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Abstract

This memo provides annotated slides for the Computer Science module “Introduction to Computer
Science” offered at the Constructor University (formerly Jacobs University Bremen). The material
is inspired by the course material of Michael Kohlhase’s course “General Computer Science”, Herbert
Jaeger’s short course on “Boolean Logic”, and the online textbook “Mathematics for Computer Science”
by Eric Lehman, F. Thomson Leighton, and Albert R. Meyer, and Mike Gordon’s “Background reading
on Hoare Logic”.

https://cnds.jacobs-university.de/courses/ics-2023
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Part I

Algorithms

In this part we explore what computer science is all about, namely the notion of algorithms. After
introducing the terms algorithm and algorithmic thinking, we will study two typical problems, namely the
creation of mazes and the search of a pattern in a string. We will demonstrate that it is useful to look at
a problem from different perspectives in order to find efficient algorithms to solve the problem.

By the end of this part, students should be able to

• explain what an algorithm and algorithmic thinking is;

• understand the importance of precise problem formalization;

• use mathematical notations for describing graphs;

• understand the difference between an abstract object and its representations;

• execute Kruskal’s algorithm to calculate (minimum) spanning trees;

• describe why the Boyer-Moore algorithm outperforms a naive string search algorithm;

• execute the Boyer-Moore algorithm to find strings in a text;

• explain time and space complexity of an algorithm;

• understand Landau sets and the big O notation;

• define partial and total correctness of an algorithm.
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Computer Science

• Computer science the study of computers and how they can be used.
[Oxford Learner’s Dictionary, August 2020]

• Computer science is a branch of science that deals with the theory of computation
or the design of computers.
[Merriam Webster, August 2020]

• Computer science is the study of computation and information. Computer science
deals with the theory of computation, algorithms, computational problems and the
design of computer systems hardware, software and applications.
[Wikipedia, August 2020]

• Computer science is the study of computers, including both hardware and software
design.
[Webopedia, August 2020]
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James W. McGuffee presents different definitions of Computer Science, and he investigates how they
are perceived by students [17]. Peter J. Denning et al. discuss misconceptions about Computer Science
[2].

Perhaps the most classic and most comprehensive book series presenting core algorithms and con-
cepts of Computer Science is the series “The Art of Computer Programming’ by Donald E. Knuth
[9, 12, 10, 11].

Further online information:

• Wikipedia: Computer Science

• YouTube: Map of Computer Science
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Algorithm

Definition (algorithm)

In computer science, an algorithm is a self-contained sequence of actions to be
performed in order to achieve a certain task.

• If you are confronted with a problem, do the following steps:
• first think about the problem to make sure you fully understand it
• afterwards try to find an algorithm to solve the problem
• try to assess the properties of the algorithm (will it handle corner cases correctly?

how long will it run? will it always terminate?, . . . )
• consider possible alternatives that may have “better” properties
• finally, write a program to implement the most suitable algorithm you have selected

• Is the above an algorithm to find algorithms to solve a problem?
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The notion of an algorithm is central to computer science. Computer science is all about algorithms.
A program is an implementation of an algorithm. While programs are practically important (since you
can execute them), we usually focus on the algorithms and their properties and less on the concrete
implementations of algorithms.

Another important aspect of computer science is the definition of abstractions that allow us to describe
and implement algorithms efficiently. A good education in computer science will (i) strengthen your
abstract thinking skills and (ii) train you in algorithmic thinking.

Some algorithms are extremely old. Algorithms were used in ancient Greek, for example the Euclidean
algorithm to find the greatest common divisor of two numbers. Marks on sticks were used before Roman
numerals were invented. Later in the 11th century, Hindu–Arabic numerals were introduced into Europe
that we still use today.

The word algorithm goes back to Muhammad ibn Musa al-Khwarizmi, a Persian mathematician, who
wrote a document in Arabic language that got translated into Latin as “Algoritmi de numero Indorum”.
The Latin word was later altered to algorithmus, leading to the corresponding English term ’algorithm’.

Further online information:

• Wikipedia: Algorithm
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Algorithmic Thinking

Algorithmic thinking is a collection of abilities that are essential for constructing and
understanding algorithms:

• the ability to analyze given problems

• the ability to specify a problem precisely

• the ability to determine basic actions adequate to solve a given problem

• the ability to construct a correct algorithm using the basic actions

• the ability to think about all possible special and normal cases of a problem

• the ability to assess and improve the efficiency of an algorithm
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We will train you in algorithmic thinking [4]. This is going to change how you look at the world. You will
start to enjoy (hopefully) the beauty of well designed abstract theories and elegant algorithms. You will
start to appreciate systems that have a clean and pure logical structure.

But beware that the real world is to a large extend not based on pure concepts. Human natural lan-
guage is very imprecise, sentences often have different interpretations in different contexts, and the real
meaning of a statement often requires to know who made the statement and in which context. Making
computers comprehend natural language is still a hard problem to be solved.

Example: Consider the following problem: Implement a function that returns the square root of a number
(on a system that does not have a math library). At first sight, this looks like a reasonably clear definition
of the problem. However, on second thought, we discover a number of questions that need further
clarification.

• What is the input domain of the function? Is the function defined for natural numbers, integer
numbers, real numbers (or an approximate representation of real numbers), complex numbers?

• Are we expected to always return the principal square root, i.e., the positive square root?

• What happens if the function is called with a negative number? Shall we return a complex number
or indicate a runtime exception? In the later case, how exactly is the runtime exception signaled?

• In general, square roots can not be calculated and represented precisely (recall that
√
2 is irra-

tional). Hence, what is the precision that needs to be achieved?

While thinking about a problem, it is generally useful to go through a number of examples. The examples
should cover regular cases and corner cases. It is useful to write the examples down since they may
serve later as test cases for an implementation of an algorithm that has been selected to solve the
problem.

Further online information:

• YouTube: The Essentials of Problem Solving
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Maze (33 x 11)
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Jürgen Schönwälder (Constructor University) Introduction to Computer Science: Algorithms CC-BY-NC-ND July 14, 2024 24 / 1

This is a simple 33x11 maze. How do you find a path through the maze from the entry (left top) to the
exit (bottom right)?

We are not going to explore maze solving algorithms here. Instead we look at the generation of mazes.

Further online information:

• Wikipedia: Maze Solving Algorithms

• YouTube: Maze Solving - Computerphile
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Problem Statement

Problem:

• Write a program to generate mazes.

• Every maze should be solvable, i.e., it should have a
path from the entrance to the exit.

• We want maze solutions to be unique.

• We want every “room” to be reachable.

Questions:

• How do we approach this problem?

• Are there other properties that make a maze a “good”
or a “challenging” maze?

Jürgen Schönwälder (Constructor University) Introduction to Computer Science: Algorithms CC-BY-NC-ND July 14, 2024 25 / 1

It is quite common that problem statements are not very precise. A customer might ask for “good” mazes
or “challenging” mazes or mazes with a certain “difficulty level” without being able to say precisely what
this means. As a computer scientist, we appreciate well defined requirements but what we usually get
is imprecise and leaves room for interpretation.

What still too often happens is that the computer scientist discovers that the problem is under-specified
and then decides to go ahead to produce a program that, according to his understanding of the problem,
seems to close the gaps in a reasonable way. The customer then later sees the result and is often
disappointed by the result. To avoid such negative surprises, it is crucial to reach out to the customer if
the problem definition is not precise enough.
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Hacking. . .
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While hacking can be fun, it is often far more effective to think first before opening the editor and starting
to write code. It often also helps to discuss the problem with others. Even coding together in pairs of two
(pair programming) has been found to lead to better programs. Despite common believes, computer
science in practice usually means a lot of team work and requires a great deal of communication.

Further online information:

• Wikipedia: Pair Programming
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Problem Formalization (1/3)

• Think of a maze as a (two-dimensional) grid of rooms
separated by walls.

• Each room can be given a name.

• Initially, every room is surrounded by four walls

• General idea:
• Randomly knock out walls until we get a good maze.
• How do we ensure there is a solution?
• How do we ensure there is a unique solution?
• How do we ensure every room is reachable?
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Thinking of a maze as a (two-dimensional) grid seems natural, probably because we are used to two-
dimensional mazes in the real world since childhood.

But what about one-dimensional mazes? Are they useful?

What about higher-dimensional mazes? Should we generalize the problem to consider arbitrary n-
dimensional mazes? Quite surprisingly, generalizations sometimes lead to simpler solutions. As we will
see later, the dimensionality of the maze does not really matter much.

And finally, what about mazes that are not rectangular?
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Problem Formalization (2/3)

Lets try to formalize the problem in mathematical terms:

• We have a set V of rooms.

• We have a set E of pairs (x , y) with x ∈ V and y ∈ V
of adjacent rooms that have an open wall between them.

In the example, we have

• V = {a, b, c , d , e, f , g , h, i , j , k , l ,m, n, o, p}
• (a, b) ∈ E and (g , k) ∈ E and (a, c) /∈ E and (e, f ) /∈ E

Abstractly speaking, this is a mathematical structure called a
graph consisting of a set of vertices (also called nodes) and a
set of edges (also called links).
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Graphs are very fundamental in computer science. Many real-world structures and problems have a
graph representation. Relatively obvious are graphs representing the structure of relationships in social
networks or graphs representing the structure of communication networks. Perhaps less obvious is that
compilers internally often represent source code as graphs.

Note: What is missing in this problem formalization is how we represent (or determine) that two rooms
are adjacent. (This is where the dimensions of the space come in.)

Further online information:

• Wikipedia: Graph
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Why use a mathematical formalization?

• Data structures are typically defined as mathematical structures

• Mathematics can be used to reason about the correctness and efficiency of data
structures and algorithms

• Mathematical structures make it easier to think — to abstract away from
unnecessary details and to avoid “hacking”
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Formalizing a problem requires us to think abstractly about what needs to be done. It requires us to
identify clearly

• what our input is,

• what our output is, and

• what the task is that needs to be achieved.

Formalization also leads to a well-defined terminology that can be used to talk about the problem.
Having a well-defined terminology is crucial for any teamwork. Without it, a lot of time is wasted because
people talk past each other, often without discovering it. Keep in mind that larger programs are almost
always the result of teamwork.
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Problem Formalization (3/3)

Definition:

• A maze M = (T , S ,X ) consists of a graph
T = (V ,E ), the start node S , and and the
exit node X .

Interpretation:

• Each graph node x ∈ V represents a room

• An edge (x , y) ∈ E indicates that rooms x and y are
adjacent and there is no wall in between them

• The first special node S is the start of the maze

• The second special node X is the exit of the maze
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Another way of formulating this is to say that a maze M is described by a triple M = (T, S,X) where
T = (V,E) is a graph with the vertices V and the edges E and S ∈ V is the start node and X ∈ V is
the exit node.

Given this formalization, the example maze M is represented as follows:

M = (T, S,X)

T = (V,E)

V = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p}
E = {(a, b), (a, e), (b, c), (d, h), (e, i), (f, g), (f, j), (g, h), (g, k), (i, j), (k, o), (l, p), (m,n), (n, o), (o, p)}
S = a

X = p

The maze M is constructed on top of a topology graph G = (V,A) representing the adjacency of the
rooms:

G = (V,A)

V = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p}
A = {(a, b), (b, c), (c, d), (e, f), (f, g), (g, h), (i, j), (j, k), (k, l), (m,n), (n, o), (o, p),

(a, e), (b, f), (c, g), (d, h), (e, i), (f, j), (g, k), (h, i), (i,m), (j, n), (k, o), (l, p)}

Note that this is just one out of many different possible representations of a maze. Finding a good
representation of a given problem requires experience and knowledge of many different possible repre-
sentation approaches.
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Mazes as Graphs (Visualization via Diagrams)

• Graphs are very abstract objects, we need a good,
intuitive way of thinking about them.

• We use diagrams, where the nodes are visualized as
circles and the edges as lines between them.

• Note that the diagram is a visualization of the graph,
and not the graph itself.

• A visualization is a representation of a structure intended
for humans to process visually.
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Visualizations help humans to think about a problem. The human brain is very good in recognizing
structures visually. But note that a visualization is just another representation and it might not be the
best representation for a computer program. Also be aware that bad visualizations may actually hide
structures.

Graphs like the one discussed here can also be represented using a graph notation. Here is how the
graph looks like in the dot notation (used by the graphviz tools):

1 graph maze {

2 a -- b -- c;

3 a -- e -- i -- j -- f -- g;

4 g -- h -- d;

5 g -- k -- o;

6 o -- m -- n;

7 o -- p -- l;

8

9 // _S an _X are additional invisible nodes with an edge

10 // to the start and exit nodes.

11 _S [style=invis]

12 _S -- a

13 _X [style=invis]

14 p -- _X

15 }

Several graph drawing tools can read graph representations in dot notation and render graphs. Produc-
ing “good” drawings for a given graph is a non-trivial problem. You can look at different drawings of the
graph by saving the graph definition in a file (say maze.dot) and then running the following commands
to produce .pdf files (assuming you have the graphviz software package installed).

1 $ neato -T pdf -o maze-neato.pdf maze.dot

2 $ dot -T pdf -o maze-dot.pdf maze.dot

Further online information:

• Wikipedia: Graph Drawing

• Web: Graphviz

17

https://en.wikipedia.org/wiki/Graph_drawing
http://www.graphviz.org/


Mazes as Graphs (Good Mazes)

Recall, what is a good maze?

• We want maze solutions to be unique.

• We want every room to be reachable.

Solution:

• The graph must be a tree (a graph with a unique root
node and every node except the root node having a
unique parent).

• The tree should cover all nodes (we call such a tree a
spanning tree).

Since trees have no cycles, we have a unique solution.
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Apparently, we are not interested in arbitrary graphs but instead in spanning trees. So we need to solve
the problem to construct a spanning tree rooted at the start node. This turns out to be a fairly general
problem which is not specific to the construction of mazes.

Note that in graph theory, a spanning tree T of an undirected graph G is a subgraph that is a tree which
includes all of the vertices of G, with minimum possible number of edges. In general, a graph may have
several spanning trees.

Spanning trees are important for communication networks in order to avoid loops. Spanning trees are
also often used as building blocks in more complex algorithms.

Computer scientists draw trees in a somewhat unconventional fashion: The root is usually at the top
and the tree grows towards the bottom.

Further online information:

• Wikipedia: Spanning Tree
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Kruskal’s Algorithm (1/2)

General approach:

• Randomly add a branch to the tree if it won’t create a cycle (i.e., tear down a wall).

• Repeat until a spanning tree has been created (all nodes are connected).

Questions:

• When adding a branch (edge) (x , y) to the tree, how do we detect that the branch
won’t create a cycle?

• When adding an edge (x , y), we want to know if there is already a path from x to
y in the tree (if there is one, do not add the edge (x , y).

• How can we quickly determine whether there is already a path from x to y?
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Kruskal’s algorithm was published in 1956 [13] and has since then become one of the standard textbook
algorithms for generating spanning trees. Kruskal’s algorithm can be used to create minimum spanning
trees if the edges of the graph are weighted and in each step an edge with the smallest weight is
selected and added to the graph.

Further online information:

• Wikipedia: Kruskal’s Algorithm
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Kruskal’s Algorithm (2/2)

The Union Find Algorithm successively puts nodes into an equivalence class if there is a
path connecting them. With this idea, we get the following algorithm to construct a
spanning tree:

1. Initially, every node is in its own equivalence class and the set of edges is empty.

2. Randomly select a possible edge (x , y) such that x and y are not in the same
equivalence class.

3. Add the edge (x , y) to the tree and join the equivalence classes of x and y .

4. Repeat the last two steps if there are still multiple equivalence classes.
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The following Haskell program (Listing 1) is calculating a spanning tree, following the ideas of the algo-
rithm outlined on the slide. The implementation is not making a random selection and hence it produces
always the same spanning tree for a given graph. (You are not expected to understand the code yet;
but you should be able to do so by the end of the semester.)

Further online information:

• Wikipedia: Equivalence Class

• Wikipedia: Disjoint Set Data Structure
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1 {- |

2 Module: maze/Maze.hs

3

4 Calculate a spanning tree (a maze) over a given graph.

5 -}

6

7 module Maze (maze) where

8

9 import Data.List

10 import Graph

11

12 type Class = [Node]

13

14 -- Take a graph and return a spanning tree graph (a maze) by calling

15 -- buildMaze with a set of equivalence classes (one for each node) and

16 -- a new graph that initially has only nodes but no edges.

17 maze :: Graph -> Graph

18 maze (ns, es) = buildMaze (ns, es) (map (:[]) ns) (ns, [])

19

20 -- Take a graph, a list of node equivalence classes, a new (spanning

21 -- tree) graph (which we are building up) and return a spanning tree

22 -- graph if only one equivalence is left. Otherwise, find an edge and

23 -- continue building the spanning tree by merging the classes

24 -- connected by the edge and adding the edge to the spanning tree.

25 buildMaze :: Graph -> [Class] -> Graph -> Graph

26 buildMaze g cs (ns, es)

27 | length cs == 1 = (ns, es)

28 | otherwise = buildMaze g (mergeClasses cs e) (ns, e:es)

29 where e = findEdge cs (snd g)

30

31 -- Given a list of classes and edges, find an edge that connects two

32 -- equivalence classes. We pick the first edge if there are multiple

33 -- but this could also be a random selection. The distinct helper

34 -- function tests where an edge connects two equivalence classes.

35 findEdge :: [Class] -> [Edge] -> Edge

36 findEdge cs es = head (filter (distinct cs) es)

37 where distinct cs (a, b) = filter (elem a) cs /= filter (elem b) cs

38

39 -- Given a list of equivalence classes and an edge, merge equivalence

40 -- classes given a specific edge by partitioning the classes into

41 -- those touched by the edge and those not touched by the edge. Concat

42 -- (join) the touched edges and then return the new list of

43 -- equivalence classes. The match helper function tests whether an

44 -- edge matches an equivalence class (i.e., whether any of the

45 -- endpoints is in the equivalence class.

46 mergeClasses :: [Class] -> Edge -> [Class]

47 mergeClasses cs e = concat m : n

48 where (m, n) = partition (match e) cs

49 where match (a, b) c = elem a c || elem b c

Listing 1: Maze calculation in Haskell (lacking randomization)
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Randomized Depth-first Search

Are there other algorithms? Of course there are. Here is a different approach to build a
tree rooted at the start node.

1. Make the start node the current node and mark it as visited.

2. While there are unvisited nodes:
2.1 If the current node has any neighbours which have not been visited:

2.1.1 Choose randomly one of the unvisited neighbours
2.1.2 Push the current node to the stack (of nodes)
2.1.3 Remove the wall between the current node and the chosen node
2.1.4 Make the chosen node the current node and mark it as visited

2.2 Else if the stack is not empty:

2.2.1 Pop a node from the stack (of nodes)
2.2.2 Make it the current node
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There are quite a few different algorithms to create mazes. Selecting a “good” one may not be easy. The
different algorithms tend to create slightly different mazes in terms of the number of branching points,
the number of dead ends, the path length distribution and other relevant properties.

Further online information:

• Wikipedia: Maze Generation Algorithm
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Section 3: String Search Algorithms

1 Computer Science and Algorithms

2 Maze Generation Algorithms
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Problem Statement

Problem:

• Write a program to find a (relatively short) string in a (possibly long) text.

• This is sometimes called finding a needle in a haystack.

Questions:

• How can we do this efficiently?

• What do we mean with long?

• What exactly is a string and what is text?
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Searching is one of the main tasks computers do for us.

• Searching in the Internet for web pages.

• Searching within a web page for a given pattern.

• Searching for a pattern in network traffic.

• Searching for a pattern in a DNA.

• Searching for a malware pattern in executable files.

The search we are considering here is more precisely called a substring search. There are more
expressive search techniques that we do not consider here, e.g., searching for regular expressions or
fuzzy search techniques that support non-exact matches.

Further online information:

• Wikipedia: String Searching Algorithm
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Problem Formalization

• Let Σ be a finite set, called an alphabet.

• Let k denote the number of elements in Σ.

• Let Σ∗ be the set of all words that can be created out of Σ (Kleene closure of Σ):

Σ0 = {ϵ}
Σ1 = Σ

Σi = {wv : w ∈ Σi−1, v ∈ Σ} for i > 1

Σ∗ = ∪i≥0Σ
i

• Let t ∈ Σ∗ be a (possibly long) text and p ∈ Σ∗ be a (typically short) pattern.

• Let n denote the length of t and m denote the length of p with n≫ m.

• Find the first occurance of p in t.
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The formalization introduces common terms that make it easier to discuss the problem. Furthermore,
we introduce the abstract notion of an alphabet and we do not care anymore about the details how such
an alphabet looks like. Some examples for alphabets:

• The characters of the Latin alphabet.

• The characters of the Universal Coded Character Set (Unicode)

• The binary alphabet Σ = {0, 1}.
• The DNA alphabet Σ = {A,C,G, T} used in bioinformatics.

• The values 0. . . 255 of a byte.

The Kleene closure Σ∗ of the alphabet Σ is the (infinite) set of all words that can be formed with elements
out of Σ. This includes the empty word of length 0, typically denoted by ϵ. Note that words here are any
concatenation of elements of the alphabet, it does not matter whether the word is meaningful or not.

Note that the problem formalization details that we are searching for the first occurrence of p in t. We
could have defined the problem differently, e.g., searching for the last occurrence of p in t, or searching
for all occurrences of p in t, or searching for any occurrence of p in t.
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Naive String Search

• Check at each text position whether the pattern matches (going left to right).

• Lowercase characters indicate comparisons that were skipped.

• Example: t = FINDANEEDLEINAHAYSTACK, p = NEEDLE

F I N D A N E E D L E I N A H A Y S T A C K

N e e d l e

N e e d l e

N E e d l e

N e e d l e

N e e d l e

N E E D L E
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An implementation of naive string search in an imperative language like C is straight forward (see
Listing 2). You need two nested for-loops, the outer loop iterates over all possible alignments and the
inner loop iterates over the pattern to test whether the pattern matches the current part of the text.

1 /*

2 * naive-search/search.c --

3 *

4 * Implementation of naive string search in C.

5 */

6

7 #include <stdlib.h>

8 #include "search.h"

9

10 const char *

11 search(const char *haystack, const char *needle)

12 {

13 const char *t, *p, *r;

14

15 for (t = haystack; *t; t++) {

16 for (p = needle, r = t; *r && *p && *r == *p; p++, r++) ;

17 if (! *p) {

18 return t;

19 }

20 }

21

22 return NULL;

23 }

Listing 2: Naive string search implemented in C
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Naive String Search Performance

• How “fast” is naive string search?

• Idea: Lets count the number of comparisons.

• Problem: The number of comparisons depends on the strings.

