ICS 2022 Problem Sheet \#9

Problem 9.1: JK flip-flops
($1+1+1+1=4$ points $)$
JK flip-flops, also colloquially known as jump/kill flip-flops, augment the behaviour of SR flip-flops. The letters J and K were presumably picked by Eldred Nelson in a patent application.

The sequential digital circuit shown below shows the design of a JK flip-flop based on two SR NAND latches. Assume the circuit's output is $Q=0$ and that the inputs are $J=0$ and $K=0$, and that the clock input is $C=0$. (You can make use of the fact that we already know how an SR NAND latch behaves.)

a) Suppose J transitions to 1 and C transitions to 1 soon after. Create a copy of the drawing and indicate for each line whether it carries a 0 or a 1.
b) Some time later, C transitions back to 0 and soon after J transitions to 0 as well. Create another copy of the drawing and indicate for each line whether it carries a 0 or a 1.
c) Some time later, J and K both transition to 1 and C transitions to 1 soon after. Create another copy of the drawing and indicate for each line whether it carries a 0 or a 1.
d) Finally, C transitions back to 0 and soon after J and K both transition to 0 as well. Create another copy of the drawing and indicate for each line whether it carries a 0 or a 1.

Problem 9.2: fold function duality theorems
The fold functions compute a value over a list (or some other type that is foldable) by applying an operator to the list elements and a neutral element. The foldl function assumes that the operator is left associative, the foldr function assumes that the operatore is right associative. For example, the function application

```
1 foldl (+) O [3,5,2,1]
```

results in the computation of $((((0+3)+5)+2)+1)$ and the function application

```
1 foldr (+) 0 [3,5,2,1]
```

results in the computation of $(3+(5+(2+(1+0))))$. The value computed by the fold functions may be more complex than a simple scalar. It is very well possible to construct a new list as part of the fold. For example:

1 map' :: (a -> b) -> [a] -> [b]
2 map' f xs $=$ foldr ((:) . f) [] xs

The evaluation of map' succ $[1,2,3]$ results in the list $[2,3,4]$. There are several duality theorems that can be stated for fold functions. Prove the following three duality theorems:
a) Let op be an associative operation with e as the neutral element:

```
op is associative: (x op y) op z = x op (y op z)
e is neutral element: e op x = x and x op e = x
```

Then the following holds for finite lists xs:

```
foldr op e xs = foldl op e xs
```

b) Let op1 and op2 be two operations for which

```
x `op1` (y `op2` z) = (x `op1` y) `op2` z
x `op1` e = e `op2` x
```

holds. Then the following holds for finite lists xs:

```
foldr op1 e xs = foldl op2 e xs
```

c) Let op be an associative operation and xs a finite list. Then

```
foldr op a xs = foldl op' a (reverse xs)
```

holds with

$$
\mathrm{x} \text { op' } \mathrm{y}=\mathrm{y} \text { op } \mathrm{x}
$$

