary to decimal (haskell)
(1+1 = 2 points)
Implement a functions to convert decimal numbers into binary notation and back.
a) Implement a function dtob :: Int -> String converting a non-negative integer number into a String (consisting of the characters '0' and '1') representing the integer number as a binary number. It is not necessary to handle negative integers in a meaningful way.
b) Implement a function dtob :: String -> Int converting a String (consisting of the characters ' 0 ' and ' 1 ') representing a binary number into the corresponding non-negative integer number. It is not necessary to handle unexpected strings in a meaningful way.

Submit your Haskell code as a plain text file. Below is a template file with a few unit test cases.

```
module Main (main) where
import Test.HUnit
-- | Convert a non-negative integer number into a String providing a
-- binary representation of the number.
dtob :: Int -> String
dtob _ = undefined
-- | Convert a String representing a non-negative integer number as a
-- binary number into an integer number.
btod :: String -> Int
btod _ = undefined
-- Below are some test cases...
dtobTests = TestList [ dtob 0 ~ ?= "0"
    , dtob 1 ~?= "1"
    , dtob 2 ~?= "10"
    , dtob 127 ~?= "1111111"
    , dtob 12345 ~?= "11000000111001"
    ]
btodTests = TestList [ btod "0" ~?= 0
    , btod "1" ~?= 1
    , btod "10" ~?= 2
    , btod "1111111" ~?= 127
    , btod "11000000111001" ~?= 12345
    ]
main = runTestTT $ TestList [ dtobTests, btodTests ]
```