• Idea: Consider the worst case possible.

• What is the worst case possible?
• Consider a haystack of length n using only a single symbol of the alphabet (e.g.,

“aaaaaaaaaa” with n = 10).
• Consider a needle of length m which consists of m − 1 times the same symbol

followed by a single symbol that is different (e.g., “aax” with m = 3).
• With n≫ m, the number of comparisons needed will be roughly n ·m.
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When talking about the performance of an algorithm, it is often useful to consider performance in the
best case, performance in the worst case, and performance in average cases. Furthermore, perfor-
mance is typically discussed in terms of processing steps (time) and in terms of memory required
(space). There is often an interdependency between time and space and it is often possible to trade
space against time or vice versa.

The naive string search is very space efficient but not very time efficient. Alternative search algorithms
can be faster, but they require some extra space.

A Haskell implementation of naive string search is shown in Listing 3.

1 {- |

2 Module: naive-search/Search.hs

3

4 Search for a substring in a text using the naive search algorithm.

5 -}

6 module Search (findFirstIn, isPrefixOf) where

7

8 isPrefixOf :: Eq a => [a] -> [a] -> Bool

9 isPrefixOf [] _ = True

10 isPrefixOf _ [] = False

11 isPrefixOf (x:xs) (y:ys) = (x == y) && isPrefixOf xs ys

12

13 findFirstIn :: Eq a => [a] -> [a] -> Int

14 findFirstIn = cntFindFirstIn 0

15 where

16 cntFindFirstIn :: Eq a => Int -> [a] -> [a] -> Int

17 cntFindFirstIn _ _ [] = -1

18 cntFindFirstIn n p t

19 | p `isPrefixOf` t = n

20 | otherwise = cntFindFirstIn (n+1) p (tail t)

21

Listing 3: Naive string search implemented in Haskell
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Boyer-Moore: Bad character rule (1/2)

• Idea: Lets compare the pattern right to left instead left to right. If there is a
mismatch, try to move the pattern as much as possible to the right.

• Bad character rule: Upon mismatch, move the pattern to the right until there is a
match at the current position or until the pattern has moved past the current
position.

• Example: t = FINDANEEDLEINAHAYSTACK, p = NEED

F I N D A N E E D L E I N A H A Y S T A C K skip

n e E D 1

n e e D 2

N E E D
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The bad character rule allows us to skip alignments:

1. In the initial alignment, we find that D is matching but E is not matching the N. So we check
whether there is an N in the part of the pattern not tested yet that we can align with the N. In this
case there is an N in the pattern and we can skip 1 alignment.

2. In the second alignment, we find that D is not matching N and so we check whether there is an N
in the part of the pattern not tested yet. In this case, we can skip 2 alignments.

3. In the third alignment, we find a match.

In this case, we have skipped 3 alignments and we used 3 alignments to find a match. With the naive
algorithm we would have used 6 alignments. We have performed 7 comparisons in this case while the
naive algorithm used 12 comparisons.

28



Boyer-Moore: Bad character rule (2/2)

• Example: t = FINDANEEDLEINAHAYSTACK, p = HAY

F I N D A N E E D L E I N A H A Y S T A C K skip

h a Y 2

h a Y 2

h a Y 2

h a Y 2

h a Y 1

H A Y

• How do we decide efficiently how far we can move the pattern to the right?
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In this example, we test four times against a character in the text that is not present in the pattern.
Hence we can skip 2 alignments each time. In the fifth alignment, we compare Y against H and since
H is in the pattern, we skip 1 alignment. So overall, we have skipped 9 alignments. (With naive string
search, we would check 15 alignments, Boyer-Moore only requires 6 alignments.)

In order to determine how many alignments we can skip, we need a function that takes the current
position in the pattern and the character of the text that does not match and returns the number of align-
ments that can be skipped. A naive implementation of this function requires again several comparisons.
In order to make this more efficient, we can pre-compute all possible skips and store the skips in a
two-dimensional table. This way, we can simply lookup the number of alignments that can be skipped
by indexing into the table. The table can be seen as a function that maps the unmatched character and
the position in the pattern to the number of alignments that can be skipped.

Example: Lets assume p = NEED and an alphabet consisting of the characters A-Z. Then the table
looks as shown below on the left (counting character positions in the pattern starting with 0). Since
all rows for characters not appearing in the pattern are similar, we might also represent them using a
wildcard row as shown below on the right.




0 1 2 3

A 0 1 2 3
B 0 1 2 3
C 0 1 2 3
D 0 1 2 −
E 0 − − 0
...

...
...

...
...

N − 0 1 2
...

...
...

...
...

Z 0 1 2 3







0 1 2 3

D 0 1 2 −
E 0 − − 0
N − 0 1 2
∗ 0 1 2 3




The pre-computation of a lookup table is key to the performance of the Boyer-Moore bad character rule.
The size of the lookup table and the time to compute it depends only on the length of the pattern and
the size of the alphabet. The effort is independent of the length of the text. Since we assume that the
text is significantly longer than the pattern, the effort to calculate the lookup table becomes irrelevant for
very long texts.
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Boyer-Moore: Good suffix rule (1/3)

• Idea: If we already matched a suffix and the suffix appears again in the pattern,
skip the alignment such that we keep the good suffix.

• Good suffix rule: Let s be a non-empty suffix already matched in the inner loop. If
there is a mismatch, skip alignments until (i) there is another match of the suffix
(which may include the mismatching character), or (ii) a prefix of p matches a
suffix of s or (iii) skip until the end of the pattern if neither (i) or (ii) apply to the
non-empty suffix s.

• Example: t = FINDANEEDLEINAHAYSTACK, p = NEEDUNEED

F I N D A N E E D L E I N A H A Y S T A C K skip

n e e d U N E E D 4

n e e d u n e e D
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This example demonstrates case (i) of the good suffix rule. We have matched the suffix NEED and we
have a mismatch of U against A. Since the pattern contains this suffix again left to the current comparison
position, we move the pattern right to align with this suffix.
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Boyer-Moore: Good suffix rule (2/3)

• Example: t = FINDANEEDLEINAHAYSTACK, p = EDISUNEED

F I N D A N E E D L E I N A H A Y S T A C K skip

e d i s U N E E D 6

e d i s u n e e D
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This example demonstrates case (ii) of the good suffix rule. We have matched the suffix NEED and we
have a mismatch of U against A. The prefix of the pattern contains the suffix ED of our suffix NEED and
hence we move to align this prefix with the matched suffix of our suffix.
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Boyer-Moore: Good suffix rule (3/3)

• Example: t = FINDANEEDLEINAHAYSTACK, p = FOODINEED

F I N D A N E E D L E I N A H A Y S T A C K skip

f o o d I N E E D 8

f o o d i n e e D

• How do we decide efficiently how far we can move the pattern to the right?

Jürgen Schönwälder (Constructor University) Introduction to Computer Science: Algorithms CC-BY-NC-ND July 14, 2024 45 / 1

This example demonstrates case (iii) of the good suffix rule. We neither have a matching suffix nor does
the prefix match a suffix of the suffix. Hence we skip alignments until the end of the current alignment.

The good suffix rule is actually a bit complex. Consult wikipedia or a textbook on algorithms or the
original publication for a complete description of the good suffix rule.

To implement the good suffix rule efficiently, lookup tables are again needed to quickly lookup how many
alignments can be skipped. Given a pattern p, the lookup tables can be calculated, that is, the lookup
tables do not depend on the text being searched.
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Boyer-Moore Rules Combined

• The Boyer-Moore algorithm combines the bad character rule and the good suffix
rule. (Note that both rules can also be used alone.)

• If a mismatch is found,
• calculate the skip sb by the bad character rule
• calculate the skip sg by the good suffix rule

and then skip by s = max(sb, sg ).

• The Boyer-Moore algorithm often does the substring search in sub-linear time.

• However, it does not perform better than naive search in the worst case if the
pattern does occur in the text.

• An optimization by Gali results in linear runtime across all cases.
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The Boyer-Moore algorithm demonstrates that in computer science we sometimes trade space against
time. The lookup table reduces the time needed to perform the search but it requires additional space
to store the lookup table.

The Boyer-Moore algorithm was introduced in 1977 [1] and the improvement by Gali for worst cases in
1979 in [5].

Further online information:

• YouTube: Boyer-Moore: basics

• YouTube: Boyer-Moore: putting it all together
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Section 4: Complexity, Correctness, Engineering

1 Computer Science and Algorithms

2 Maze Generation Algorithms

3 String Search Algorithms

4 Complexity, Correctness, Engineering
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Complexity of Algorithms

• Maze algorithm questions:
• Which maze generation algorithm is faster?
• What happens if we consider mazes of different sizes or dimensions?

• String search algorithm questions:
• Which string algorithm is faster (worst, average, best case)?
• Is there a fastest string search algorithm?

• Instead of measuring execution time (which depends on the speed of the hardware
and implementation details), we like to use a more neutral notion of “fast”.

• Complexity is an abstract measure of computational effort (time complexity) and
memory usage (space complexity) as a function of the problem size.

• Computer science is about analyzing the time and space complexity of algorithms.
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The performance analysis of algorithms is a very important part of computer science. Since we are
generally not so much interested in execution times that depend on the hardware components of a
computer system, we like to have a more abstract way of talking about the “performance” of an algorithm.
We call this abstract measure of “performance” the complexity of an algorithm and we usually distinguish
the time complexity (the computational effort) and the space complexity (how much storage is required).

We will discuss this further later in the course and we will introduce a framework that allows us to define
classes of complexity.
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Performance and Scaling

size n t(n) = 100n µs t(n) = 7n2 µs t(n) = 2n µs

1 100 µs 7 µs 2 µs
5 500 µs 175 µs 32 µs
10 1ms 700 µs 1024 µs
50 5ms 17.5ms 13 031.25 d
100 10ms 70ms
1000 100ms 7 s

10 000 1 s 700 s
100 000 10 s 70 000 s

• Suppose we have three algorithms to choose from (linear, quadratic, exponential).

• With n = 50, the exponential algorithm runs for more than 35 years.

• For n ≥ 1000, the exponential algorithm runs longer than the age of the universe!
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Something that scales exponentially with the problem size quickly becomes intractable. In theoretical
computer science, we will look at the question whether there are problems that are inherently exponen-
tial. We will also investigate whether we can show the best possible solution for a given problem in terms
of complexity. Once you prove for a given problem that the best possible solution is lets say quadratic,
you can stop searching for a linear solution (this can literally save you endless nights of work).
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Big O Notation (Landau Notation)

Definition (asymptotically bounded)

Let f , g : N→ N be two functions. We say that f is asymptotically bounded by g ,
written as f ≤a g , if and only if there is an n0 ∈ N , such that f (n) ≤ g(n) for all
n > n0.

Definition (Landau Sets)

The three Landau Sets O(g),Ω(g),Θ(g) are defined as follows:

• O(g) = { f | ∃k ∈ N.f ≤a k · g }
• Ω(g) = { f | ∃k ∈ N.k · g ≤a f }
• Θ(g) = O(g) ∩ Ω(g)
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Interpretation of the three Landau Sets:

• f ∈ O(g): f does not grow significantly faster than g

• f ∈ Ω(g): f grows not significantly slower than g

• f ∈ Θ(g): f grows as fast as g

For a given function f , we are usually interested in finding the “smallest” upper bound O(g) and the
“largest” lower bound Ω(g). The “smallest upper bound” is interesting when we consider the worst case
behaviour of an algorithm, the “largest lower bound” is interesting when we consider the best case
behaviour.

n0

f
Ο(g)
Ω(g)

Ο(g) and Ω(g) enclose f starting at n0

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  2  4  6  8  10  12  14  16  18n0

f(n) = 3*n*n+9*n+3
g = 4*n*n
h = 3*n*n

f(n) is in Ο(n*n) and in Ω(n*n) with n0 = 9

As an example, lets consider the function f(n) = 3n2 + 9n+ 3. We try to prove that f ∈ Θ(n2):

• Lets first show that f is in O(n2). We have to find a k ∈ N and an n0 ∈ N such that f(n) ≤ kn2 for
n > n0. Lets pick k = 4. Apparently, f(n) = 3n2 + 9n+ 3 ≥ 4n2 for n ∈ {0, . . . , 9}, but f(n) ≤ 4n2

for n > 9 = n0. Hence, f is in O(n2).

• We now show that f is in Ω(n2). We have to find a k ∈ N and an n0 ∈ N such that f(n) ≥ kn2 for
n > n0. Lets pick k = 3. Apparently, f(n) = 3n2 + 9n + 3 ≥ 3n2 since we add a positive value to
3n2. Hence, f is in Ω(n2).

• Since f ∈ O(n2) and f ∈ Ω(n2), it follows that f ∈ Θ(n2).
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Commonly Used Landau Sets

Landau Set class name rank

O(1) constant 1
O(log2(n)) logarithmic 2
O(n) linear 3
O(n log2(n)) linear logarithmic 4

Landau Set class name rank

O(n2) quadratic 5
O(nk) polynomial 6
O(kn) exponential 7

Theorem (Landau Set Ranking)

The commonly used Landau Sets establish a ranking such that

O(1) ⊂ O(log2(n)) ⊂ O(n) ⊂ O(n log2(n)) ⊂ O(n2) ⊂ O(nk) ⊂ O(ln)

for k > 2 and l > 1.
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Landau Set Rules

Theorem (Landau Set Computation Rules)

We have the following computation rules for Landau sets:

• If k ̸= 0 and f ∈ O(g), then (kf ) ∈ O(g).

• If f1 ∈ O(g1) and f2 ∈ O(g2), then (f1 + f2) ∈ O(max{g1, g2}).
• If f1 ∈ O(g1) and f2 ∈ O(g2), then (f1f2) ∈ O(g1g2).

Examples:

• f (n) = 42 =⇒ f ∈ O(1)

• f (n) = 26n + 72 =⇒ f ∈ O(n)

• f (n) = 856n10 + 123n3 + 75 =⇒ f ∈ O(n10)

• f (n) = 3 · 2n + 42 =⇒ f ∈ O(2n)
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• The Big O Notation describes the limiting behavior of a function when the argument tends towards
a particular value of infinity.

• We classify a function describing the (time or space) complexity of an algorithm by determining
the closest Landau Set it belongs to.

• Good sequential sorting algorithms achieve a time complexity O(n log n), simpler algorithms often
belong to O(n2). Some sorting algorithms do not need any extra memory, so they achieve O(1) in
terms of space complexity.

• Use O classes for worst case complexity, use Ω classes for best case complexity.
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Correctness of Algorithms and Programs

• Questions:
• Is our algorithm correct?
• Is our algorithm a total function or a partial function?
• Is our implementation of the algorithm (our program) correct?
• What do we mean by “correct”?
• Will our algorithm or program terminate?

• Computer science is about techniques for proving correctness of programs.

• In situations where correctness proofs are not feasible, computer science is about
engineering practices that help to avoid or detect errors.
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Note the difference between the correctness of an algorithm and the correctness of a program im-
plementing an algorithm. While correctness proofs are feasible, they are difficult and thus expensive.
As a consequence, they are done mostly in situations where a potential failure of an algorithm or its
implementation can cause damages that are far more costly than the correctness proof.

Hence, for many software systems, we tend to rely on testing techniques in the hope that good test
coverage will reduce errors and the likelihood of bad failures. But testing never can proof the absence
of errors (unless all possible inputs and outputs can be tested - which usually is infeasible for anything
more complicated than a hello world program).
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Partial Correctness and Total Correctness

Definition (partial correctness)

An algorithm starting in a state that satisfies a precondition P is partially correct with
respect to P and Q if results produced by the algorithm satisfy the postcondition Q.
Partial correctness does not require that a result is always produced, i.e., the algorithm
may not always terminate.

Definition (total correctness)

An algorithm is totally correct with respect to P and Q if it is partially correct with
respect to P and Q and it always terminates.

Jürgen Schönwälder (Constructor University) Introduction to Computer Science: Algorithms CC-BY-NC-ND July 14, 2024 54 / 1

In order to talk about the correctness of an algorithm, we need a specification that clearly states the
precondition P and the postconditionQ. In other words, an algorithm is always correct regarding a spec-
ification, i.e., a problem formalization. Without a precise specification, it is impossible to say whether an
algorithm is correct or not.

The distinction between partial correctness and total correctness is important. Total correctness re-
quires a termination proof and unfortunately an automated termination proof is impossible for arbitrary
algorithms.
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Deterministic Algorithms

Definition (deterministic algorithm)

A deterministic algorithm is an algorithm which, given a particular input, will always
produce the same output, with the execution always passing through the same sequence
of states.

• Some factors making algorithms non-deterministic:
• external state
• user input
• timers
• random values
• hardware errors
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Deterministic algorithms are often easier to understand and analyze. Real software systems, however,
are rarely fully deterministic since they interact with a world that is largely non-deterministic.

Computer science is spending a lot of effort trying to make the execution of algorithms deterministic.
Operating systems, for example, deal with a large amount of nondeterminism originating from computing
hardware and they try to provide an execution environment for programs that is less nondeterministic
than the hardware components.
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Randomized Algorithms

Definition (randomized algorithm)

A randomized algorithm is an algorithm that employs a degree of randomness as part of
its logic.

• A randomized algorithm uses randomness in order to produce its result; it uses
randomness as part of the logic of the algorithm.

• A perfect source of randomness is not trivial to obtain on digital computers.

• Random number generators often use algorithms to produce so called pseudo
random numbers, sequences of numbers that “look” random but that are not really
random (since they are calculated using a deterministic algorithm).
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Randomized algorithms are sometimes desirable, for example to create cryptographic keys or to drive
computer games. For some problems, some randomized algorithms provide solutions faster than de-
terministic solutions. The question for which classes of problems randomized algorithms provide an
advantage is an import question investigated in theoretical computer science.

Pseudo random numbers are commonly provided as library functions (e.g., the long random(void)

function of the C library). You have to be very careful with the usage of these pseudo random numbers.
A common problem is that not all bits of a random number have the same degree of “randomness”.
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Engineering of Software

• Questions:
• Can we identify building blocks (data structures, generic algorithms, design pattern)

that we can reuse?
• Can we implement algorithms in such a way that the program code is easy to read

and understand?
• Can we implement algorithms in such a way that we can easily adapt them to

different requirements?

• Computer science is about modular designs that are both easier to get right and
easier to understand. Finding good software designs often takes time and effort.

• Software engineering is about applying structured approaches to the design,
development, maintenance, testing, and evaluation of software.

• The main goal is the production of software with predictable quality and costs.
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Software engineering is the application of engineering to the development of software in a systematic
method. Another definition says that software engineering is the application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of software.

Further online information:

• Wikipedia: Software Engineering
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Part II

Discrete Mathematics

This part introduces basic elements of discrete mathematics that are essential for many courses in
computer science. We start introducing basic terminology and then discuss basic methods to construct
proofs. Afterwards, we discuss sets, relations and finally functions.

Recommended background reading are the first five chapters of the book “Mathematics for Computer
Science” by Eric Lehmann, F. Thomson Leighton, and Albert R. Meyer [15]. Students interested to dive
deeper into proof methods may want to study Richard Hammack’s “Book of Proof” [6]. Both books are
available online and in print.

By the end of this part, students should be able to

• understand the role of axioms, theorems, lemmata, and corollaries;

• recall the Peano axioms defining natural numbers;

• familiar with mathematical notation and the notion of predicates and quantifiers;

• use different techniques to construct mathematical proofs;

• construct induction proofs over inductively defined sets;

• use sets and basic set operations to model scenarios;

• understand the concept and properties of relations;

• recognize equivalence and (strict) partial order relations;

• interpret functions as special relations;

• describe basic operations on functions;

• decide whether functions are injective, surjective, or bijective;

• explain Lambda notation of functions and currying.
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Section 5: Terminology, Notations, Proofs

5 Terminology, Notations, Proofs

6 Sets

7 Relations

8 Functions

9 Algebraic Structures
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Propositions

Definition (proposition)

A proposition is a statement that is either true or false.

Examples:

• 1 + 1 = 1 (false proposition)

• The sum of the integer numbers 1, . . . , n is equal to 1
2
n(n + 1). (true proposition)

• “In three years I will have obtained a CS degree.” (not a proposition)

• “This sentence is false.” (a paradox)
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A key property is that a proposition is either true or false. Every statement that is only true or false in
a certain context is not a proper proposition. In addition, any statement that depends on something
undefined (e.g., something happening in the future) is not a proposition.

Beware that there can be logically self-contradictory statements. This has bothered mathematicians for
a long time but for now we keep things simple by ignoring the fact that there can be paradoxes.
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Axioms

Definition (axiom)

An axiom is a proposition that is taken to be true.

Definition (Peano axioms for natural numbers)

P1 0 is a natural number.

P2 Every natural number has a successor.

P3 0 is not the successor of any natural number.

P4 If the successor of x equals the successor of y , then x equals y .

P5 If a statement is true for the natural number 0, and if the truth of that statement
for a natural number implies its truth for the successor of that number, then the
statement is true for every natural number.
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When developing a theory and using formal proofs, it is important to be clear about the underlying
axioms that are used. Ideally, a small number of well defined axioms are sufficient to develop and proof
a complex theory. Finding a minimal set of axioms that are sufficient to derive all knowledge of a certain
theory is an important part of research.

The five Peano axioms, defined in 1889 by Giuseppe Peano, are sufficient to derive everything we know
about natural numbers. The fifths Peano axiom is particularly interesting since it allows us to prove a
statement for all natural numbers even though there are infinite many natural numbers. We will make
use of this technique, called induction, frequently.
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Theorems, Lemmata, Corollaries

Definition (theorem, lemma, corollary)

An important true proposition is called a theorem. A lemma is a preliminary true
proposition useful for proving other propositions (usually theorems) and a corollary is a
true proposition that follows in just a few logical steps from a theorem.

Definition (conjecture)

A proposition for which no proof has been found yet and which is believed to be true is
called a conjecture.

• There is no clear boundary between what is a theorem, a lemma, or a corollary.
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Theorem 1 (Fermat’s last theorem). There are no positive integers x, y, and z such that

xn + yn = zn

for some integer n > 2.

Fermat claimed to have a proof for this conjecture in 1630 but he had not enough space on the margin
of the book he was reading to write it down. Fermat’s last theorem was finally proven to be true by
Andrew Wiles in 1995. Sometimes it takes time to fully work out a proof.
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Predicates

• A predicate is a statement that may be true or false depending on the values of its
variables. It can be thought of as a function that returns a value that is either true
or false.

• Variables appearing in a predicate are often quantified:
• A predicate is true for all values of a given set of values.
• A predicate is true for at least one value of a given set of values.

(There exists a value such that the predicate is true.)

• There may be multiple quantifiers and they may be combined (but note that the
order of the quantifiers matters).

• Example: (Goldbach’s conjecture) For every even integer n greater than 2, there
exists primes p and q such that n = p + q.
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Human language is often ambiguous. The statement “Every American has a dream.” can be interpreted
in two different ways:

a) There exists a dream d out of the set of all dreams D and forall persons a out of the set of Americans
A, person a has dream d.

b) Forall persons a out of the set of Americans A, there exists a dream d out of the set of all dreams D
such that persons a has dream d.

Our common sense says that b) is the more likely interpretation but for machines, which lack a notion of
common sense, such ambiguities are difficult to work with. (And this makes natural language processing
difficult for computers. Machine learning helps here as it provides a statistical basis to determine the
likely meaning of a natural language expression.) In mathematics and computer science, we try hard to
avoid ambiguities.

Note that predicates can be simple or more complex and as a consequence we have different logics:

• Propositional logic (or zeroth-order logic) deals with simple propositions like “Socrates is a man”.
Boolean algebra provides the algebraic rules for handling statements in propositional logic.

• Predicate logic (or first-order logic) extends propositional logic with quantified variables like for
example “there exists x such that x is Socrates and x is a man”.

• Second order logic is even more expressive than first-order logic.

For computer scientists, a fundamental question is whether logics are decidable (Entscheidungsprob-
lem): Is there an algorithm that takes a logic statement as input and decides whether it is true or false?
For some logics, such an algorithm exists, for others there are proofs that they cannot exist. For those
logics where such an algorithm exists, the second question typically concerns the complexity of such
an algorithm.

There are special logics such as Horn clauses that have nice bounds on the computational complexity
and that have been used as the foundation of logic programming languages like Prolog.
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Mathematical Notation

Notation Explanation

P ∧ Q logical and of propositions P and Q
P ∨ Q logical or of propositions P and Q
¬P negation of proposition P

∀x ∈ S .P the predicate P holds for all x in the set S
∃x ∈ S .P there exists an x in the set S such that the predicate P holds
P ⇒ Q the statement P implies statement Q
P ⇔ Q the statement P holds if and only if (iff) Q holds
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Some examples:

• Lets formalize the two interpretations of the statement “every American has a dream”. Let A be
the set of Americans and D be the set of dreams:

∀a ∈ A.∃d ∈ D.dream(a, d)

∃d ∈ D.∀a ∈ A.dream(a, d)

• Goldbach’s conjecture is stated in mathematical notation as follows:

Let E be the set all even integers larger than two and P the set of prime numbers. Then
the following holds:

∀n ∈ E.∃p ∈ P.∃q ∈ P.n = p+ q

Note that n = p+q is a predicate over the variables n, p, and q. Also recall that changing the order
of the quantifiers may alter the statement.

• We can write the five Peano axioms in mathematical notation. Lets assume that the function
s : N→ N returns the successor of its argument.

P1 0 ∈ N (zero is a natural number)

P2 ∀n ∈ N.s(n) ∈ N ∧ n ̸= s(n) (closed under successor, distinct)

P3 ¬(∃n ∈ N.0 = s(n)) (zero is not a successor)

P4 ∀n ∈ N.∀m ∈ N.s(n) = s(m)⇒ n = m (different successors)

P5 ∀P.(P (0) ∧ (∀n ∈ N.P (n)⇒ P (s(n))))⇒ (∀m ∈ N.P (m)) (induction)
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Greek Letters

α Α alpha β Β beta γ Γ gamma
δ Δ delta ε Ε epsilon ζ Ζ zeta
η Η eta θ Θ theta ι Ι iota
κ Κ kappa λ Λ lambda µ Μ mu
ν Ν nu ξ Ξ xi ο Ο omikron
π Π pi ρ Ρ rho σ Σ sigma
τ Τ tau υ Υ upsilon φ Φ phi
χ Χ chi ψ Ψ psi ω Ω omega
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Mathematicians love to use greek letters. And if they run out of greek letters, they love to use roman
letters in different writing styles. And to keep reading math fun, every author is free to choose the letters
he/she likes best.

We observe the same behavior with young programmers until they realize that reading code written by
someone else is way more common than writing code and that things get much simpler if all people
within a project follow common conventions, the so called coding styles.

The same applies to mathematicians to some extend. Different areas of math tend to prefer certain
notations and writing styles. As a novice mathematician or programmer, the best advice one can give
is to follow the conventions that are used by the seniors around you.
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Mathematical Proof

Definition (mathematical proof)

A mathematical proof of a proposition is a chain of logical deductions from a base set
of axioms (or other previously proven propositions) that concludes with the proposition
in question.

• Informally, a proof is a method of establishing truth. There are very different ways
to establish truth. In computer science, we usually adopt the mathematical notion
of a proof.

• There are a certain number of templates for constructing proofs. It is good style to
indicate at the beginning of the proof which template is used.
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Hints for Writing Proofs

• Proofs often start with notes that can be disorganized, have strange diagrams,
obscene words, whatever. But the final proof should be clear and concise.

• Proofs usually begin with the word “Proof” and they end with a delimiter such as
.

• Make it easy to understand your proof. A good proof has a clear structure and it is
concise. Turning an initial proof into a concise proof takes time and patience.

• Introduce notation carefully. Good notation can make a proof easy to follow (and
bad notation can achieve the opposite effect).

• Revise your proof and simplify it. A good proof has been written multiple times.
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Writing good source code is a bit like writing a good proof. Good source code is clear and concise, it
has a well-defined structure, it uses a carefully chosen notation, it is easy to read, and it likely has been
revised a couple of times. Learning how to write good source code (and good proofs) requires practice.
The earlier you start, the faster you get excellent at it. Start right now. Stop producing source code and
proofs that are just good enough, instead challenge yourself to produce source code and proofs that
are elegant and a little piece of “art” you can be proud of. If you do not know how to distinguish beautiful
source code and proofs from just average stuff, start reading other people’s source code and proofs.
Learn from how they are doing things, ask yourself what you like about what you read and what you find
perhaps irritating or difficult. Think how things could have been done differently.
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Prove an Implication by Derivation

• An implication is a proposition of the form “If P , then Q”, or P ⇒ Q.

• One way to prove such an implication is by a derivation where you start with P and
stepwise derive Q from it.

• In each step, you apply theorems (or lemmas or corollaries) that have already been
proven to be true.

• Template:

Assume P . Then, . . . Therefore . . . [. . . ] This finally leads to Q.
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Theorem 2. Let x and y be two integers. If x and y are both odd, then the product xy is odd.

Proof. Assume x and y are two odd integers. We can write x as x = 2a + 1 and y as y = 2b + 1 with
suitable integers a and b. With this, we can write the product of x and y as follows:

xy = (2a+ 1)(2b+ 1)

= 4ab+ 2a+ 2b+ 1

= 2(2ab+ a+ b) + 1

Since 2(2ab+ a+ b) is even and we add 1 to it, it follows that the product of x and y is odd.
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Prove an Implication by its Contrapositive

• An implication is a proposition of the form “If P , then Q”, or P ⇒ Q.

• Such an implication is logically equivalent to its contrapositive, ¬Q ⇒ ¬P .
• Proving the contrapositive is sometimes easier than proving the original statement.

• Template:

Proof. We prove the contrapositive, if ¬Q, then ¬P . We assume ¬Q. Then,
. . . Therefore . . . [. . . ] This finally leads to ¬P .
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Theorem 3. Let x be an integer. If x2 is even, then x is even.

Proof. We prove the contrapositive, if x is not even, then x2 is odd. Assume x is not even. Since the
product of two odd numbers results in an odd number (see Theorem 2), it follows that x2 = x · x is
odd.

Note that the proof above relies on Theorem 2 to be true.
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Prove an “if and only if” by two Implications

• A statement of the form “P if and only if Q”, P ⇔ Q, is equivalent to the two
statements “P implies Q” and “Q implies P”.

• Split your proof into two parts, the first part proving P ⇒ Q and the second part
proving Q ⇒ P .

• Template:

Proof. We prove P implies Q and vice-versa.

First, we show P implies Q. Assume P . Then, . . . Therefore . . . [. . . ] This finally
leads to Q.

Now we show Q implies P . Assume Q. Then, . . . . Therefore . . . [. . . ] This finally
leads to P .
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Theorem 4. An integer x is even if and only if its square x2 is even.

Proof. We prove x is even implies x2 is even and vice versa. First, we show that if x is even, then x2

is even. Since x is even, it can be written as x = 2k for some suitable number k. With this, we obtain
x2 = (2k)2 = 2(2k2). Hence, x2 is even.

Next, we show that if x2 is even, then x is even. Since x2 is even, we can write it as x2 = 2k for some
suitable number k, i.e., 2 divides x2. This means that 2 divides either x or x, which implies that x is
even.

This approach to prove an equivalence can be extended. Suppose that you have to show that A ⇔ B,
B ⇔ C and C ⇔ A, then it is sufficient to prove a single chain of implications, namely that A ⇒ B and
B ⇒ C and C ⇒ A. It is not necessary to prove B ⇒ A since this follows from B ⇒ C ⇒ A. Similarly,
it is not necessary to prove C ⇒ B since this follows form C ⇒ A⇒ B.
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Prove an “if and only if” by a Chain of “if and only if”s

• A statement of the form “P if and only if Q” can be shown to hold by constructing
a chain of “if and only if” equivalence implications.

• Constructing this kind of proof is often harder then proving two implications, but
the result can be short and elegant.

• Template:

Proof. We construct a proof by a chain of if-and-only-if implications.

P holds if and only if P ′ holds, which is equivalent to [. . . ], which is equivalent to
Q.
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Phrases commonly used as alternatives to P “if and only if” Q include:

• Q is necessary and sufficient for P

• P is equivalent (or materially equivalent) to Q

• P precisely if Q

• P exactly when Q

• P just in case Q
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Breaking a Proof into Cases

• It is sometimes useful to break a complicated statement P into several cases that
are proven separately.

• Different proof techniques may be used for the different cases.

• It is necessary to ensure that the cases cover the complete statement P .

• Template:

Proof. We prove P by considering the cases c1, . . . , cN .

Case 1: Suppose c1. Prove of P for c1.

. . .

Case N : Suppose cN . Prove of P for cN .

Since P holds for all cases c1, . . . cN , the statement P holds.
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Theorem 5. For every integer n ∈ Z, n2 + n is even.

Proof. We prove n2 + n is even for all n ∈ Z by considering the case where n is even and the case
where n is odd.

• Case 1: Suppose n is even:

n can be written as 2k with k ∈ Z. This gives us:

n2 + n = (2k)2 + (2k) = 4k2 + 2k = 2(2k2 + k)

Since the result is a multiple of two, it is even.

• Case 2: Suppose n is odd:

n can be written as 2k + 1 with k ∈ Z. This gives us:

n2 + n = (2k + 1)2 + (2k + 1) = (4k2 + 4k + 1) + (2k + 1) = 4k2 + 6k + 2 = 2(2k2 + 3k + 1)

Since the result is a multiple of two, it is even.

Since n2 + n is even holds for the two cases n is even and n is odd, it holds for all n ∈ Z.
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Proof by Contradiction

• A proof by contradiction for a statement P shows that if the statement were false,
then some false fact would be true.

• Starting from ¬P , a series of derivations is used to arrive at a statement that
contradicts something that has already been shown to be true or which is an axiom.

• Template:

Proof. We prove P by contradiction.

Assume ¬P is true. Then . . . Therefore . . . [. . . ] This is a contradiction. Thus, P
must be true.
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Theorem 6.
√
2 is irrational.

Proof. We use proof by contradiction. Suppose the claim is false and
√
2 is rational. Then we can write√

2 as a fraction in lowest terms, i.e.,
√
2 = a

b with two integers a and b. Since a
b is in lowest terms, at

least one of the integers a or b must be odd.

By squaring the equation, we get 2 = a2

b2 which is equivalent to a2 = 2b2.

Since the square of an odd number is odd (see Theorem 2) and a2 apparently is even (a multiple of 2),
b must be odd.

On the other hand, if a is even, then a2 is a multiple of 4. If a2 is a multiple of 4 and a2 = 2b2, then 2b2 is
a multiple of 4, and therefore b2 must be even, and hence b must be even.

Obviously, b cannot be even and odd at the same time. This is a contradiction. Thus,
√
2 must be

irrational.
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Proof by Induction

• If we have to prove a statement P on nonnegative integers (or more generally an
inductively defined well-ordered infinite set), we can use the induction principle.

• We first prove that P is true for the “lowest” element in the set (the base case).

• Next we prove that if P holds for a nonnegative integer n, then the statement P
holds for n + 1 (induction step).

• Since we can apply the induction step m times, starting with the base, we have
shown that P is true for arbitrary nonnegative integers m.

• Template:

Proof. We prove P by induction.

Base case: We show that P(0) is true. [. . . ]

Induction step: Assume P(n) is true. Then, . . . This proves that P(n + 1) holds.
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Theorem 7. For all n ∈ N, 0 + 1 + 2 + 3 + . . .+ n = n(n+1)
2 .

Proof. We prove 0 + 1 + 2 + 3 + . . .+ n = n(n+1)
2 by induction.

• Base case:

We show that the equation is true for n = 0. Setting n = 0, the equation becomes

0 =
0(0 + 1)

2
= 0

1

2
= 0

and hence the equation holds for n = 0.

• Induction step:

Assume that the equation holds for some n ∈ N. Lets consider the case n+ 1:

0 + 1 + 2 + 3 + . . .+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1)

=
n(n+ 1) + 2(n+ 1)

2

=
n2 + n+ 2n+ 2

2

=
(n+ 2)(n+ 1)

2

This shows that the equation holds for n+ 1.

It follows by induction that 0+1+2+3+ . . .+n = n(n+1)
2 holds for arbitrary nonnegative integers n.

In computer science, we are frequently interested in structural induction. Instead of proving a proposition
over the set of natural numbers, we often prove a proposition over an inductively defined structure
(hence the term structural induction). One can view structural induction as a generalization of the
mathematical induction over natural numbers. (Natural numbers can be seen as just an example of an
inductively defined structure.)
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Summary of Proof Techniques

Statement Techniques Description

A⇒ Z A⇒ B ⇒ C ⇒ . . .⇒ Z proof by derivation
¬Z ⇒ ¬A proof by contrapositive

A⇔ Z A⇔ B ⇔ C ⇔ . . .⇔ Z chain of equivalences
A⇒ Z ∧ Z ⇒ A proof by two implications

A ¬A⇒ B ⇒ C ⇒ . . .⇒ ⊥ proof by contradiction

∀n ∈ N.A(n) A(0) ∧ (A(n)⇒ A(n + 1)) proof by induction
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Sets

• Informally, a set is a well-defined collection of distinct objects. The elements of the
collection can be anything we like the set to contain, including other sets.

• In modern mathematics, sets are defined using axiomatic set theory, but for us the
informal definition above is sufficient.

• Sets can be defined by
• listing all elements in curly braces, e.g., { a, b, c },
• describing all objects using a predicate P, e.g., { x | x ≥ 0 ∧ x < 28 },
• stating element-hood using some other statements.

• A set has no order of the elements and every element appears only once.

• The two notations { a, b, c } and { b, a, a, c } are different representations of the
same set.
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Some popular sets in mathematics:

symbol set elements

∅ empty set { }
N nonnegative integers { 0, 1, 2, 3, . . . }
Z integers { . . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
Q rational numbers 1

2 , 42, etc.
R real numbers π,

√
2, 0 etc.

C complex numbers i, 5 + 9i, 0, π etc.

Sets can be very confusing. A mathematician called Georg Cantor tried to formalize the notion of sets,
introducing so called naive set theory. According to naive set theory, any definable collection is a set.
Bertrand Russell, another mathematician, discovered a paradox that is meanwhile known as Russell’s
paradox:

Let R be the set of all sets that are not members of themselves. If R is not a member of itself,
then its definition dictates that it must contain itself, and if it contains itself, then it contradicts
its own definition as the set of all sets that are not members of themselves. Symbolically:

Let R = {x | x /∈ x }, then R ∈ R⇔ R /∈ R.

Another formulation provided by Bertrand Russell and known as the barber paradox:

You can define a barber as “one who shaves all those, and only those, who do not shave
themselves.” The question is, does the barber shave himself?
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Basic Relations between Sets

Definition (basic relations between sets)

Lets A and B be two sets. We define the following relations between sets:

1. (A ≡ B) :⇔ (∀x .x ∈ A⇔ x ∈ B) (set equality)

2. (A ⊆ B) :⇔ (∀x .x ∈ A⇒ x ∈ B) (subset)

3. (A ⊂ B) :⇔ (A ⊆ B) ∧ (A ̸≡ B) (proper subset)

4. (A ⊇ B) :⇔ (∀x .x ∈ B ⇒ x ∈ A) (superset)

5. (A ⊃ B) :⇔ (A ⊇ B) ∧ (A ̸≡ B) (proper superset)

• Obviously:
• (A ⊆ B) ∧ (B ⊆ A)⇒ (A ≡ B)
• (A ⊆ B)⇔ (B ⊇ A)
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Apparently, N ⊂ Z ⊂ Q ⊂ R ⊂ C for the popular sets in mathematics.

In the real world, sets and their relations are often not well defined. For example, consider the set
representing the faculty of a university. How do you think this set is defined? And is it a proper subset
of the set of all employees of the university?
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Operations on Sets 1/2

Definition (set union)

The union of two sets A and B is defined as A ∪ B = { x | x ∈ A ∨ x ∈ B }.

Definition (set intersection)

The intersection of two sets A and B is defined as A ∩ B = { x | x ∈ A ∧ x ∈ B }.

Definition (set difference)

The difference of two sets A and B is defined as A \ B = { x | x ∈ A ∧ x ̸∈ B }.
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Some basic properties of set unions:

A ∪B = B ∪A commutativity
A ∪ (B ∪ C) = (A ∪B) ∪ C associativity
A ⊆ (A ∪B)

A ∪A = A idempotency
A ∪ ∅ = A identity
A ⊆ B ⇔ A ∪B = B

Some basic properties of set intersections:

A ∩B = B ∩A commutativity
A ∩ (B ∩ C) = (A ∩B) ∩ C associativity
A ∩B ⊆ A
A ∩A = A idempotency
A ∩ ∅ = ∅
A ⊆ B ⇔ A ∩B = A

Some basic properties of set differences:

A \A = ∅
A \ ∅ = A

Some basic properties of combinations of set operations:

A ∪ (A ∩B) = A absorption
A ∩ (A ∪B) = A absorption
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) distributivity
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) distributivity
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Operations on Sets 2/2

Definition (power set)

The power set P(A) of a set A is the set of all subsets S of A, including the empty set
and A itself. Formally, P(A) = { S | S ⊆ A }.

Definition (cartesian product)

The cartesian product of the sets X1, . . . ,Xn is defined as
X1 × . . .× Xn = { (x1, . . . , xn) | ∀i ∈ {1, . . . , n}.xi ∈ Xi }.
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Cardinality of Sets

Definition (cardinality)

If A is a finite set, the cardinality of A, written as |A|, is the number of elements in A.

Definition (countably infinite)

A set A is countably infinite if and only if there is a bijective function f : A→ N.

Definition (countable)

A set A is countable if and only if it is finite or countably infinite.
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Theorem 8. If S is a finite set with |S| = n elements, then the number of subsets of S is |P(S)| = 2n.

Theorem 9. Let A and B be two finite sets. Then the following holds:

1. |(A ∪B)| ≤ |A|+ |B|
2. |(A ∩B)| ≤ min(|A|, |B|)
3. |(A×B)| = |A| · |B|

There are sets that are not countable, so called uncountable sets. The best known example of an
uncountable set is the set R of all real numbers. Cantors diagonal argument, published in 1891, is a
famous proof that there are infinite sets that can not be counted.
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Relations

Definition (relation)

A relation R over the sets X1, . . . ,Xk is a subset of their Cartesian product, written
R ⊆ X1 × . . .× Xk .

• Relations are classified according to the number of sets in the defining Cartesian
product:
• A unary relation is defined over a single set X
• A binary relation is defined over X1 × X2

• A ternary relation is defined over X1 × X2 × X3

• A k-ary relation is defined over X1 × . . .× Xk
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We do not really need ternary, . . . , k-ary relations. For example, we can view a ternary relation A×B×C
as a binary relation A× (B × C). Hence, we will focus on binary relations.

Relations are a fairly general concept. Relations play an important role while developing data models
for computer applications. There is a class of database systems, the so called relational database
management systems (RDMS), that are based on a formal relational model. The idea is to model a
domain as a collection of relations that can be represented efficiently as database tables.

Entity relationship models describe a part of a world as sets of typed objects (entities), relations between
entities, and attributes of entities or relations. An example for a system like CampusNet:

• Entities:

– Student

– Instructor

– Course

– Module

– Person

– . . .

• Relations:

– enrolled in ⊆ (Student× Course)
– is a ⊆ (Student× Person)
– is a ⊆ (Instructor × Person)
– belongs to ⊆ (Course×Module)

– teaches ⊆ (Instructor × Course)
– tutor of ⊆ (Student× Course)
– . . .

Entity relationship models are often defined using a graphical notation. A standard graphical notation is
part of the Unified Modeling Language (UML).

Figure 1 provides a UML diagram representation of relations in a campus information system. The
symbols used in UML diagrams have well defined semantics. We do not go into the details here. For
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<<Entity>>

Student
<<Entity>>

Instructor

<<Entity>>

Person

<<Entity>>

Course

<<Entity>>

Module

is a is a

enrolled in

belongs to

teaches

tutor of

Figure 1: A UML diagram showing relations using a graphical notation

now, just note that special line ends (unfilled arrow heads) are used for is a relations. The reason is that
is a relations are quite common and programming languages or database systems often have special
support for representing is a relations.
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Binary Relations

Definition (binary relation)

A binary relation R ⊆ A× B consists of a set A, called the domain of R , a set B , called
the codomain of R , and a subset of A× B called the graph of R .

Definition (inverse of a binary relation)

The inverse of a binary relation R ⊆ A× B is the relation R−1 ⊆ B × A defined by the
rule

b R−1 a⇔ a R b.

• For a ∈ A and b ∈ B , we often write a R b to indicate that (a, b) ∈ R .

• The notation a R b is called infix notation while the notation R(a, b) is called the
prefix notation. For binary relations, we commonly use the infix notation.
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Another way to define the inverse relation is to use the set builder notation: Given a binary relation
R ⊆ A×B, we define the inverse relation R−1 as R−1 = { (b, a) ∈ (B ×A) | (a, b) ∈ R }.
It is also possible to define the complement relation of a binary relation. Given a binary relation R ⊆
A×B, we define the complement relation R̄ as R̄ = { (a, b) ∈ (A×B) | (a, b) /∈ R }.
A good example is the relation of students with their teaching assistants. Let S be the set of students
in this course and let T be the set of teaching assistants of this course. Then is assigned to is a binary
relation over S × T and S is the domain and T is the codomain of this relation.

We sometimes use the notation dom(R) and codom(R) to refer to the domain and the codomain of a
relation R.
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Image and Range of Binary Relations

Definition (image of a binary relation)

The image of a binary relation R ⊆ A× B , is the set of elements of the codomain B of
R that are related to some element in A.

Definition (range of a binary relation)

The range of a binary relation R ⊆ A× B is the set of elements of the domain A of R
that relate to at least one element in B .
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For small binary relations, it is possible to draw relation diagrams, with points representing the domain
on the left side, points representing the codomain on the right side, and arrows representing the relation,
pointing from the domain points to the codomain points.

As an example, consider R ⊆ A×B with A = { a, b, c, d, e, f } and B = { 1, 2, 3, 4, 5 }. We define R using
the graphviz dot notation:

1 digraph R {

2 a -> 1;

3 b -> 3;

4 c -> 4;

5 d -> 2;

6 e -> 3;

7 }

The range of R is { a, b, c, d, e } and the image of R is { 1, 2, 3, 4 }.
The inverse R−1 of R defined in the graphviz dot notation:

1 digraph Rinv {

2 1 -> a;

3 3 -> b;

4 4 -> c;

5 2 -> d;

6 3 -> e;

7 }

The complement R̄ of R defined in the graphviz dot notation:

1 digraph Rbar {

2 a -> 2; a -> 3; a -> 4; a -> 5;

3 b -> 1; b -> 2; b -> 4; b -> 5;

4 c -> 1; c -> 2; c -> 3; c -> 5;

5 d -> 1; d -> 3; d -> 4; d -> 5;

6 e -> 1; e -> 2; e -> 4; e -> 5;

7 f -> 1; f -> 2; f -> 3; f -> 4; f -> 5;

8 }
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Properties of Binary Relations (Endorelations)

Definition
A relation R ⊆ A× A is called

• reflexive iff ∀a ∈ A.(a, a) ∈ R

• irreflexive iff ∀a ∈ A.(a, a) ̸∈ R

• symmetric iff ∀a, b ∈ A.(a, b) ∈ R ⇒ (b, a) ∈ R

• asymmetric iff ∀a, b ∈ A.(a, b) ∈ R ⇒ (b, a) ̸∈ R

• antisymmetric iff ∀a, b ∈ A.((a, b) ∈ R ∧ (b, a) ∈ R)⇒ a = b

• transitive iff ∀a, b, c ∈ A.((a, b) ∈ R ∧ (b, c) ∈ R)⇒ (a, c) ∈ R

• connected iff ∀a, b ∈ A.(a, b) ∈ R ∨ (b, a) ∈ R ∨ a = b

• serial iff ∀a ∈ A.∃b ∈ A.(a, b) ∈ R
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Note: There are relations that are neither reflexive nor irreflexive.

Examples:

• The relation is as old as on the set of persons is reflexive.

• The relation is older than on the set of persons is irreflexive.

• The relation is sibling of on the set of persons is symmetric.

• The relation is mother of on the set of persons is asymmetric.

• The relation is not older as on the set of persons is antisymmetric.

• The relation is ancestor of on the set of persons transitive.
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Equivalence, Partial Order, and Strict Partial Order

Definition (equivalence relation)

A relation R ⊆ A× A is called an equivalence relation on A if and only if R is reflexive,
symmetric, and transitive.

Definition (partial order and strict partial order)

A relation R ⊆ A× A is called a partial order on A if and only if R is reflexive,
antisymmetric, and transitive on A. The relation R is called a strict partial order on A if
and only if it is irreflexive, asymmetric and transitive on A.

Definition (linear order)

A partial order R is called a linear order on A if and only if all elements in A are
comparable, i.e., the partial order is total.
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A symbol commonly used for equivalence relations is ≡, a symbol commonly used for strict partial
orders is ≺, and a symbol commonly used for non-strict partial orders is ⪯.

Note: A partial order ⪯ induces a strict partial order a ≺ b⇔ a ⪯ b ∧ a ̸= b.

Note: A strict partial order ≺ induces a partial order a ⪯ b⇔ a ≺ b ∨ a = b.

Examples:

• The relation is as old as is reflexive, symmetric and transitive. Hence it is an equivalence relation.

• The relation is not older as on the set of persons is reflexive, antisymmetric, and transitive and
hence it is a partial order.

• The relation is younger as is irreflexive, asymmetric, and transitive and hence it is a strict partial
order.

Note: An equivalence relation induces equivalence classes. Given a set of persons, the is as old as
relation induces classes of persons with the same age.

Another example for a partial order is the following order relation defined on vectors x⃗ and y⃗ in Rn:

x⃗ ⪯ y⃗ ⇔ ∀i ∈ { 1, . . . , n }.xi ≤ yi

This is a partial order since the vectors x⃗ = (0, 1) and y⃗ = (1, 0) have no order relationship.

Another example for a partial order is the happened before relation on events in a distributed system,
which expresses the fact that an event a that happened before an event b may have influenced the event
b.
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Summary of Properties of Binary Relations

Let ∼ be a binary relation over A× A and let a, b, c ∈ A arbitrary.

property ≡ ⪯ ≺ definition = ≤ <

reflexive ✓ ✓ a ∼ a ✓ ✓
irreflexive ✓ a ̸∼ a ✓
symmetric ✓ a ∼ b ⇒ b ∼ a ✓
asymmetric ✓ a ∼ b ⇒ b ̸∼ a ✓
antisymmetric ✓ a ∼ b ∧ b ∼ a⇒ a = b ✓
transitive ✓ ✓ ✓ a ∼ b ∧ b ∼ c ⇒ a ∼ c ✓ ✓ ✓
≡ equivalence relation, ⪯ partial order, ≺ strict partial order
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This table summarizes the properties of relations and how they map to equivalence relations, partial
orders, and strict partial orders. The right column shows the equivalence, less-than-or-equal, and less-
than examples that we are all familiar with from the sets of numbers.
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Section 8: Functions
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Functions

Definition (partial function)

A relation f ⊆ X × Y is called a partial function if and only if for all x ∈ X there is at
most one y ∈ Y with (x , y) ∈ f . We call a partial function f undefined at x ∈ X if and
only if (x , y) ̸∈ f for all y ∈ Y .

Definition (total function)

A relation f ⊆ X × Y is called a total function if and only if for all x ∈ X there is
exactly one y ∈ Y with (x , y) ∈ f .
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Notation:

• If f ⊆ X × Y is a total function, we write f : X → Y .

• If (x, y) ∈ f , we often write f(x) = y.

• If a partial function f is undefined at x ∈ X, we often write f(x) = ⊥.
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Function Properties

Definition (injective function)

A function f : X → Y is called injective if every element of the codomain Y is mapped
to by at most one element of the domain X : ∀x , y ∈ X .f (x) = f (y)⇒ x = y

Definition (surjective function)

A function f : X → Y is called surjective if every element of the codomain Y is
mapped to by at least one element of the domain X : ∀y ∈ Y .∃x ∈ X .f (x) = y

Definition (bijective function)

A function f : X → Y is called bijective if every element of the codomain Y is mapped
to by exactly one element of the domain X . (That is, the function is both injective and
surjective.)
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If a function f : X → Y is bijective, we can easily obtain an inverse function f−1 : Y → X.

• Example of an injective-only function f : { 1, 2, 3 } → {A,B,C,D } in graphviz dot notation:

1 digraph f {

2 1->D

3 2->B

4 3->C

5 A

6 }

• Example of a surjective-only function f : { 1, 2, 3, 4 } → {B,C,D } in graphviz dot notation:

1 digraph f {

2 1->D

3 2->B

4 3->C

5 4->C

6 }

• Example of a bijective function f : { 1, 2, 3, 4 } → {A,B,C,D } in graphviz dot notation:

1 digraph f {

2 1->D

3 2->B

4 3->C

5 4->A

6 }

• Example of a function f : { 1, 2, 3 } → {A,B,C,D } that is neither:

1 digraph f {

2 1->D

3 2->D

4 A

5 3->C

6 B

7 }
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Operations on Functions

Definition (function composition)

Given two functions f : A→ B and g : B → C , the composition of g with f is defined
as the function g ◦ f : A→ C with (g ◦ f )(x) = g(f (x)).

Definition (function restriction)

Let f be a function f : A→ B and C ⊆ A. Then we call the function
f |C = {(c , b) ∈ f |c ∈ C} the restriction of f to C .
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Haskell provides the . operator for function composition.

1 last' :: [a] -> a

2 last' = (head . reverse)

1 import Data.List

2 rsort :: Ord a => [a] -> [a]

3 rsort = (reverse . sort)

1 odd' :: Integral a => a -> Bool

2 odd' = not . even

1 sumOfOdds :: Integral a => [a] -> a

2 sumOfOdds = sum . filter (not . even)

80



Lambda Notation of Functions

• It is sometimes not necessary to give a function a name.

• A function definition of the form { (x , y) ∈ X × Y | y = E }, where E is an
expression (usually involving x), can be written in a shorter lambda notation as
λx ∈ X .E .

• Examples:
• λn ∈ N.n (identity function for natural numbers)
• λx ∈ N.x2 (f (x) = x2)
• λ(x , y) ∈ N× N.x + y (addition of natural numbers)

• Lambda calculus is a formal system for expressing computation based on function
abstraction and application using variable bindings and substitutions.

• Lambda calculus is the foundation of functional programming languages like
Haskell.
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The lambda notation λx ∈ X.E implies a set that consists of elements of the form (x, y) ∈ X × Y , i.e.,
the function argument(s) and the function value.

• Identity function for natural numbers:

λn ∈ N.n = { (x, y) ∈ N× N | y = x }
= { (0, 0), (1, 1), (2, 2), . . . }

• f(x) = x2:

λx ∈ N.x2 = { (x, y) ∈ N× N | y = x2 }
= { (0, 0), (1, 1), (2, 4), . . . }

• Addition of natural numbers:

λ(x, y) ∈ N× N.x+ y = { ((x, y), z) ∈ (N× N)× N | z = x+ y }
= { ((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 2), . . . }

The following example demonstrates lambda functions and function composition in Haskell.

1 f :: Num a => a -> a

2 f = (\x->x^2) . (\x->x+1)

Further online information:

• Wikipedia: Lambda Calculus
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Currying

• Lambda calculus uses only functions that take a single argument. This is possible
since lambda calculus allows functions as arguments and results.

• A function that takes two arguments can be converted into a function that takes
the first argument as input and which returns a function that takes the second
argument as input.

• This method of converting functions with multiple arguments into a sequence of
functions with a single argument is called currying.

• The term currying is a reference to the mathematician Haskell Curry.
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The Haskell programming language uses currying to convert all functions with multiple arguments into
a sequence of functions with a single argument.
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Algebraic Structures

Definition (algebraic structure)

An algebraic structure consists of a nonempty set S (called the underlying set, carrier set
or domain), a collection of operations on S (typically binary operations such as addition
and multiplication), and a finite set of axioms that these operations must satisfy.

• A branch of mathematics known as universal algebra studies algebraic structures.

• A set S is a degenerate algebraic structure having no operations.

• We are interested in algebraic structures with one or multiple defined operations.
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Universal algebra enables us to prove theorems for several similar algebraic structures very efficiently.
As we will see, basic set theory and boolean logic have many similarities. By identifying an algebraic
structure underlying both basic set theory and boolean logic, we can define and prove theorems once
that apply to both basic set theory and boolean logic.
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Magma

Definition (magma)

A magma (S , ∗) is an algebraic structure consisting of a set S together with a binary
operation ∗ satisfying the following property:

∀a, b ∈ S : a ∗ b ∈ S closure

The operation ∗ is a function ∗ : S × S → S .

• A magma is a very general algebraic structure.

• By imposing additional constraints on the operation ∗, we can define more useful
classes of algebraic structures.
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Some examples for magmas:

1. (N,+) (addition over natural numbers)

2. (N, ·) (multiplication over natural numbers)

A more interesting magma is the operation (a, b, c)∗ (x, y, z) = (bz−cy, cx−az, ay−bx) defined over the
set R3. This magma is interesting since it is a “true” magma, i.e., it is not one of the algebraic structures
we define next.

In Haskell, a magma can be represented by the typeclass Magma:

1 class Magma a where

2 (<>) :: a -> a -> a

The Magma typeclass is defined in Data.Magma. Here is an example implementation of the type class:

1 import Data.Magma

2

3 data Shape = Rock | Paper | Scissors deriving (Eq, Show)

4

5 instance Magma Shape where

6 (<>) :: Shape -> Shape -> Shape

7 Rock <> Rock = Rock

8 Rock <> Paper = Paper

9 Rock <> Scissors = Rock

10 Paper <> Paper = Paper

11 Paper <> Scissors = Scissors

12 Paper <> Rock = Paper

13 Scissors <> Scissors = Scissors

14 Scissors <> Rock = Rock

15 Scissors <> Paper = Scissors
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Semigroup

Definition (semigroup)

A semigroup (S , ∗) is an algebraic structure consisting of a set S together with a binary
operation ∗ : S × S → S satisfying the following property:

∀a, b, c ∈ S : (a ∗ b) ∗ c = a ∗ (b ∗ c) associativity

• A semigroup extends a magma by requiring that the operation is associative.

• The set of semigroups is a true subset of the set of all magmas.
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Some examples for semigroups:

1. (N,+) (addition over natural numbers)

2. (N, ·) (multiplication over natural numbers)

3. (Z,+) (addition over integer numbers)

4. (Z, ·) (multiplication over integer numbers)

5. (Q,+) (addition over rational numbers)

6. (Q, ·) (multiplication over rational numbers)

7. (R,+) (addition over real numbers)

8. (R, ·) (multiplication over real numbers)
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Monoid

Definition (monoid)

A monoid (S , ∗, e) is an algebraic structure consisting of a set S together with a binary
operation ∗ : S × S → S and an identity element e satisfying the following properties:

∀a, b, c ∈ S : (a ∗ b) ∗ c = a ∗ (b ∗ c) associativity

∃e ∈ S ,∀a ∈ S : e ∗ a = a = a ∗ e identity element

The identity element e is also called the neutral element.

• A monoid extends a semigroups by requiring that there is an identity element.

• The set of monoids is a true subset of the set of all semigroups.
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Some examples of monoids:

1. (N0,+) (addition over natural numbers, identity 0)

2. (R, ·) (multiplication over real numbers, identity 1)

3. (Z, ·) (multiplication over integer numbers, identity 1)
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Group

Definition (group)

A group (S , ∗, e) is an algebraic structure consisting of a set S together with a binary
operation ∗ : S × S → S and an identity element e satisfying the following properties:

∀a, b, c ∈ S : (a ∗ b) ∗ c = a ∗ (b ∗ c) associativity

∃e ∈ S ,∀a ∈ S : e ∗ a = a = a ∗ e identity element

∀a ∈ S , ∃b ∈ S : a ∗ b = e inverse element

The element b is called the inverse element of a; it is often denoted as a−1.

• A group extends a monoid by requiring that there is an inverse element.

• The set of groups is a true subset of the set of all monoids.
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Some examples of groups:

1. (Z,+, 0) (addition over integer numbers, identity 0)

2. (Q \ {0}, ·, 1) (multiplication over rational numbers without 0, identity 1)

Note that (Z, ·) is not a group but a monoid.
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Abelian Group

Definition (abelian group)

An abelian group (S , ∗, e) is an algebraic structure consisting of a set S together with a
binary operation ∗ : S × S → S and an identity element e satisfying the following
properties:

∀a, b, c ∈ S : (a ∗ b) ∗ c = a ∗ (b ∗ c) associativity

∃e ∈ S ,∀a ∈ S : e ∗ a = a = a ∗ e identity element

∀a ∈ S , ∃b ∈ S : a ∗ b = e inverse element

∀a, b ∈ S : a ∗ b = b ∗ a commutativity

• An abelian group extends a group by requiring that the operation is commutativ.

• The set of abelian groups is a true subset of the set of all groups.
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Some examples of abelian groups:

1. (Z,+) (addition over integer numbers, identity 0)

2. (Q \ {0}, ·) (multiplication over rational numbers without 0, identity 1)
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Ring

Definition
A ring (S ,+, ·, 0, 1) is an algebraic structure consisting of a set S together with two
binary operations + (addition) and · (multiplication) satisfying the following properties:

1. (S ,+, 0) is an abelian group with the neutral element 0.

2. (S , ·, 1) is a monoid with the neutral element 1.

3. Multiplication is distributive with respect to addition:

∀a, b, c ∈ S : a · (b + c) = (a · b) + (a · c) left distributivity

∀a, b, c ∈ S : (b + c) · a = (b · a) + (c · a) right distributivity
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The operations are called + and · and the neutral elements 0 and 1 since this makes it easier to think
about rings. The names are, however, placeholders. The set S can have a complex structure and
hence the neutral elements will also have a complex structure. In other words, the number 0 and the
neutral element 0 are two very separate concepts and the context tells you what is meant in a concrete
situation. The same holds for the number 1 and the neutral element 1.

Note that some authors define a ring differently, i.e., they only require (S, ·) to be a semigroup.

Some examples of rings:

1. The algebraic structure (Z,+, ·, 0, 1) is a ring.

2. The finite sets of integer numbers Zn = {0, 1, . . . , n − 1} are rings for addition modulo n and
multiplication modulo n.

3. The set of all 2× 2 matrices is a ring for matrix addition and matrix multiplication operations. The
zero elements are:

0 =

(
0 0
0 0

)
1 =

(
1 0
0 1

)
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Field

Definition (field)

A field (S ,+, ·, 0, 1) is an algebraic structure consisting of a set S together with two
operations + : S × S → S and · : S × S → S satisfying the following properties:

1. (S ,+, 0) is a group with the neutral element 0

2. (S \ {0}, ·, 1) is a group with the neutral element 1

3. Multiplication distributes over addition

• A field is a commutative ring where 0 ̸= 1 and all nonzero elements are invertible
under multiplication.

• Well known fields are the field of rational numbers, the field of real numbers, or the
field of complex numbers.
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Like before, operations + and · and the neutral elements 0 and 1 are placeholders.

Some examples of fields:

1. (Q,+, ·, 0, 1) (addition and multiplication over rational numbers)

2. (R,+, ·, 0, 1) (addition and multiplication over real numbers)

3. (Zp,+, ·, 0, 1) (addition and multiplication modulo p over Zp = {0, 1, . . . , p− 1} with p prime)
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Homomorphism, Monomorphism, Epimorphism, Isomorphism

Definition (homomorphism)

A homomorphism is a structure-preserving map between two algebraic structures of the
same type that preserves the operations of the structures.

Definition (monomorphism)

An injective homomorphism is called a monomorphism.

Definition (epimorphism)

A surjective homomorphism is called an epimorphism.

Definition (isomorphism)

A bijective homomorphism is called an isomorphism.
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Given two groups, (G, ∗) and (H, ⋆), a group homomorphism from (G, ∗) to (H, ⋆) is a mapping h : G→
H such that for all u and v in G it holds that

h(u ∗ v) = h(u) ⋆ h(v)

where the group operation on the left side of the equation is that of G and on the right side that of H.
The group homomorphism h maps the identity element eG of G to the identity element eH of H and it
also maps the inverses of G to inverses of H:

h(u−1) = (h(u))
−1

Example: Given the groups (R,+) and (R, ·), the map h : R→ R with x 7→ ex is a group homomorphism.

h(u+ v) = e(u+v)

= eu · ev
= h(u) · h(v)

Note that h maps the identity element 0 of (R,+) to the identity element 1 of (R, ·) and that it also maps
inverses:

h(u−1) = h(−u)
= e−u

= (eu)
−1

= (h(u))
−1
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Endomorphism, Automorphism

Definition (endomorphism)

A homomorphism where the domain equals the codomain is called an endomorphism.

Definition (automorphism)

An endomorphism which is also an isomorphism is called an automorphism.
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Part III

Data Representation

In this part, we look at some fundamental data types such as different kinds of numbers, characters,
strings, or dates and time. We explore how such data is commonly represented in computing machines.

We start by looking at different number systems. While we know number systems such as natural
numbers, rational numbers, or real numbers from school, it turns out that computers tend to prefer
some restricted versions of these number systems. It is important to be aware of the differences in
order to produce software that behaves well.

Most numbers have associated units and hence we briefly discuss the international system of units and
metric prefixes.

We then turn to characters and some character representation and encoding issues. While characters
in principle look like a simple concept, they actually are not if we consider the different character sets
used in the word. Operations like character comparisons can become quite challenging in practice.

Finally, we look at the notion of time in computer systems and the representation of time and dates.
This again turns out to be much more complicated than one might have hoped. Time is often not a
good concept in distributed systems since establishing an accurate common notion of time is quite
challenging.

By the end of this part, students should be able to

• represent natural numbers in number systems with arbitrary bases;

• convert integer numbers into fixed size (b-1) and b-complement representations;

• explain the difference between real numbers and floating point numbers;

• convert decimal fractions into IEEE floating point numbers;

• describe the limitations of floating point numbers;

• recognize the importance of units and the International system of units;

• apply metric and binary prefixes properly;

• illustrate different representations of characters and strings;

• summarize the ASCII and UNICODE character sets and the UTF-8 encoding;

• explain the value of standardized date and time formats.
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Numbers can be confusing. . .

• There are only 10 kinds of people in the world: Those who understand binary and
those who don’t.

• Q: How easy is it to count in binary?
A: It’s as easy as 01 10 11.

• A Roman walks into the bar, holds up two fingers, and says, “Five beers, please.”

• Q: Why do mathematicians confuse Halloween and Christmas?
A: Because 31 Oct = 25 Dec.
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Computers are machines that can do calculations (or computations) with numbers much faster than
humans. However, things can also go badly wrong if numbers are represented in different formats or
limits of precision are reached. Even seemingly simple calculations (for humans used to the decimal
number system) can sometimes not be carried out by computers accurately (and this is independent of
how expensive the computer is).

Hence it is of crucial importance to understand how computers represent numbers and which errors
can appear in computations performed by them.

Further online information:

• http://ta.twi.tudelft.nl/users/vuik/wi211/disasters.html
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Number Systems in Mathematics

• Numbers can be classified into sets, called number systems, such as the natural
numbers, the integer numbers, or the real numbers.

Symbol Name Description

N Natural 0, 1, 2, 3, 4, . . .
Z Integer . . . , -4, -3, -2, -1, 0, 1, 2, 3, 4, . . .
Q Rational a

b
were a ∈ Z and b ∈ Z and b ̸= 0

R Real Limits of a convergent sequences of rational numbers
C Complex a + bi where a ∈ R and b ∈ R and i =

√
−1

• Numbers should be distinguished from numerals, the symbols used to represent
numbers. A single number can have many different representations.
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Note the difference between a number and its representations. The number forty-two can be repre-
sented as:

(a) 42 (decimal number)

(b) 2a (hexadecimal number)

(c) 101010 (binary number)

(d) XLII (roman number)

(e) - . . . - . . - - - (morse code)

(f) (qr code)
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Section 10: Natural Numbers

10 Natural Numbers
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12 Rational and Real Numbers
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14 International System of Units

15 Characters and Strings

16 Date and Time
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Numeral Systems for Natural Numbers

• Natural numbers can be represented using different bases. We commonly use
decimal (base 10) number representations in everyday life.

• In computer science, we also frequently use binary (base 2), octal (base 8), and
hexadecimal (base 16) number representations.

• In general, natural numbers represented in the base b system are of the form:

(anan−1 · · · a1a0)b =
n∑

k=0

akb
k

hex 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12

dec 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

oct 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 21 22

bin 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 10001 10010
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Algorithm 1 Conversion of a decimal natural number n into a bit string representing a binary number
1: function DEC2BIN(n)
2: s← ”” ▷ s holds a bit string
3: repeat
4: b← n mod 2 ▷ the remainder gives us the next bit
5: prepend bit b to the bit string s
6: n← n div 2 ▷ the number still left to convert
7: until n = 0
8: return s
9: end function

Algorithm 2 Conversion of a bit string s representing a binary number into a decimal number
1: function BIN2DEC(s)
2: n← 0 ▷ n holds a natural number
3: while bit string s is not empty do
4: b← leftmost bit of the bit string s ▷ removes the bit from the bit string
5: n← 2 · n+ b
6: od
7: return n
8: end function

To convert binary numbers to octal or hexadecimal numbers or vice versa, group triples or quadrupels
of binary digits into recognizable chunks (add leading zeros as needed):

1100011010111002 = 01102︸ ︷︷ ︸
616

00112︸ ︷︷ ︸
316

01012︸ ︷︷ ︸
516

11002︸ ︷︷ ︸
c16

= 635c16

1100011010111002 = 1102︸︷︷︸
68

0012︸︷︷︸
18

1012︸︷︷︸
58

0112︸︷︷︸
38

1002︸︷︷︸
48

= 615348

This trick also works in the other direction: Convert every octal or hexadecimal digit individually into a
binary chunk:

deadbeaf16 = d16︸︷︷︸
11012

e16︸︷︷︸
11102

a16︸︷︷︸
10102

d16︸︷︷︸
11012

b16︸︷︷︸
10112

e16︸︷︷︸
11102

a16︸︷︷︸
10102

f16︸︷︷︸
11112

= 110111101010110110111110111011112
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Natural Numbers Literals

• Prefix conventions are used to indicate the base of number literals:

prefix example meaning description

42 4210 decimal number
0x 0x42 4216 = 6610 hexadecimal number
0o 0o42 428 = 3410 octal number
0b 0b1000010 10000102 = 4210 binary number

0 042 428 = 3410 octal number (old)

• The old octal number prefix 0 is gradually replaced by the more sensible prefix 0o
but this transition will take time.

• Until then, beware that 42 and 042 may not represent the same number!
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Conversion of the decimal number 123 into binary using the algorithm dec2bin:

123 mod 2 = 1 12

61 mod 2 = 1 112

30 mod 2 = 0 0112

15 mod 2 = 1 10112

7 mod 2 = 1 110112

3 mod 2 = 1 1110112

1 mod 2 = 1 11110112

Conversion of the binary number 11110112 into a decimal number using the algorithm bin2dec:

11110112 0 · 2 + 1 = 1

1110112 1 · 2 + 1 = 3

110112 3 · 2 + 1 = 7

10112 7 · 2 + 1 = 15

0112 15 · 2 + 0 = 30

112 30 · 2 + 1 = 61

12 61 · 2 + 1 = 123
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Natural Numbers with Fixed Precision

• Computer systems often work internally with finite subsets of natural numbers.

• The number of bits used for the binary representation defines the size of the subset.

bits name range (decimal) range (hexadecimal)

4 nibble 0-15 0x0-0xf
8 byte, octet, uint8 0-255 0x0-0xff
16 uint16 0-65 535 0x0-0xffff
32 uint32 0-4 294 967 295 0x0-0xffffffff
64 uint64 0-18 446 744 073 709 551 615 0x0-0xffffffffffffffff

• Using (almost) arbitrary precision numbers is possible but usually slower.
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Fixed point natural numbers typically silently wrap around, as demonstrated by the following program:

1 -- Surprises with fixed precision unsigned integers (not only in Haskell)

2

3 import Data.Word

4 import Text.Printf

5

6 w8max = maxBound :: Word8

7 w8min = minBound :: Word8

8

9 main = do

10 printf "%3u + 1 = %3u\n" w8max (w8max + 1)

11 printf "%3u - 1 = %3u\n" w8min (w8min - 1)

12 printf " 42 + %3u + 1 = %3u\n" w8max (42 + w8max + 1)

13 printf " 42 - %3u - 1 = %3u\n" w8max (42 - w8max - 1)

This program produces the following output:

255 + 1 = 0

0 - 1 = 255

42 + 255 + 1 = 42

42 - 255 - 1 = 42

Careless choice of fixed precision number ranges can lead to serious disasters. Things are even more
subtle in programming languages that allow automatic type conversions.

100



Section 11: Integer Numbers

10 Natural Numbers

11 Integer Numbers

12 Rational and Real Numbers

13 Floating Point Numbers

14 International System of Units

15 Characters and Strings

16 Date and Time
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Integer Numbers

• Integer numbers can be negative but surprisingly there are not “more” integer
numbers than natural numbers (even though integer numbers range from −∞ to
+∞ while natural numbers only range from 0 to +∞).

• This can be seen by writing integer numbers in the order 0, 1, -1, 2, -2, . . . , i.e., by
defining a bijective function f : Z→ N (and the inverse function f −1 : N→ Z):

f (x) =

{
2x if x ≥ 0

−2x − 1 if x < 0
f −1(x) =

{
x
2

if x is even

− x+1
2

if x is odd

• We could (in principle) represent integer numbers by implementing this bijection to
natural numbers. But there are more efficient ways to implement integer numbers
if we assume that we use a fixed precision anyway.
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Note how the mathematical definitions of f and f−1 directly translate into Haskell code:

1 f :: Integer -> Integer

2 f x

3 | x >= 0 = 2 * x

4 | x < 0 = -2 * x -1

5

6 g :: Integer -> Integer

7 g x

8 | even x = x `div` 2

9 | odd x = -1 * (x+1) `div` 2

10

11 main = print $ map (g . f) [-10..10]

Note that Haskell does not really have a type for natural numbers. One reason is that subtraction on
natural numbers may lead to results that do not exist in the set of natural numbers.
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One’s Complement Fixed Integer Numbers (b-1 complement)

• We have a fixed number space with n digits and base b to represent integer
numbers, that is, we can distinguish at most bn different integers.

• Lets represent positive numbers in the usual way.

• To represent negative numbers, we invert the absolute value (anan−1 · · · a1a0)b by
calculating (a′na

′
n−1 · · · a′1a′0)b with a′i = (b − 1)− ai .

• Example: b = 2, n = 4 : 510 = 01012,−510 = 10102

bin: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

dec: 0 1 2 3 4 5 6 7 -7 -6 -5 -4 -3 -2 -1 -0

• Note that this gives us +0 and -0, i.e., we only represent bn − 1 different integers.

• Negative binary numbers always have the most significant bit set to 1.
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Having both +0 and -0 can be avoided by shifting all negative numbers one position to the right. This
removes the -0 and creates space to represent an additional negative number. This idea leads us to the
b complement discussed next.
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Two’s Complement Fixed Integer Numbers (b complement)

• Like before, we assume a fixed number space with n digits and a base b to
represent integer numbers, that is, we can distinguish at most bn different integers.

• Lets again represent positive numbers in the usual way.

• To represent negative numbers, we invert the absolute value (anan−1 · · · a1a0)b by
calculating (a′na

′
n−1 · · · a′1a′0)b with a′i = (b − 1)− ai and adding 1 to it.

• Example: b = 2, n = 4 : 510 = 01012,−510 = 10112

bin: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

dec: 0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

• This representation simplifies the implementation of arithmetic operations.

• Negative binary numbers always have the most significant bit set to 1.
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Benefits of the two’s complement for binary numbers:

• Positive numbers and 0 have the most significant bit set to 0.

• Negative numbers have the most significant bit set to 1.

• There is only a single representation for 0.

• For positive numbers, the two’s complement representation corresponds to the normal binary
representation.

Example: Calculate 210 − 610 = 210 + (−610) using binary numbers using two’s complement represen-
tation for negative numbers with 4 digits.

Conversion into binary numbers yields 210 = 00102 and −610 = 10012 +0001s = 10102. With
this, we can simply add the two numbers: 00102 + 10102 = 11002. The result 11002 is a
negative number. Inverting the bits and adding one gives us 01002 = 410. Hence, the result
is −4.
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Two’s Complement Fixed Integer Number Ranges

• Most computers these days use the two’s complement internally.

• The number of bits available defines the ranges we can use.

bits name range (decimal)

8 int8 −128 to 127
16 int16 −32 768 to 32 767
32 int32 −2 147 483 648 to 2 147 483 647
64 int64 −9 223 372 036 854 775 808 to 9 223 372 036 854 775 807

• Be careful if your arithmetic expressions overflows/underflows the range!
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Note that computer hardware usually does not warn you about integer overflows or underflows. Instead,
numbers simply wrap around.

1 -- Surprises with fixed precision integers (not only in Haskell)

2

3 import Data.Int

4 import Text.Printf

5

6 i8max = maxBound :: Int8

7 i8min = minBound :: Int8

8

9 main = do

10 printf "%3d + 1 = %3d\n" i8max (i8max + 1)

11 printf "%3d - 1 = %3d\n" i8min (i8min - 1)

This program produces the following output:

127 + 1 = -128

-128 - 1 = 127
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Rational Numbers

• Computer systems usually do not natively represent rational numbers, i.e., they
cannot compute with rational numbers at the hardware level.

• Software can, of course, implement rational number data types by representing the
numerator and the denominator as integer numbers internally and keeping them in
the reduced form.

• Example using Haskell (execution prints 5 % 6):

import Data.Ratio

main = print $ 1%2 + 1%3
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The following code examples are illustrative.

The equivalent Python code would look like this:

1 from fractions import Fraction

2 a = Fraction("1/2")

3 b = Fraction("1/3")

4 print(a + b)

C++ has support for rational numbers in the standard library:

1 #include <iostream>

2 #include <ratio>

3

4 int main()

5 {

6 typedef std::ratio<1, 2> a;

7 typedef std::ratio<1, 3> b;

8 typedef std::ratio_add<a, b> sum;

9 std::cout << sum::num << '/' << sum::den << '\n';

10 return 0;

11 }

C programmers can use the GNU multiple precision arithmetic library:

1 #include <gmp.h>

2

3 int main()

4 {

5 mpq_t a, b, c;

6 mpq_inits(a, b, c, NULL);

7 mpq_set_str(a, "1/2", 10);

8 mpq_set_str(b, "1/3", 10);

9 mpq_add(c, a, b);

10 gmp_printf("%Qd\n", c);

11 mpq_clears(a, b, c, NULL);

12 return 0;

13 }
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Real Numbers

• Computer systems usually do not natively represent real numbers, i.e., they cannot
compute with real numbers at the hardware level.

• The primary reason is that real numbers like the result of 1
7
or numbers like π have

by definition not a finite representation.

• So the best we can do is to have a finite approximation. . .

• Since all we have are approximations of real numbers, we always make rounding
errors when we use these approximations. If we are not extremely cautious, these
rounding errors can accumulate badly.

• Numeric algorithms can be analyzed according to how good or bad they propagate
rounding errors, leading to the notion of numeric stability.

Jürgen Schönwälder (Constructor University) Introduction to Computer Science: Data Representation CC-BY-NC-ND July 14, 2024 120 / 1

Numeric stability is an important criterion for numeric algorithms. Numeric algorithms must be designed
with numeric stability in mind. While it may seem easy to translate certain mathematical formulae into
code, naive translations can produce pretty surprising results. If in doubt, use an algorithm for which it
has been shown that it has numeric stability and implement the algorithm as defined; resist the idea to
create a variation, unless you do an analysis of the numeric stability of your variation.
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Floating Point Numbers

• Floating point numbers are useful in situations where a large range of numbers
must be represented with fixed size storage for the numbers.

• The general notation of a (normalized) base b floating point number with precision
p is

s · d0.d1d2 . . . dp−1 · be = s ·
(

p−1∑

k=0

dkb
−k

)
· be

where b is the base, e is the exponent, d0, d1, . . . , dp−1 are digits of the mantissa
with di ∈ {0, . . . , b − 1} for i ∈ {0, . . . , p − 1}, s ∈ {1,−1} is the sign, and p is
the precision.
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As humans, we are used to base b = 10 numbers and the so called scientific notation of large (or
small) numbers. For example, we write the speed of light as 2.997 924 58×108 ms−1 and the elementary
positive charge as 1.602 176 634× 10−19 C.

Computers prefer to use the base b = 2 for efficiency reasons. Even if you input and output the number
in a decimal scientific notation (b = 10), internally the number is most likely stored with base b = 2.
This means that there is a conversion whenever you input or output floating point numbers in decimal
notation.

Algorithm 3 Conversion of a decimal fraction f into a bit string representing a binary fraction
1: function DECF2BINF(f )
2: s← ”” ▷ s holds a bit string
3: repeat
4: f ← f · 2
5: b← int(f) ▷ int() yields the integer part
6: append b to the bit string s
7: f ← frac(f) ▷ frac() yields the fractional part
8: until f = 0 ▷ may not always be reached
9: return s

10: end function

Algorithm 4 Conversion of a bit string s representing a binary fraction into a decimal fraction
1: function BINF2DECF(s)
2: f ← 0.0 ▷ n holds a decimal fraction
3: while bit string s is not empty do
4: b← rightmost bit of the bit string s ▷ removes the bit from the bit string
5: f ← (f + b)/2
6: od
7: return f
8: end function
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Floating Point Number Normalization

• Floating point numbers are usually normalized such that d0 is in the range
{1, . . . , b − 1}, except when the number is zero.

• Normalization must be checked and restored after each arithmetic operation since
the operation may denormalize the number.

• When using the base b = 2, normalization implies that the first digit d0 is always 1
(unless the number is 0). Hence, it is not necessary to store d0 and instead the
mantissa can be extended by one additional bit.

• Floating point numbers are at best an approximation of a real number due to their
limited precision.

• Calculations involving floating point numbers usually do not lead to precise results
since rounding must be used to match the result into the floating point format.
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It is important for you to remember that floating point arithmetic is generally not exact. This applies to
almost all digital calculators, regardless whether it is a school calculator, an app in your mobile phone,
a calculator program in your computer. Many of these programs try to hide the fact that the results
produced are imprecise by internally using more bits than what is shown to the user. While this helps a
bit, it does not cure the problem, as will be demonstrated on subsequent pages.

While there are programs to do better than average when it comes to floating point numbers, many
programs that are used widely may suffer from floating point imprecision. The most important thing is
that you are aware of the simple fact that floating point numbers produced by a computer may simply
be incorrect.

Further online information:

• Wikipedia: Numeric Precision in Microsoft Excel
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IEEE 754 Floating Point Formats

precision single (float) double quad

sign 1 bit 1 bit 1 bit
exponent 8 bit 11 bit 15 bit
exponent range [-126,. . . ,127] [-1022,. . . ,1023] [-16382,. . . ,16383]
exponent bias 127 1023 16383
mantissa 23 bit 52 bit 112 bit
total size 32 bit 64 bit 128 bit

decimal digits ≈ 7.2 ≈ 15.9 ≈ 34.0

• IEEE 754 is a widely implemented standard for floating point numbers.

• IEEE 754 floating point numbers use the base b = 2 and as a consequence decimal
numbers such as 1 · 10−1 cannot be represented precisely.
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The exponent range allows for positive and negative values. In order to avoid having to encode negative
exponents, the exponent is biased by adding the exponent bias. For example, the exponent −17 of a
single precision floating point number will be represented by the biased exponent value−17+127 = 110.
(The exponent bias shifts the exponent range from [−126, . . . , 127] to [1, . . . , 254] for single precision
floating point numbers.)

Single precision format:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|S| exponent | mantissa (23 bits) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Double precision format:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|S| exponent (11 bits) | :

+-+-+-+-+-+-+-+-+-+-+-+-+ mantissa (52 bits) :

: |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Quadruple precision format:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|S| exponent (15 bits) | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

: mantissa (112 bits) |

: |

: |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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IEEE 754 Exceptions and Special Values

• The standard defines five exceptions, some of them lead to special values:

1. Invalid operation: returns not a number (nan)
2. Division by zero: returns ±infinity (inf)
3. Overflow: returns ±infinity (inf)
4. Underflow: depends on the operating mode
5. Inexact: returns rounded result by default

• Computations may continue if they did produce a special value like nan or inf.

• Hence, it is important to check whether a calculation resulted in a value at all.
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We have seen that integer numbers usually just silently overflow (or underflow) by “wrapping” around.
IEEE 754 floating point numbers behave differently when it comes to overflows, this is in a way perhaps
an improvement.

The special values use special encoding rules:

• Infinity is indicated by setting all bits of the exponent field to one and all bits of the mantissa to
zero. The sign bit indicate positive or negative infinity.

• NaN is encoded by setting all bits of the exponent and the mantissa fields to one and by clearning
the sign bit.
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Floating Point Surprises

• Any floating point computation should be treated with the utmost suspicion unless
you can argue how accurate it is. [Alan Mycroft, Cambridge]

• Floating point arithmetic almost always involves rounding errors and these errors
can badly aggregate.

• It is possible to “loose” the reasonably precise digits and to continue calculation
with the remaining rather imprecise digits.

• Comparisons to floating point constants may not be “exact” and as a consequence
loops may not end where they are expected to end.
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1 -- Surprises with double floating point numbers (not only in Haskell)

2

3 import Text.Printf

4

5 main = do

6 printf "2.0 / 0.0 = %g\n" (2.0 / 0.0 :: Double)

7 printf "2.0 / 0.0 + 1.0 = %g\n" (2.0 / 0.0 + 1.0 :: Double)

8 printf "2.0 / 0.0 - 2.0 / 0.0 = %g\n" (2.0 / 0.0 - 2.0 / 0.0 :: Double)

9 printf "(1.0 + 1e20) - 1e20 = %g\n" ((1.0 + 1e20) - 1e20 :: Double)

10 printf "1.0 + (1e20 - 1e20) = %g\n" (1.0 + (1e20 - 1e20) :: Double)

11 printf "0.1 + 0.2 = %g\n" (0.1 + 0.2 :: Double)

12 printf "counting from 0.0 up in steps of 0.1 = %s\n"

13 $ show $ take 11 $ iterate (+0.1) 0.0

Further online information:

• https://www.cl.cam.ac.uk/teaching/1011/FPComp/fpcomp10slides.pdf

114

https://www.cl.cam.ac.uk/teaching/1011/FPComp/fpcomp10slides.pdf


Section 14: International System of Units

10 Natural Numbers

11 Integer Numbers

12 Rational and Real Numbers

13 Floating Point Numbers

14 International System of Units

15 Characters and Strings

16 Date and Time
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Importance of Units and Unit Prefixes

• Most numbers we encounter in practice have associated units. It is important to be
very explicit about the units used.
• NASA lost a Mars climate orbiter (worth $125 million) in 1999 due to a unit

conversion error.
• An Air Canada plane ran out of fuel in the middle of a flight in 1983 due to a fuel

calculation error while switching to the metric system.

• There is an International System of Units (SI Units) to help you. . .

� Always be explicit about units.

� And always be clear about the unit prefixes.
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Further online information:

• Wikipedia: Mars Climate Orbiter

• Wikipedia: Gimli Glider
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SI Base Units

Unit Symbol Description

metre m The distance travelled by light in a vacuum in a certain fraction
of a second.

kilogram kg The mass of the international prototype kilogram.
second s The duration of a number of periods of the radiation of the

caesium-133 atom.
ampere A The constant electric current which would produce a certain

force between two conductors.
kelvin K A fraction of the thermodynamic temperature of the triple

point of water.
mole mol The amount of substance of a system which contains atoms

corresponding to a certain mass of carbon-12.
candela cd The luminous intensity of a source that emits monochromatic

radiation.

Jürgen Schönwälder (Constructor University) Introduction to Computer Science: Data Representation CC-BY-NC-ND July 14, 2024 129 / 1

Further online information:

• BIPM: “SI Brochure: The International System of Units”, 8th edition, updated 2014

• Wikipedia: SI Base Unit
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SI Derived Units

• Many important units can be derived from the base units. Some have special
names, others are simply defined by a formula over their base units. Some
examples:

Name Symbol Definition Description

herz Hz s−1 frequency
newton N kgm s−1 force
watt W kgm2 s−3 power
volt V kgm2 s−3 A−1 voltage
ohm Ω kgm2 s−3 A−2 resistance

velocity m s−1 speed
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Further online information:

• BIPM: “SI Brochure: The International System of Units”, 8th edition, updated 2014

• Wikipedia: SI Derived Unit
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Metric Prefixes (International System of Units)

Name Symbol Base 10 Base 1000 Value

kilo k 103 10001 1000
mega M 106 10002 1 000 000
giga G 109 10003 1 000 000 000
tera T 1012 10004 1 000 000 000 000
peta P 1015 10005 1 000 000 000 000 000
exa E 1018 10006 1 000 000 000 000 000 000
zetta ζ 1021 10007 1 000 000 000 000 000 000 000
yotta Y 1024 10008 1 000 000 000 000 000 000 000 000
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Metric Prefixes (International System of Units)

Name Symbol Base 10 Base 1000 Value

milli m 10−3 1000−1 0.001
micro µ 10−6 1000−2 0.000 001
nano n 10−9 1000−3 0.000 000 001
pico p 10−12 1000−4 0.000 000 000 001
femto f 10−15 1000−5 0.000 000 000 000 001
atto a 10−18 1000−6 0.000 000 000 000 000 001
zepto z 10−21 1000−7 0.000 000 000 000 000 000 001
yocto y 10−24 1000−8 0.000 000 000 000 000 000 000 001
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Binary Prefixes

Name Symbol Base 2 Base 1024 Value

kibi Ki 210 10241 1024
mebi Mi 220 10242 1 048 576
gibi Gi 230 10243 1 073 741 824
tebi Ti 240 10244 1 099 511 627 776
pebi Pi 250 10245 1 125 899 906 842 624
exbi Ei 260 10246 1 152 921 504 606 846 976
zebi Zi 270 10247 1 180 591 620 717 411 303 424
yobi Yi 280 10248 1 208 925 819 614 629 174 706 176
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There is often confusion about metric and binary prefixes since metric prefixes are sometimes incor-
rectly used to refer to binary prefixes. Storage devices are a good example where this has led to serious
confusion.

Computers generally access storage using addresses with an address range that is a power of two.
Hence, with 30 bits, we can address 230 B = 1073 741 824B, or 1GiB. The industry, however, preferred
to use the metric prefix system (well, to be fair, there was no binary prefix system initially), hence they
used 1GB, which is 109 B = 1000 000 000B. The difference is 73 741 824B (almost 7% of 1GiB).

The binary prefixes, proposed in 2000, help to avoid any confusion. However, the adoption is rather
slow and hence we will likely have to live with the confusion for many years to come. But of course, you
can make a difference by always using the correct prefixes.
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Characters and Character Encoding

• A character is a unit of information that roughly corresponds to a grapheme,
grapheme-like unit, or symbol, such as in an alphabet or syllabary in the written
form of a natural language.

• Examples of characters include letters, numerical digits, common punctuation
marks, and whitespace.

• Characters also includes control characters, which do not correspond to symbols in
a particular natural language, but instead encode bits of information used to
control information flow or presentation.

• A character encoding is used to represent a set of characters by some kind of
encoding system. A single character can be encoded in different ways.
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Please note again the distinction between a character and the representation or encoding of a character.
There can be many different representations or encodings for the same character.

Characters are often read by humans and not just machines. This adds another problem since some
characters (or character sequences) may look similar for a human reader while they are different from a
program’s perspective. This can lead to confusion on both sides, the human and the machine process-
ing human input.

Further online information:

• YouTube: Plain Text - Dylan Beattie - NDC Copenhagen 2022
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ASCII Characters and Encoding

• The American Standard Code for Information Interchange (ASCII) is a still widely
used character encoding standard.

• Traditionally, ASCII encodes 128 specified characters into seven-bit natural
numbers. Extended ASCII encodes the 128 specified characters into eight-bit
natural numbers. This makes code points available for additional characters.

• ISO 8859 is a family of extended ASCII codes that support different language
requirements, for example:
• ISO 8859-1 adds characters for the most common Western European languages
• ISO 8859-2 adds characters for the most common Eastern European languages
• ISO 8859-5 adds characters for Cyrillic languages

• Unfortunately, ISO 8859 code points overlap, making it difficult to represent texts
requiring several different character sets.
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Using the ISO 8859 character code sets has been difficult since the information how the extended
ASCII code points have to be interpreted was depending on the context. Hence, a text copied from one
computer to another could become almost unreadable.
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ASCII Characters and Code Points (decimal)

0 nul 1 soh 2 stx 3 etx 4 eot 5 enq 6 ack 7 bel

8 bs 9 ht 10 nl 11 vt 12 np 13 cr 14 so 15 si

16 dle 17 dc1 18 dc2 19 dc3 20 dc4 21 nak 22 syn 23 etb

24 can 25 em 26 sub 27 esc 28 fs 29 gs 30 rs 31 us

32 sp 33 ! 34 " 35 # 36 $ 37 % 38 & 39 ’

40 ( 41 ) 42 * 43 + 44 , 45 - 46 . 47 /

48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7

56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?

64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G

72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O

80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W

88 X 89 Y 90 Z 91 [ 92 \ 93 ] 94 ^ 95 _

96 ‘ 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o

112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w

120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 del
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ASCII control characters:

dec hex name description

0 00 NUL null character
1 01 SOH start of heading
2 02 STX start of text
3 03 ETX end of text
4 04 EOT end of transmission
5 05 ENQ enquiry
6 06 ACK acknowledge
7 07 BEL bell
8 08 BS backspace
9 09 HT horizontal tab

10 0A LF new line
11 0B VT vertical tab
12 0C FF form feed
13 0D CR carriage ret
14 0E SO shift out
15 0F SI shift in
16 10 DLE data link escape
17 11 DC1 device control 1
18 12 DC2 device control 2
19 13 DC3 device control 3
20 14 DC4 device control 4
21 15 NAK negative acknowledgment
22 16 SYN synchronous idle
23 17 ETB end of transmission blk
24 18 CAN cancel
25 19 EM end of medium
26 1A SUB substitute
27 1B ESC escape
28 1C FS file separator
29 1D GS group separator
30 1E RS record separator
31 1F US unit separator
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Universal Coded Character Set and Unicode

• The Universal Coded Character Set (UCS) is a standard set of characters defined
and maintained by the International Organization of Standardization (ISO).

• The Unicode Consortium produces industry standards based on the UCS for the
encoding. Unicode 15.0 (published Sep. 2022) defines 149 186 characters, each
identified by an unambiguous name and an integer number called its code point.

• The overall code point space is divided into 17 planes where each plane has
216 = 65536 code points. The Basic Multilingual Plane (plane 0) contains
characters of almost all modern languages, and a large number of symbols.

• Unicode can be implemented using different character encodings. The UTF-32
encoding encodes character code points directly into 32-bit numbers (fixed length
encoding). While simple, an ASCII text of size n becomes a UTF-32 text of size 4n.
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Some programming languages natively support unicode while others require the use of unicode li-
braries. In general, unicode is not trivial to program with.

• Unicode characters are categorized and they have properties that go beyond a simple classifica-
tion into numbers, letters, etc.

• Unicode characters and strings require normalization since some symbols may be represented in
several different ways. Hence, in order to compare unicode characters, it is important to choose a
suitable normalization form.

• Unicode characters can be encoded in several different formats and this requires character and
string conversion functionality.

• Case mappings are not trivial since certain characters do not have a matching lowercase and
uppercase representation. Some case conversions are also language specific and not character
specific.

The GNU libunistring library is an example of a Unicode string library for C programmers.

In Haskell, characters are Unicode characters. The Unicode code point for a given character can be
obtained from the ord :: Char -> Int function and the Unicode character of a given code point can be
obtained from the chr :: Int -> Char function defined in Data.Char. The Data.Char module defines
many useful functions to classify characters or to change the case of characters.
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Unicode Transformation Format UTF-8

bytes cp bits first cp last cp byte 1 byte 2 bytes 3 byte 4

1 7 U+0000 U+007F 0xxxxxxx
2 11 U+0080 U+07FF 110xxxxx 10xxxxxx
3 16 U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx
4 21 U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

• A variable-length encoding of Unicode code points (cp) that turns seven-bit ASCII
code points into valid UTF-8 code points.

• The € symbol with the code point U+20AC (0010 0000 1010 1100 in binary
notation) encodes as 0xE282AC (11100010 10000010 10101100 in binary notation).

• Note that this makes the € more expensive than the $. ,
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The UTF-8 format is widely used when texts are exchanged between programs or over the Internet. It
is defined in RFC 3629 [3], which was published in January 1998.
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Strings

• Let Σ be a non-empty finite set of symbols (or characters), called the alphabet.

• A string (or word) over Σ is any finite sequence of symbols from Σ, including (of
course) the empty sequence.

• Typical operations on strings are length(), concatenation(), reverse(), . . .

• There are different ways to store strings internally. Two common approaches are:
• The sequence is null-terminated, i.e., the characters of the string are followed by a

special NUL character.
• The sequence is length-prefixed, i.e., a natural number indicating the length of the

string is stored in front of the characters.

• In some programming languages, you need to know how strings are stored, in other
languages you happily leave the details to the language implementation.
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In C and C++, a simple (usually ASCII) string is a null-terminated sequence of characters. C program-
mers have to make sure that always sufficient memory is allocated to store the terminating byte.

In Haskell, a string is a list of characters. This is neither a time nor a space efficient representation.
Hence, when processing larger pieces of text in Haskell, it is advisable to use Data.Text.
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System Time and Clocks

• Computer systems usually maintain a notion of system time. The term system time
indicates that two different systems usually have a different notion of system time.

• System time is measured by a system clock, which is typically implemented as a
simple count of the number of ticks (periodic timer interrupts) that have transpired
since some arbitrary starting date, called the epoch.

• Since internal counting mechanisms are not very precise, systems often exchange
time information with other systems that have “better” clocks or sources of time in
order to converge their notions of time.

• Time is sometimes used to order events, due to its monotonic nature.

• In distributed systems, this has its limitations and therefore the notion of logical
clocks has been invented. (Logical clocks do not measure time, they only help to
order events.)
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Most computer systems have relatively poor clocks and hence the notion of a computer’s time drifts
quickly. Time synchronization protocols are commonly used to synchronize a computer’s notion of time
with a more robust time source over a network. A widely deployed time synchronization protocol is the
Network Time Protocol (NTP). An alternative solution is the Precision Time Protocol (PTP). A common
problem of these protocols is that the exchange of synchronization messages itself introduces errors
that must be compensated for.

Another commonly available source of time is the Global Positioning System (GPS).

Unix systems represent time as the number of seconds that have passed since the 1st of January
1970 00:00:00 UTC, a meanwhile pretty large number of type time t. Traditionally, a 32-bit signed
number has been used to represent a time t. The maximum positive 32-bit signed integer number
will be reached on Tuesday, 19 January 2038 at 03:14:07 UTC and then the number will warp, leading
to dates starting sometime on 13 December 1901. This is known as the “year 2038 problem”. Many
operating systems running on 64-bit hardware moved to 64-bit signed integers for time t, which solves
the problem. However, embedded systems often still use 32-bit signed integers as time t and they will
be vulnerable when we hit the year 2038 (less than 20 years left).

Further online information:

• Wikipedia: Network Time Protocol

• Wikipedia: Precision Time Protocol

• Wikipedia: Year 2038 Problem
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Calendar Time

• System time can be converted into calendar time, a reference to a particular time
represented within a calendar system.

• A popular calendar is the Gregorian calendar, which maps a time reference into a
year, a month within the year, and a day within a month.

• The Gregorian calendar was introduced by Pope Gregory XIII in October 1582.

• The Coordinated Universal Time (UTC) is the primary time standard by which the
world regulates clocks and time.

• Due to the rotation of the earth, days start and end at different moments. This is
reflected by the notion of a time zone, which is essentially an offset to UTC.

• The number of time zones is not static and time zones change occasionally.
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Computer systems often indicate time zones using time zone names. Associated to a time zone name
are usually complicated rules that indicate for example transitions to daylight saving times or simply
changes to the time zones. IANA is maintaining a time zone database that is commonly used by
software systems to interpret time zone names in order to derive the correct time zone offset from UTC.

Further online information:

• Wikipedia: Time Zone

• https://www.iana.org/time-zones

• YouTube: The Problem with Time & Timezones - Computerphile
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ISO 8601 Date and Time Formats

• Different parts of the world use different formats to write down a calendar time,
which can easily cause confusion.

• The ISO 8601 standard defines an unambiguous notation for calendar time.

• ISO 8601 in addition defines formats for durations and time intervals.

name format example

date yyyy-mm-dd 2017-06-13
time hh:mm:ss 15:22:36
date and time yyyy-mm-ddThh:mm:ss[±hh:mm] 2017-06-13T15:22:36+02:00
date and time yyyy-mm-ddThh:mm:ss[±hh:mm] 2017-06-13T13:22:36+00:00
date and time yyyy-mm-ddThh:mm:ssZ 2017-06-13T13:22:36Z
date and week yyyy-Www 2017-W24
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The special letter Z indicates that the date and time is in UTC time. The ISO 8601 standard deals with
timezone offsets by specifying the positive or negative offset from UTC time in hours and minutes. This
in principle allows us to define +00:00 and -00:00 but the ISO 8601 disallows a negative zero offset.
RFC 3339 [8], a profile of ISO 8601, however, defines that -00:00 indicates that the time is in UTC and
that the local timezone offset is unknown.

Further online information:

• Wikipedia: ISO 8601

• xkcd: ISO 8601
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Part IV

Boolean Algebra

Boolean algebra and Boolean logic is the mathematical framework for describing anything that is binary,
that is, anything which can have only two values.

• Boolean algebra is the foundation for understanding digitial circuits, the foundation of today’s com-
puters. The central processing unit (CPU) of a computer is essentially a very large collection of
digital circuits consisting of logic gates. The mathematical foundation of a CPU is Boolean algebra,
it helps us to understand how digital circuits can be composed and where necessary verified.

• Boolean logic is also the foundation of systems that behave as if they were intelligent, i.e., systems
that exhibit artificial intelligence. Logic (not just Boolean logic) is a sub-field of artificial intelligence
that enabled programs to reason about their environment, to solve planning problems, or to provide
powerful search facilities on large amounts of formalized knowledge.

This part introduces the basics of Boolean algebra and Boolean logic. More advanced logics and their
usage will be covered in more advanced courses.

By the end of this part, students should be able to

• understand the concept of Boolean variables and their interpretation;

• familar with the basic boolean functions such as ∧, ∨, ¬,→,↔, ∨ , ∧ , ∨ ;

• illustrate how Boolean functions relate to Boolean expressions;

• differentiate between the syntax and the semantics of Boolean expressions;

• apply Boolean equivalence laws;

• describe the notion of tautologies and contradictions;

• convert Boolean expressions into conjunctive and disjunctive normal forms;

• obtain Boolean expressions in normal form from truth tables;

• apply the Quine McCluskey algorithm to minimize Boolean expressions;

• describe the representation of basic statements of Boolean logic;

• explain the satisfiability problem and why it is hard to solve in the general case.
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Logic can be confusing. . .

• If all men are mortal and Socrates is a man, then Socrates is mortal.

• I like Pat or I like Joe.
If I like Pat, I like Joe.
Do I like Joe?

• If cats are dogs, then the sun shines.

• “Logic is the beginning of wisdom, not the end of it.”
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Let P denotate the I like Pat and let J denote that I like Joe. In Boolean algebra, the following derivation
holds:

(P ∨ J) ∧ (P → J) = (P ∨ J) ∧ (¬P ∨ J)
= (P ∧ ¬P ) ∨ J
= 0 ∨ J
= J

In this section, we will introduce the laws that enable us to formulate such a derivation.
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Boolean Variables

• Boolean logic describes objects that can take only one of two values.

• The values may be different voltage levels {0,V+} or special symbols {F ,T} or
simply the digits {0, 1}.
• In the following, we use the notation B = {0, 1}.
• In artificial intelligence, such objects are often called propositions and they are
either true or false.

• In mathematics, the objects are called Boolean variables and we use the symbols
X1,X2,X3, . . . for them.

• The main purpose of Boolean logic is to describe (or design) interdependencies
between Boolean variables.
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Interpretation of Boolean Variables

Definition (Boolean variables)

A Boolean variable Xi with i ≥ 1 is an object that can take on one of the two values 0
or 1. The set of all Boolean variables is X = {X1,X2,X3, . . . }.

Definition (Interpretation)

Let D be a subset of X. An interpretation I of D is a function I : D→ B.

• The set X is very large. It is often sufficient to work with a suitable subset D of X.

• An interpretation assigns to every Boolean variable a value.

• An interpretation is also called a truth value assignment.
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Boolean ∧ Function (and)

X Y X ∧ Y

0 0 0
0 1 0
1 0 0
1 1 1

• The logical and (∧) can be viewed as a function that
maps two Boolean values to a Boolean value:

∧ : B× B→ B

• A truth table defines a Boolean operation (or function)
by listing the result for all possible arguments.

• In programming languages like C or C++ (and even Haskell), the operator && is
often used to represent the ∧ operation.
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Boolean ∨ Function (or)

X Y X ∨ Y

0 0 0
0 1 1
1 0 1
1 1 1

• The logical or (∨) can be viewed as a function that
maps two Boolean values to a Boolean value:

∨ : B× B→ B

• Each row in the truth table corresponds to one
interpretation.

• A truth table simply lists all possible interpretations.

• In programming languages like C or C++ (and even Haskell), the operator || is
often used to represent the ∨ operation.
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Boolean ¬ Function (not)

X ¬X
0 1
1 0

• The logical not (¬) can be viewed as a unary function
that maps a Boolean value to a Boolean value:

¬ : B→ B

• The ¬ function applied to X is also written as X .

• In programming languages like C or C++, the operator ! is often used to represent
the ¬ operation (in Haskell you can use the function not :: Bool -> Bool).
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Boolean → Function (implies)

X Y X → Y

0 0 1
0 1 1
1 0 0
1 1 1

• The logical implication (→) can be viewed as a function
that maps two Boolean values to a Boolean value:

→: B× B→ B

• The implication represents statements of the form “if X
then Y ” (where X is called the precondition and Y the
consequence).

• The logical implication is often confusing to ordinary mortals. A logical implication
is false only if the precondition is true, but the consequence it asserts is false.

• The claim “if cats eat dogs, then the sun shines” is logically true.
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Boolean ↔ Function (equivalence)

X Y X ↔ Y

0 0 1
0 1 0
1 0 0
1 1 1

• The logical equivalence ↔ can be viewed as a function
that maps two Boolean values to a Boolean value:

↔: B× B→ B

• In programming languages like C or C++ (and even Haskell), the operator == is
often used to represent the equivalence function as an operation.
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Boolean ∨ Function (exclusive or)

X Y X ∨Y
0 0 0
0 1 1
1 0 1
1 1 0

• The logical exclusive or ∨ can be viewed as a function
that maps two Boolean values to a Boolean value:

∨ : B× B→ B

• Another commonly used symbol for the exclusive or is ⊕.
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The exclusive or function has an interesting property. Lets consider the following example where we
apply the exclusive or function bitwise to two longer bit strings:

123416 ∨ cafe16 = 0001 0010 0011 01002 ∨ 1100 1010 1111 11102 = 1101 1000 1100 10102 = d8ca16

If we perform an exclusive or on the result with the same second operand, we get the following:

d8ca16 ∨ cafe16 = 1101 1000 1100 10102 ∨ 1100 1010 1111 11102 = 0001 0010 0011 01002 = 123416

Apparently, it seems that (X ∨Y )∨Y = X. To prove this property, we can simply write down a truth
table:

X Y X ∨Y (X ∨Y )∨Y
0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1
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Boolean ∧ Function (not-and)

X Y X ∧Y
0 0 1
0 1 1
1 0 1
1 1 0

• The logical not-and (nand) or ∧ can be viewed as a
function that maps two Boolean values to a Boolean
value:

∧ : B× B→ B
• The ∧ function is also written using the Sheffer stroke
↑.

• While we use the functions ∧, ∨, and ¬ to introduce more complex Boolean
functions, the Sheffer stroke is sufficient to derive all elementary Boolean functions
from it.

• This is important for digital circuits since all you need are not-and gates.
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The not-and is a universal function since it can be used to derive all elementary Boolean functions.

• X ∧ Y = (X ∧Y )∧ (X ∧Y )

X Y X ∧ Y X ∧Y (X ∧Y )∧ (X ∧Y )

0 0 0 1 0
0 1 0 1 0
1 0 0 1 0
1 1 1 0 1

• X ∨ Y = (X ∧X)∧ (Y ∧Y )

X Y X ∨ Y X ∧X Y ∧Y (X ∧X)∧ (Y ∧Y )

0 0 0 1 1 0
0 1 1 1 0 1
1 0 1 0 1 1
1 1 1 0 0 1

• ¬X = X ∧X
X ¬Y X ∧X
0 1 1
1 0 0
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Boolean ∨ Function (not-or)

X Y X ∨Y
0 0 1
0 1 0
1 0 0
1 1 0

• The logical not-or (nor) ∨ can be viewed as a function
that maps two Boolean values to a Boolean value:

∨ : B× B→ B

• The ∨ function is also written using the Quine arrow ↓.

• The ∨ (nor) is like ∧ (nand) sufficient to derive all elementary Boolean functions.
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The not-or is a universal function since it can be used to derive all elementary Boolean functions.

• X ∧ Y = (X ∨X)∨ (Y ∨Y )

• X ∨ Y = (X ∨Y )∨ (X ∨Y )

• ¬X = X ∨X
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There are different symbols used to denote basic boolean functions. Here is an attempt to provide an
overview. Note that authors sometimes mix symbols; there is no common standard notation.

function mnemonic mathematics engineering C / C++ C / C++ (bits)

and X and Y X ∧ Y X · Y X && Y &

or X or Y X ∨ Y X + Y X || Y |

not not X ¬X X,X ′ ! X ~

implication X impl Y X → Y
equivalence X equiv Y X ↔ Y X == Y

exclusive or X xor Y X ∨Y X ⊕ Y ^

not and X nand Y X ∧Y , X∧Y X · Y
not or X nor Y X ∨Y , X∨Y X + Y
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Boolean Functions

• Elementary Boolean functions (¬,∧,∨) can be composed to define more complex
functions.

• An example of a composed function is

φ(X ,Y ) := ¬(X ∧ Y )

which is a function φ : B× B→ B and means “first compute the ∧ of X and Y,
then apply the ¬ on the result you got from the ∧”.
• Boolean functions can take a large number of arguments. Here is a function taking
three arguments:

φ(X ,Y ,Z ) := (¬(X ∧ Y ) ∨ (Z ∧ Y ))

• The left hand side of the notation above defines the function name and its
arguments, the right hand side defines the function itself by means of a formula.
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Below is the definition of all elementary Boolean functions we have introduced so far using just the
Boolean operations ∧, ∨, and ¬:

• Implication

→ (X,Y ) := ¬X ∨ Y

• Equivalence

↔ (X,Y ) := (X ∧ Y ) ∨ (¬X ∧ ¬Y )

• Exclusive or:

∨ (X,Y ) := (X ∧ ¬Y ) ∨ (¬X ∧ Y )

• Not and:

∧ (X,Y ) := ¬(X ∧ Y )

• Not or:

∨ (X,Y ) := ¬(X ∨ Y )
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Boolean Functions

Definition (Boolean function)

A Boolean function φ is any function of the type φ : Bk → B, where k ≥ 0.

• The number k of arguments is called the arity of the function.

• A Boolean function with arity k = 0 assigns truth values to nothing. There are two
such functions, one always returning 0 and the other always returning 1. We simply
identify these two arity-0 functions with the truth value constants 0 and 1.

• The truth table of a Boolean function with arity k has 2k rows. For a function with
a large arity, truth tables become quickly unmanageable.
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Boolean functions are interesting, since they can be used as computational devices. In particular, we
can consider a computer CPU as collection of Boolean functions (e.g., a modern CPU with 64 inputs
and outputs can be viewed as a sequence of 64 Boolean functions of arity 64: one function per output
pin).

Another option to define a Boolean function is of course by writing down the truth table. We can define
ϕ(X,Y, Z) := (¬(X ∧ Y ) ∨ (Z ∧ Y )) by filling out the following table:

X Y Z (¬(X ∧ Y ) ∨ (Z ∧ Y ))

0 0 0 1
0 0 1 . . .
0 1 0 . . .
0 1 1 . . .
1 0 0 . . .
1 0 1 . . .
1 1 0 . . .
1 1 1 . . .

To fill in the first row (the first interpretation), one computes:

1. (X ∧ Y ) = (0 ∧ 0) = 0

2. (Z ∧ Y ) = (0 ∧ 0) = 0

3. ¬(X ∧ Y ) = ¬0 = 1

4. (¬(X ∧ Y ) ∨ (Z ∧ Y )) = 1 ∨ 0 = 1

Note that boolean formulas can be considered boolean polynomials. This becomes perhaps more
obvious if one uses the alternate writing style where X · Y is used instead of X ∧ Y and X + Y is used
instead of X ∨ Y and X is used instead of ¬X.

ϕ(X,Y, Z) = (X · Y ) + (Z · Y )
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Syntax of Boolean formulas (aka Boolean expressions)

Definition (Syntax of Boolean formulas)

Basis of inductive definition:

1a Every Boolean variable Xi is a Boolean formula.

1b The two Boolean constants 0 and 1 are Boolean formulas.

Induction step:

2a If φ and ψ are Boolean formulas, then (φ ∧ ψ) is a Boolean formula.

2b If φ and ψ are Boolean formulas, then (φ ∨ ψ) is a Boolean formula.

2c If φ is a Boolean formula, then ¬φ is a Boolean formula.
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Strictly speaking, only Xi qualify for step 1a but in practice we may also use X,Y, . . ..

The definition provides all we need to verify whether a particular sequence of symbols qualifies as a
Boolean formula. Obviously, (¬(X ∧ Y ) ∨ (Z ∧ Y )) is a valid Boolean formula and ¬(X∧) is not.

In practice, we often use conventions that allow us to save parenthesis. For example, we may simply
write (X ∧ Y ∧ Z) instead of ((X ∧ Y ) ∧ Z) or (X ∧ (Y ∧ Z)).
Furthermore, we may write:

• (X → Y ) as a shorthand notation for (¬X ∨ Y )

• (X ↔ Y ) as a shorthand notation for ((¬X ∨ Y ) ∧ (¬Y ∨X))

Note that the definition for Boolean formulas defines the syntax of Boolean formulas. It provides a
grammar that allows us to construct valid formulas and it allows us to decide whether a given formula
is valid. However, the definition does not define what the formula means, that is, the semantics. We
intuitively assume a certain semantic that does “make sense” but we have not yet defined the semantics
formally.
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Semantics of Boolean formulas

Definition (Semantics of Boolean formulas)

Let D ⊆ X be a set of Boolean variables and I : D→ B an interpretation. Let Φ(D) be
the set of all Boolean formulas which contain only Boolean variables that are in D. We
define a generalized version of an interpretation I∗ : Φ(D)→ B.
Basis of the inductive definition:

1a For every Boolean variable X ∈ D, I∗(X ) = I(X ).

1b For the two Boolean constants 0 and 1, we set I∗(0) = 0 and I∗(1) = 1.
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Because this generalized interpretation I∗ is the same as I for Boolean variables X ∈ D , we say that
I∗ extends I from the domain D to the domain Φ(D). Following common practice, we will use I for the
generalized interpretation too. Furthermore, since the set D is often clear from the context, we will often
not specify it explicitly.
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Semantics of Boolean formulas

Definition (Semantics of Boolean formulas (cont.))

Induction step, with φ and ψ in Φ(D):

2a

I∗((φ ∧ ψ)) =
{
1 if I∗(φ) = 1 and I∗(ψ) = 1

0 otherwise

2b

I∗((φ ∨ ψ)) =
{
1 if I∗(φ) = 1 or I∗(ψ) = 1

0 otherwise

2c

I∗(¬φ) =
{
1 if I∗(φ) = 0

0 if I∗(φ) = 1
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Note that a boolean expression defines a boolean function and that multiple boolean expressions can
define the same boolean function. This leads to questions such as:

• Are two boolean expressions defining the same boolean function?

• Given a boolean expression, can we find a “simpler” boolean expression defining the same
boolean function?
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Tautology and contradiction

Definition (adapted interpretation)

An interpretation I : D→ B is adapted to a Boolean formula φ if all Boolean variables
that occur in φ are contained in D.

Definition (tautologies and contradictions)

A Boolean formula φ is a tautology if for all interpretations I, which are adapted to φ,
it holds that I(φ) = 1. A Boolean formula is a contradiction if for all interpretations I,
which are adapted to φ, it holds that I(φ) = 0.
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A tautology is a Boolean formula which is always true, and a contradiction is never true. The classical
example of a tautology is

(X ∨ ¬X)

and the classical example of a contradiction is

(X ∧ ¬X).

Two elementary facts relating to tautologies and contradictions:

• For any Boolean expression φ, (φ ∨ ¬φ) is a tautology and (φ ∧ ¬φ) is a contradiction.

• If φ is a tautology, then ¬φ is a contradiction and vice versa.

For a complex Boolean formula φ with many Boolean variables, it is not easy to find out whether it is a
tautology or a contradiction. One way to find out would be to compute the complete truth table. Recall
that each row in a truth table corresponds to one possible interpretation of the variables in φ. Recall
furthermore that if φ contains k Boolean variables, the truth table has 2k rows. This becomes quickly
impractical if k grows. Unfortunately, there is no known general procedure to find out whether a given
φ is a tautology or a contradiction, which is less costly than computing the entire truth table. In fact,
logicians have reason to believe that no faster method exists (but this is an unproven conjecture!).
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Satisfying a Boolean formula

Definition (satisfying a Boolean formula)

An interpretation I which is adapted to a Boolean formula φ is said to satisfy the
formula φ if I(φ) = 1. A formula φ is called satisfiable if there exists an interpretation
which satisfies φ.

The following two statements are equivalent characterizations of satisfiability:

• A Boolean formula is satisfiable if and only if its truth table contains at least one
row that results in 1.

• A Boolean formula is satisfiable if and only if it is not a contradiction.
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Note that the syntactic definition of Boolean formulas defines merely a set of legal sequences of sym-
bols. Via the definition of the semantics of Boolean formulas, we obtain a Boolean function for every
Boolean formula. In other words, there is a distinction between a Boolean formula and the Boolean
function induced by the formula. In practice, this distinction is often not made and we often treat formu-
lars as synomyms for the functions induced by the formula and we may use a function name to refer to
the formula that was used to define the function.
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Equivalence of Boolean formulas

Definition (equivalence of Boolean formulas)

Let φ, ψ be two Boolean formulas. The formula φ is equivalent to the formula ψ,
written φ ≡ ψ, if for all interpretations I, which are adapted to both φ and ψ, it holds
that I(φ) = I(ψ).

• There are numerous “laws” of Boolean logic which are stated as equivalences.
Each of these laws can be proven by writing down the corresponding truth table.

• Boolean equivalence “laws” can be used to “calculate” with logics, executing
stepwise transformations from a starting formula to some target formula, where
each step applies one equivalence law.
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A simple example is (X ∨ Y ) ≡ (Y ∨X).

Note that equivalent formulas are not required to have the same set of variables. The following equiva-
lence surely holds:

(X ∨ Y ) ≡ (X ∨ Y ) ∧ (Z ∨ ¬Z)
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Boolean Equivalence laws

Proposition (equivalence laws)

For any Boolean formulas φ, ψ, χ, the following equivalences hold:

1. φ ∧ 1 ≡ φ, φ ∨ 0 ≡ φ (identity)

2. φ ∨ 1 ≡ 1, φ ∧ 0 ≡ 0 (domination)

3. (φ ∧ φ) ≡ φ, (φ ∨ φ) ≡ φ) (idempotency)

4. (φ ∧ ψ) ≡ (ψ ∧ φ), (φ ∨ ψ) ≡ (ψ ∨ φ) (commutativity)

5. ((φ ∧ ψ) ∧ χ) ≡ (φ ∧ (ψ ∧ χ)), ((φ ∨ ψ) ∨ χ) ≡ (φ ∨ (ψ ∨ χ)) (associativity)

6. φ ∧ (ψ ∨ χ) ≡ (φ ∧ ψ) ∨ (φ ∧ χ), φ ∨ (ψ ∧ χ) ≡ (φ ∨ ψ) ∧ (φ ∨ χ) (distributivity)
7. ¬¬φ ≡ φ, φ ∧ ¬φ ≡ 0, φ ∨ ¬φ ≡ 1 (double negation, complementation)

8. ¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ), ¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ) (de Morgan’s laws)

9. φ ∧ (φ ∨ ψ) ≡ φ, φ ∨ (φ ∧ ψ) ≡ φ (absorption laws)
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Each of these equivalence laws can be proven by writing down the corresponding truth table. To illus-
trate this, here is the truth table for the first of the two de Morgan’s laws:

φ ψ ¬φ ¬ψ (φ ∧ ψ) ¬(φ ∧ ψ) (¬φ ∨ ¬ψ)
0 0 1 1 0 1 1
0 1 1 0 0 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 0

Designing algorithms to transform starting formulas into target formulas is a practically important topic
of artificial intelligence applications, more specifically “automated reasoning”.

Try to simplify the following formula:

φ(X,Y, Z) = (((X ∨ Y ) ∧ (¬Y ∧ Z)) ∧ Z)
= . . .

= (X ∧ ¬Y ) ∧ Z
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Literals, Monomials, Clauses

Definition (literals)

A literal Li is a Boolean formula that has one of the forms Xi , ¬Xi , 0, 1, ¬0, ¬1, i.e., a
literal is either a Boolean variable or a constant or a negation of a Boolean variable or a
constant. The literals Xi , 0, 1 are called positive literals and the literals ¬Xi , ¬0, ¬1 are
called negative literals.

Definition (monomial)

A monomial (or product term) is a literal or the conjunction (product) of literals.

Definition (clause)

A clause (or sum term) is a literal or the disjunction (sum) of literals.
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Conjunctive Normal Form

Definition (conjunctive normal form)

A Boolean formula is said to be in conjunctive normal form (CNF) if it is a conjunction
of disjunctions of literals.

• Examples of formulas in CNF:
• X1 (this is a short form of (1 ∨ 1) ∧ (X1 ∨ 0))
• X1 ∧ X2 (this is a short form of (X1 ∨ X1) ∧ (X2 ∨ X2))
• X1 ∨ X2 (this is a short form of (1 ∨ 1) ∧ (X1 ∨ X2))
• ¬X1 ∧ (X2 ∨ X3) (this is a short form of (0 ∨ ¬X1) ∧ (X2 ∨ X3))
• (X1 ∨ ¬X2) ∧ (¬X1 ∨ X2)

• We typically write the short form, leaving out trivial expansions into full CNF form.
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The terms of a conjunctive normal form (CNF) are all clauses. In other words, a conjunctive normal
form is a product of sum terms.
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Disjunctive Normal Form

Definition (disjunctive normal form)

A Boolean formula is said to be in disjunctive normal form (DNF) if it is a disjunction of
conjunctions of literals.

• Examples of formulas in DNF:
• X1 (this is a short form of (0 ∧ 0) ∨ (X1 ∧ 1))
• X1 ∧ X2 (this is a short form of (0 ∧ 0) ∨ (X1 ∧ X2))
• X1 ∨ X2 (this is a short form of (X1 ∧ X1) ∨ (X2 ∧ X2))
• (¬X1 ∧ X2) ∨ (¬X1 ∧ X3)
• (¬X1 ∧ ¬X2) ∨ (X1 ∧ X2)

• We typically write the short form, leaving out trivial expansions into full DNF form.
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The terms of a disjunctive normal form (DNF) are all monomials. In other words, a disjunctive normal
form is a sum of product terms.
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Equivalence of Normal Forms

Proposition (CNF equivalence)

Every Boolean formula φ is equivalent to a Boolean formula χ in conjunctive normal
form.

Proposition (DNF equivalence)

Every Boolean formula φ is equivalent to a Boolean formula χ in disjunctive normal
form.

• These two results are important since we can represent any Boolean formula in a
“shallow” format that does not need any “deeply nested” bracketing levels.
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Minterms and Maxterms

Definition (minterm)

A minterm of a Boolean function φ(Xn, . . . ,X1,X0) is a monomial (X̂n ∧ . . . ∧ X̂1 ∧ X̂0)
where X̂i is either Xi or ¬Xi . A shorthand notation is md where d is the decimal
representation of the binary number obtained by replacing all negative literals with 0
and all positive literals with 1 and by dropping the operator.

Definition (maxterm)

A maxterm of a Boolean function φ(Xn, . . . ,X1,X0) is a clause (X̂n ∨ . . . ∨ X̂1 ∨ X̂0)
where X̂i is either Xi or ¬Xi . A shorthand notation is Md where d is the decimal
representation of the binary number obtained by replacing all negative literals with 1
and all positive literals with 0 and by dropping the operator.
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For example, the Boolean function

φ(X,Y, Z) = (¬X ∧ ¬Y ∧ Z) ∨ (¬X ∧ Y ∧ ¬Z) ∨ (X ∧ ¬Y ∧ ¬Z) ∨ (X ∧ ¬Y ∧ Z) ∨ (X ∧ Y ∧ ¬Z)

can be written as

φ(X,Y, Z) = m1 ∨m2 ∨m4 ∨m5 ∨m6

or with the alternative notation as

φ(X,Y, Z) = m1 +m2 +m4 +m5 +m6.

If we have the DNF, we easily get the CNF as well by selecting the maxterms for which there is no
corresponding minterm. Continuing the example, we get

φ(X,Y, Z) =M0 ∧M3 ∧M7

or the alternative notation

φ(X,Y, Z) =M0 ·M3 ·M7.

The CNF is therefore given by:

φ(X,Y, Z) = (X ∨ Y ∨ Z) ∧ (¬X ∨ Y ∨ ¬Z) ∧ (¬Z ∨ ¬Y ∨ ¬Z)
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Obtaining a DNF from a Truth Table

• Given a truth table, a DNF can be obtained by writing down a conjunction of the
input values for every row where the result is 1 and connecting all obtained
conjunctions together with a disjunction.

X Y X ∨Y
0 0 0
0 1 1
1 0 1
1 1 0

• 2nd row: ¬X ∧ Y

• 3rd row: X ∧ ¬Y
• X ∨Y = (¬X ∧ Y ) ∨ (X ∧ ¬Y ) = m1 +m2
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Every boolean function defined by a boolean expression can be represented as a truth table. Since it is
possible to obtain the DNF directly from the truth table, every boolean expression can be represented
in DNF.

We already know from the definition of ∨ that X ∨Y = (¬X ∧ Y ) ∨ (X ∧ ¬Y ).
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Obtaining a CNF from a Truth Table

• Given a truth table, a CNF can be obtained by writing down a disjunction of the
negated input values for every row where the result is 0 and connecting all obtained
disjunctions together with a conjunction.

X Y X ∨Y
0 0 0
0 1 1
1 0 1
1 1 0

• 1st row: X ∨ Y

• 4th row: ¬X ∨ ¬Y
• X ∨Y = (X ∨ Y ) ∧ (¬X ∨ ¬Y ) = M0 ·M3
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Every boolean function defined by a boolean expression can be represented as a truth table. Since it is
possible to obtain the CNF directly from the truth table, every boolean expression can be represented
in CNF.

We show that (X ∨ Y ) ∧ (¬X ∨ ¬Y ) is indeed the same as X ∨Y :

(X ∨ Y ) ∧ (¬X ∨ ¬Y ) = ((X ∨ Y ) ∧ ¬X) ∨ ((X ∨ Y ) ∧ ¬Y ) (distributivity)
= (X ∧ ¬X) ∨ (Y ∧ ¬X) ∨ (X ∧ ¬Y ) ∨ (Y ∧ ¬Y ) (distributivity)
= 0 ∨ (Y ∧ ¬X) ∨ (X ∧ ¬Y ) ∨ 0 (complementation)
= (¬X ∧ Y ) ∨ (X ∧ ¬Y ) (identity)
= X ∨Y
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Cost of Boolean Expressions and Functions

Definition (cost of boolean expression)

The cost C (e) of a boolean expression e is the number of operators in e.

Definition (cost of boolean function)

The cost C (f ) of a boolean function f is the minimum cost of boolean expressions
defining f , C (f ) = min{C (e)|e defines f }.

• We can find expressions of arbitrary high cost for a given boolean function.

• How do we find an expression with minimal cost for a given boolean function?

Jürgen Schönwälder (Constructor University) Introduction to Computer Science: Boolean Algebra CC-BY-NC-ND July 14, 2024 178 / 1

When talking about the cost of Boolean formulas, we often restrict us to a certain set of operations,
e.g., the classic set {∧,∨,¬}. In some contexts, ¬ is not counted and only the number of ∧ and ∨
operations is counted. (The reasoning is that negation is cheap compared to the other operations and
hence negation can be applied to any input or output easily.) We will follow this approach and restrict
us to the classic {∧,∨,¬} operations and only count the number of ∧ and ∨ operations unless stated
otherwise.

With this, the cost of the Boolean expression ((X∨Y )∧(¬Y ∧Z))∧Z is C(((X∨Y )∧(¬Y ∧Z))∧Z) = 4
and the cost of the Boolean expression X ∧ ¬Y ∧ Z is C(X ∧ ¬Y ∧ Z) = 2. Since

φ(X,Y, Z) = ((X ∨ Y ) ∧ (¬Y ∧ Z)) ∧ Z
= X ∧ ¬Y ∧ Z

and there is no way to further minimize X ∧ ¬Y ∧ Z, the cost of the Boolean function φ is C(φ) = 2.
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Implicants and Prime Implicants

Definition (implicant)

A product term P of a Boolean function φ of n variables is called an implicant of φ if
and only if for every combination of values of the n variables for which P is true, φ is
also true.

Definition (prime implicant)

An implicant of a function φ is called a prime implicant of φ if it is no longer an
implicant if any literal is deleted from it.

Definition (essential prime implicant)

A prime implicant of a function φ is called an essential prime implicant of φ if it covers
a true output of φ that no combination of other prime implicants covers.
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Observations:

• If an expression defining φ is in DNF, then every minterm of the DNF is an implicant of φ.

• Any term formed by combining two or more minterms of a DNF is an implicant.

• Each prime implicant of a function has a minimum number of literals; no more literals can be
eliminated from it.

Example:

φ(X,Y, Z) = (¬X ∧ ¬Y ∧ ¬Z) ∨ (X ∧ ¬Y ∧ ¬Z) ∨ (X ∧ ¬Y ∧ Z) ∨ (X ∧ Y ∧ Z)
= (¬Y ∧ ¬Z) ∨ (X ∧ Z)

• Implicant (¬X ∧ ¬Y ∧ ¬Z) is not a prime implicant. The first two product terms can be combined
since they only differ in one variable:

(¬X ∧ ¬Y ∧ ¬Z) ∨ (X ∧ ¬Y ∧ ¬Z) = (¬X ∧X) ∨ (¬Y ∧ ¬Z)
= 0 ∨ (¬Y ∧ ¬Z)
= (¬Y ∧ ¬Z)

The resulting product term ¬Y ∧¬Z is still an implicant of φ. In a similar way, Y can be eliminated
from the last two product terms.

• (¬Y ∧ ¬Z) and (X ∧ Z) are prime implicants (it is not possible to further eliminate a variable).
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Quine McCluskey Algorithm

QM-0 Find all implicants of a given function (e.g., by determining the DNF from a truth
table or by converting a boolean expression into DNF).

QM-1 Repeatedly combine non-prime implicants until there are only prime implicants left.

QM-2 Determine a minimum disjunction (sum) of prime implicants that defines the
function. (This sum not necessarily includes all prime implicants.)

• We will further detail the steps QM-1 and QM-2 in the following slides.

• See also the complete example in the notes.
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• The time complexity of the algorithm grows exponentially with the number of variables.

• The problem is known to be NP-hard (non-deterministic polynomial time hard). There is little hope
that polynomial time algorithms exist for NP-hard problems.

• For large numbers of variables, it is necessary to use heuristics that run faster but which may not
always find a minimal solution.
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Finding Prime Implicants (QM-1)

PI-1 Classify and sort the minterms by the number of positive literals they contain.

PI-2 Iterate over the classes and compare each minterms of a class with all minterms of
the following class. For each pair that differs only in one bit position, mark the bit
position as a wildcard and write down the newly created shorter term combining
two terms. Mark the two terms as used.

PI-3 Repeat the last step if new combined terms were created.

PI-4 The set of minterms or combined terms not marked as used are the prime
implicants.

• Note: You can only combine minterms that have the wildcard at the same position.
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Example: Minimize φ(W,X, Y, Z) = m4 +m8 +m9 +m10 +m11 +m12 +m14 +m15

• Classify and sort minterms

minterm pattern used
m4 0100

m8 1000

m9 1001

m10 1010

m12 1100

m11 1011

m14 1110

m15 1111

• Combination steps

minterm pattern used minterms pattern used minterms pattern used
m4 0100 ✓ m4,12 -100

m8 1000 ✓ m8,9 100- ✓ m8,9,10,11 10--

m8,10 10-0 ✓ m8,10,12,14 1--0

m8,12 1-00 ✓
m9 1001 ✓ m9,11 10-1 ✓
m10 1010 ✓ m10,11 101- ✓ m10,11,14,15 1-1-

m10,14 1-10 ✓
m12 1100 ✓ m12,14 11-0 ✓
m11 1011 ✓ m11,15 1-11 ✓
m14 1110 ✓ m14,15 111- ✓
m15 1111 ✓

• This gives us four prime implicants:

– m4,12 = (X ∧ ¬Y ∧ ¬Z)
– m8,9,10,11 = (W ∧ ¬X)

– m8,10,12,14 = (W ∧ ¬Z)
– m10,11,14,15 = (W ∧ Y )
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Finding Minimal Sets of Prime Implicants (QM-2)

MS-1 Identify essential prime implicants (essential prime implicants cover an implicant
that is not covered by any of the other prime implicants)

MS-2 Find a minimum coverage of the remaining implicants by the remaining prime
implicants

• Note that multiple minimal coverages may exist. The algorithm above does not
define which solution is returned in this case.

• There are ways to cut the search space by eliminating rows or columns that are
“dominated” by other rows or columns.

Jürgen Schönwälder (Constructor University) Introduction to Computer Science: Boolean Algebra CC-BY-NC-ND July 14, 2024 182 / 1

We continue the example from the previous page. To find prime implicant sets, we construct a prime
implicant table. The colummns are the original minterms and the rows represent the prime implicants.
The marked cells in the table indicate whether a prime implicant covers a minterm. (• = essential, ∗ =
covered, ◦ = uncovered)

m4 m8 m9 m10 m11 m12 m14 m15

m4,12 • ∗
m8,9,10,11 ∗ • ∗ ∗
m8,10,12,14 ∗ ∗ ∗ ∗
m10,11,14,15 ∗ ∗ ∗ •

Columns that only have a single marked cell indicate essential prime implicants. In this case, m4 is
only marked by m4,12 and hence m4,12 is an essential prime implicant. Similarly, m9 is only marked by
m8,9,10,11, hence m8,9,10,11 is an essential prime implicant. Finally, m15 is only marked by m10,11,14,15,
hence m10,11,14,15 is an essential prime implicant as well.

The remaining prime implicant m8,10,12,14 has marks only in columns that are covered already by prime
implicants that we have already selected and hence m8,10,12,14 is not needed in a minimal set of prime
implicants.

The resulting minimal expression is φ′(W,X, Y, Z) = (X∧¬Y ∧¬Z)∨(W ∧¬X)∨(W ∧Y ). The minimal
expression φ′ uses 6 operations (out of {∧,∨}). The original expression used 8 · 3 + 7 = 31 operations
(out of {∧,∨}).
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Section 22: Boolean Logic and the Satisfiability Problem

17 Elementary Boolean Functions

18 Boolean Functions and Formulas

19 Boolean Algebra Equivalence Laws

20 Normal Forms (CNF and DNF)

21 Complexity of Boolean Formulas

22 Boolean Logic and the Satisfiability Problem
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Logic Statements

• A common task is to decide whether statements of the following form are true:
if premises P1 and ... and Pm hold, then conclusion C holds

• The premises Pi and the conclusion C are expressed in some logic formalism, the
simplest is Boolean logic (also called propositional logic).

• Restricting us to Boolean logic here, the statement above can be seen as a Boolean
formula of the following structure

(φ1 ∧ . . . ∧ φm)→ ψ

and we are interested to find out whether such a formula is true, i.e., whether it is
a tautology.
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First order logic (also called predicate logic) is an extension of propositional logic (Boolean logic) that
adds quantified variables and predicates that contain variables. First order logic is more powerful than
propositional logic but unfortunately also more difficult to handle. Logic programming languages hence
often use a subset of first order logic in order to be efficient.
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Tautology and Satisfiability

• Recall that a Boolean formula τ is a tautology if and only if τ ′ = ¬τ is a
contradiction. Furthermore, a Boolean formula is a contradiction if and only if it is
not satisfiable. Hence, in order to check whether

τ = (φ1 ∧ . . . ∧ φm)→ ψ

is a tautology, we may check whether

τ ′ = ¬((φ1 ∧ . . . ∧ φm)→ ψ)

is unsatisfiable.

• If we show that τ ′ is satisfiable, we have disproven τ .
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Tautology and Satisfiability

• Since φ→ ψ ≡ ¬(φ ∧ ¬ψ), we can rewrite the formulas as follows:

τ = (φ1 ∧ . . . ∧ φm)→ ψ = ¬(φ1 ∧ . . . ∧ φm ∧ ¬ψ)

τ ′ = ¬((φ1 ∧ . . . ∧ φm)→ ψ) = (φ1 ∧ . . . ∧ φm ∧ ¬ψ)
• To disprove τ , it is often easier to prove that τ ′ is satisfiable.

• Note that τ ′ has a homogenous structure. If we transform the elements
φ1, . . . , φm, ψ into CNF, then the entire formula is in CNF.

• If τ ′ is in CNF, all we need to do is to invoke an algorithm that searches for
interpretations I which satisfy a formula in CNF. If there is such an interpretation,
τ is disproven, otherwise, if there is no such interpretation, then τ is proven.
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Satisfiability Problem

Definition (satisfiability problem)

The satisfiability problem (SAT) is the following computational problem: Given as input
a Boolean formula in CNF, compute as output a “yes” or “no” response according to
whether the input formula is satisfiable or not.

• It is believed that there is no polynomial time solution for this problem.
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There is no known general algorithm that efficiently (means in polynomial time) solves the SAT problem,
and it is generally believed that no such algorithm exists. However, this belief has not been proven
mathematically.

Resolving the question whether SAT has a polynomial-time algorithm is equivalent to answering the P
versus NP problem, which is a famous open problem in the theory of computer science: The complexity
class P contains all problems that are solvable in polynomial time by a deterministic machine and the
complexity class NP contains all problems that are solvable in polynomial time by a non-deterministic
machine (i.e., a machine that guesses the next best step). Obviously, P ⊆ NP . The big question is
whether P = NP holds. (Please recall that NP stands for non-deterministic polynomial time.)

Note that it is rather trivial to check whether a Boolean formula in DNF is satisfiable since it is sufficient to
show that one of the conjunctions is satisfiable (since every conjunction is an implicant). A conjunction
is satisfiable if it does not contain X and ¬X for some variable X. Given an arbitrary Boolean formula,
the conversion into DNF may unfortunately require exponential time.

By solving the general SAT problem, you will become a famous mathematician and you can secure a
one million dollar price.

Further online information:

• Wikipedia: Boolean satisfiability problem

• Wikipedia: Millennium Prize Problems

• YouTube: P vs. NP – The Biggest Unsolved Problem in Computer Science
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Part V

Computer Architecture

This part takes a look at how you can put boolean functions to work by studying how to turn them into
digital circuits or how to describe digital circuits using boolean functions.

We first study how to design combinatorial digital circuits for adding numbers or comparing numbers.
We then move to sequential digital circuits and we study how to design latches and flip-flops that can
store bits.

With these incredients prepared, we can look at the design of a von Neumann computer, which has
a central processing unit, a memory system, and IO devices interconnected via a data, address, and
control bus. We use a very simplistic CPU architecture in order to get an idea how assembly programs
translate into program code in memory and how a program stored in memory is executed in a fetch,
decode, execute cycle.

Given the time constraints, we will only touch on many interesting topics here. If you want to dive deeper,
consider taking a digital design module in the future.

By the end of this part, students should be able to

• describe the relationship between Boolean algebra and digital circuits;

• familiar with the symbols used to draw logic gates and digital circuits;

• explain how a half, full, and ripple adder are constructed;

• outline why a carry-lookahead adder is faster than a ripple adder;

• tell other basic digital circuits such as a magnitude comparator, a multiplexer or a demultiplexer;

• describe the difference between combinational and sequential digital circuits;

• enumerate different kinds of latches and flip-flops;

• detail how latches and flip-flops can be constructed using NAND and NOR gates;

• illustrate the difference between level-triggered and edge-triggered digital circuits;

• sketch the different components of the von Neumann computer architecture;

• contrast the purposes of the control, address, and data bus;

• present the basic structure of a CPU and the fetch-decode-execute cycle;

• recognize programs in machine language and in assembly language;

• demonstrate the notion of function calls and stacks and stack frames;

• summarize the RISC-V base instruction set architecture.
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Section 23: Combinational Digital Circuits

23 Combinational Digital Circuits

24 Sequential Digital Circuits

25 Von Neumann Computer Architecture
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Recall elementary boolean operations and functions

• Recall the elementary boolean operations AND (∧), OR (∨), and NOT (¬) as well
as the boolean functions XOR (∨ ), NAND (∧ ), and NOR (∨ ).

X ∨Y := (X ∨ Y ) ∧ ¬(X ∧ Y )

X ∧Y := ¬(X ∧ Y )

X ∨Y := ¬(X ∨ Y )

• For each of these elementary boolean operations or functions, we can construct
digital gates, for example, using transistors in Transistor-Transistor Logic (TTL).

• Note: NAND and NOR gates are called universal gates since all other gates can be
constructed by using multiple NAND or NOR gates.
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It is essential to recall the basic boolean operations and functions. The following tables summarize the
truth tables.

X Y X ∧ Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X ∨ Y
0 0 0
0 1 1
1 0 1
1 1 1

X ¬X
0 1
1 0

Figure 2: Truth tables for the elementary operations AND, OR, and NOT

X Y X ∨Y
0 0 0
0 1 1
1 0 1
1 1 0

X Y X ∧Y
0 0 1
0 1 1
1 0 1
1 1 0

X Y X ∨Y
0 0 1
0 1 0
1 0 0
1 1 0

Figure 3: Truth tables for the elementary functions XOR, NAND, and NOR

We will now introduce symbols for logic gates that implement these basic boolean operations and func-
tions. Afterwards, we will design a logic circuit that can add N-bit digital numbers.

Further online information:

• Wikipedia: Boolean Algebra
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Logic gates implementing logic functions

NOT (¬) AND (∧) OR (∨)

A out
A
B

Q
A
B

Q

XOR (∨ ) NAND (∧ ) NOR (∨ )
A
B

Q
A
B

Q
A
B

Q

• There are different sets of symbols for logic gates (do not get confused if you look
into other sources of information).

• The symbols used here are the ANSI (American National Standards Institute)
symbols.
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While logic gates implement elementary boolean operations, they introduce another important property:
Logic gates take some time to propagate input signals to output signals. The gate delay is the length of
the time interval starting when the input to a logic gates becomes stable and valid and ending when the
output of that logic gate becomes stable and valid.

There are several web-based tools to design and simulate logic circuits. Some use different symbols,
like the European symbols for logic gates.

Further online information:

• Web: simulator.io: Web-based logic circuit simulator
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Combinational Digital Circuits

Definition (combinational digital circuit)

A combinational digital circuit implements a pure boolean function where the result
depends only on the inputs.

• Examples of elementary combinational digitial circuits are circuits to add n-bit
numbers, to multiply n-bit numbers, or to compare n-bit numbers.

• Combinational digital circuits are pure since their behavior solely depends on the
well-defined inputs of the circuit.

• An important property of a combinational digital circuit is its gate delay.
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Addition of decimal and binary numbers

2 0010 3 0011 8 1000

+ 5 + 0101 + 3 + 0011 + 3 + 0011

11 1

--- ------ --- ------ --- ------

7 0111 6 0110 11 1011

• We are used to add numbers in the decimal number system.

• Adding binary numbers is essentially the same, except that we only have the digits
0 and 1 at our disposal and “carry overs” are much more frequent.
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Adding two bits (half adder)

• The half adder adds two single binary digits A and B .

• It has two outputs, sum (S) and carry (C ).

A B C S

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

S = A∨B
C = A ∧ B

A
B

S

C
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The gate delay tg is the time it takes for the output signal to be a stable reflection of the two input signals.

Assuming that every gate has the same gate delay, the half adder works with a constant gate delay of
tha = tg.

Further online information:

• Wikipedia: Adder (electronics)
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Adding two bits (full adder)

• A full adder adds two single bit digits A and B and accounts for a carry bit Cin.

• It has two outputs, sum (S) and carry (Cout).

A B Cin Cout S

0 0 0 0 0
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0
0 0 1 0 1
0 1 1 1 0
1 0 1 1 0
1 1 1 1 1

S = (A∨B)∨Cin

Cout = (A ∧ B) ∨ (Cin ∧ (A∨B))

A
B
Cin

S

Cout

Jürgen Schönwälder (Constructor University) Introduction to Computer Science: Computer Architecture CC-BY-NC-ND July 14, 2024 195 / 1

Assuming that every gate has the same gate delay tg, the full adder works with a constant gate delay
of tfa = 3 · tg. Note that the carry in signal only has a gate delay of 2 · tg to the carry out signal.

Further online information:

• Wikipedia: Adder (electronics)
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Adding N Bits (ripple carry adder)

A S

CC

B FA

A S

CC

B FA

A S

CC

B FA

A S

CC

B FA

B A

0

S0 0 0 B A S1 1 1 B A S2 2 2 B A S3 3 3C

• And N-bit adder can be created by chaining multiple full adders.

• Each full adder inputs a Cin, which is the Cout of the previous adder.

• Each carry bit “ripples” to the next full adder.
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The layout of a ripple-carry adder is simple. However, the ripple-carry adder is relatively slow, since each
full adder must wait for the carry bit to be calculated by the previous full adder. Assuming that every
gate has the same gate delay tg, the n-bit ripple-carry adder has a gate delay of tra = n · tfa = 3n · tg.

If we built an n-bit ripple-carry adder from elementary logic gates, then the slow path is the carry prop-
agation, which gives us an overall delay of 1 + 2n · tg. To see why we get a delay of 1 + 2n · tg, lets look
at a 4-bit adder taking the inputs A0, A1, A2, A3, B0, B1, B2, B3 and the carry C0. Using these inputs, we
can calculate the following intermediate values using one gate delay:

T0 = (A0 ∨B0)

U0 = (A0 ∧B0)

T1 = (A1 ∨B1)

U1 = (A1 ∧B1)

T2 = (A2 ∨B2)

U2 = (A2 ∧B2)

T3 = (A3 ∨B3)

U3 = (A3 ∧B3)

It now takes two more gate delays to compute

C1 = ((C0 ∧ T0) ∨ U0)

and with that it takes two more gate delays to compute

C2 = ((C1 ∧ T1) ∨ U1)

and with that it takes two more gate delays to compute

C3 = ((C2 ∧ T2) ∨ U2)

and with that it takes two more gate delays to compute

C4 = ((C3 ∧ T3) ∨ U3).

The delay of an n-bit ripple-carry adder grows linearly with the number of bits. For a 64-bit adder, we
get a gate delay of 129 gate times, which is not nice.
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Adding N Bits (carry-lookahead adder)

• A carry-lookahead adder uses a special circuit to calculate the carry bits faster.

• The carry bit ci+1 is either the result of adding ai = 1 and bi = 1 or it is the result
of ci = 1 and either ai = 1 or bi = 1:

ci+1 = (ai ∧ bi) ∨ ((ai ∨ bi) ∧ ci)

• We can write this as follows:

ci+1 = gi ∨ (pi ∧ ci)

gi = ai ∧ bi generator

pi = ai ∨ bi propagator

• Half adder can be used to (i) add the input bits and to feed the carry-lookahead
circuit and to (ii) finally add the carry bits.
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It is possible to design adders that reduce the gate delay. A classic example is the carry lookahead
adder. Lets consider how the carry bit works: The carry bit is either the result of adding ai = 1 and
bi = 1 or it is the result of ci = 1 and either ai = 1 or bi = 1.

ci+1 = (ai ∧ bi) ∨ ((ai ∨ bi) ∧ ci) = gi ∨ (pi ∧ ci)
gi = ai ∧ bi
pi = ai ∨ bi

The function gi “generates” a carry bit and the function pi “propagates” a carry bit. The equation above
gives us a recursive definition how ci can be calculated. With this, we can derive concrete expressions
for the carry bits:

c0 = c0
c1 = g0 ∨ (p0 ∧ c0)
c2 = g1 ∨ (p1 ∧ c1)

= g1 ∨ (p1 ∧ (g0 ∨ (p0 ∧ c0)))
= g1 ∨ (p1 ∧ g0) ∨ (p1 ∧ p0 ∧ c0)

c3 = g2 ∨ (p2 ∧ c2)
= g2 ∨ (p2 ∧ (g1 ∨ (p1 ∧ g0) ∨ (p1 ∧ p0 ∧ c0)))
= g2 ∨ (p2 ∧ g1) ∨ (p2 ∧ p1 ∧ g0) ∨ (p2 ∧ p1 ∧ p0 ∧ c0)

c4 = g3 ∨ (p3 ∧ c3) = . . .
= g4 ∨ (p3 ∧ g2) ∨ (p3 ∧ p2 ∧ g1) ∨ (p3 ∧ p2 ∧ p1 ∧ g0) ∨ (p3 ∧ p2 ∧ p1 ∧ p0 ∧ c0)

Note that gi and pi are exactly the functions of our half adder (C = gi, S = pi). Hence, we can use n half
adders to produce g0, . . . , gn−1 and p0, . . . , pn−1. We then create a circuit to calculate c1, . . . cn following
the expansion scheme above and we finally use n half adders to add the carry bits ci to pi in order to
produce the sum bits si. The overall delay of the carry lookahead adder becomes tcla = 2 · tha + tcc
where tcc is the delay of the digital circuit calculating the carry bits. If our gates are restricted to two
inputs, we can calculate the logical ands in a tree-like fashion, which gives us tcc = log(n) · tg. Putting
things together, the overall delay becomes tcla = 2 · tg + log(n) · tg, i.e., the delay grows logartihmically
with the number of bits. The price for this improvement is a more complex digital circuit.
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Further online information:

• Wikipedia: Adder (electronics)
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Multiplication of Decimal and Binary Numbers

11 * 13 1011 * 1101

------- -----------

11 1011

+ 33 + 1011

------- + 0000

143 + 1011

-----------

10001111

• We can reduce multiplication to repeated additions.

• Multiplication by 2n is a left shift by n positions.
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The multiplication of a two bits is simply a logical and operation.

The multiplication of two binary numbers can be reduced to a sequence of additions. The partial prod-
ucts are either 0 or the multiplicand.

Straight-forward digital multiplication circuits are conceptually simply but relatively complex in terms of
the number of gates needed. Optimizations can be used for special cases. For example, multiplication
by 2 is simply a left shift of bits. We will not study multiplication circuits further here. Students interested
to dive deeper may want to lookup the Wallace tree fast multiplier [19].

188



Magnitude Comparator, Multiplexer, Demultiplexer

• An n-bit magnitude comparator takes two n-bit numbers
a and b and outputs whether a < b, a > b, or a = b.

• An n-bit multiplexer has n = 2m inputs i0, i1, . . . , in and
m selection inputs s0, s1, . . . , sm and it outputs on y the
input ix where x is the number indicated by the selection
inputs.

• An n-bit demultiplexer has n = 2m outputs y0, y1, . . . , yn,
an input i and m selection inputs s0, s1, . . . , sm. It
outputs the input i on the output yx where x is the
number indicated by the selection inputs. y0
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This slide shows some additional combinational circuits that are often used as building blocks for more
advanced digital circuits. The design of these circuits is relatively straight-forward and can be done as
a little exercise.
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Section 24: Sequential Digital Circuits

23 Combinational Digital Circuits

24 Sequential Digital Circuits

25 Von Neumann Computer Architecture
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Sequential Digital Circuits

Definition (sequential digital circuit)

A sequential digital circuit implements a non-pure boolean functions where the results
depend on both the inputs and the current state of the circuit.

Definition (asynchronous sequential digital circuit)

A sequential digitial circuit is asynchronous if the state of the circuit and the results can
change anytime in response to changing inputs.

Definition (synchronous sequential digital circuit)

A sequential digitial circuit is synchronous if the state of the circuit and the results can
change only at discrete times in response to a clock.
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Basic Properties of Memory

Memory should have at least three properties:

1. It should be able to hold a value.

2. It should be possible to read the value that was saved.

3. It should be possible to change the value that was saved.

We start with the simplest case, a one-bit memory:

1. It should be able to hold a single bit.

2. It should be possible to read the bit that was saved.

3. It should be possible to change the bit that was saved.
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SR Latch using NOR Gates

S R Q Q̄ Q Q̄

0 0 0 1 0 1
0 0 1 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
0 1 0 1 0 1
0 1 1 0 0 1

Q

Q

R

S

• Setting the inputs to S = 1 ∧ R = 0 sets the stored bit (Q = 1).

• Setting the inputs to R = 1 ∧ S = 0 clears the stored bit (Q = 0).

• The stored bit does not change while R = 0 ∧ S = 0.
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The SR latch has two inputs S and R and two outputs Q and Q̄. The outputs Q and Q̄ feedback into the
circuit and hence the value of the outputs Q and Q̄ depends on the two inputs and the previous values
of Q and Q̄. We can write this as

Qnext = R∨ Q̄current

Q̄next = S ∨Qcurrent

Lets try to understand the behavior of this circuit by looking at the different possible cases:

• S = 0 ∧R = 0: The values of Q and Q̄ do not change.

Qnext = R∨ Q̄current = 0∨ Q̄current = Qcurrent

Q̄next = S ∨Qcurrent = 0∨Qcurrent = Q̄current

• S = 1 ∧R = 0: The value of Q̄ becomes 0 and subsequently the value of Q becomes 1.

Q̄next = S ∨Qcurrent = 1∨Qcurrent = 0

Qnext = R∨ Q̄current = 0∨ Q̄current = 1

• S = 0 ∧R = 1: The value of Q becomes 1 and subsequently the value of Q̄ becomes 0.

Qnext = R∨ Q̄current = 1∨ Q̄current = 0

Q̄next = S ∨Qcurrent = 0∨Qcurrent = 1

• S = 1 ∧R = 1: This may lead to oscillation and hence this input should not occur.

To understand sequential circuits, it is useful to look at timing diagrams. The following diagram shows
the timing at the gate level.

0 1 2 3 4 5 6 7 8 9 10 11

S

R

Q

Q
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SR Latch using NAND Gates

S̄ R̄ Q Q̄ Q Q̄

1 1 0 1 0 1
1 1 1 0 1 0
0 1 0 1 1 0
0 1 1 0 1 0
1 0 0 1 0 1
1 0 1 0 0 1

Q

Q

S

R

• Setting the inputs to S̄ = 0 ∧ R̄ = 1 sets the stored bit (Q = 1).

• Setting the inputs to R̄ = 0 ∧ S̄ = 1 clears the stored bit (Q = 0).

• The stored bit does not change while R̄ = 1 ∧ S̄ = 1.
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The S̄R̄ latch behaves like an SR latch except that the input signals are inverted: The latch does not
change as long as both S and R are high. If S goes low while R remains high, the bit in the latch gets
set to high. Similarly, if R goes low while S remains high, the bit in the latch gets cleared. S and R
should not go together low.

The following diagram shows the timing at the gate level.

0 1 2 3 4 5 6 7 8 9 10 11

S

R

Q

Q

Further online information:

• YouTube: Latches and Flip-Flops 1 - The SR Latch
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Gated SR Latch using NAND Gates

E S R Q Q̄ Q Q̄

0 x x 0 1 0 1
0 x x 1 0 1 0
1 0 0 0 1 0 1
1 0 0 1 0 1 0
1 0 1 0 1 0 1
1 0 1 1 0 0 1
1 1 0 0 1 1 0
1 1 0 1 0 1 0

Q

Q

S

R

SR Latch

(S)

(R)

E

• The control input E enables the latch, the latch does not change while E is low.
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Basic latches permanently follow changes in the inputs. Since this is sometimes not desirable, it is
possible to introduce an additional enable (E) input. As long as E = 0, the latch does not change state.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

E

S

R

Q

Q

Further online information:

• YouTube: Latches and Flip-Flops 2 - The Gated SR Latch
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Gated D Latch using NAND Gates

E D Q Q̄ Q Q̄

0 0 0 1 0 1
0 0 1 0 1 0
0 1 0 1 0 1
0 1 1 0 1 0
1 0 x x 0 1
1 1 x x 1 0

Q

Q

D

E

• There is no illegal input combination anymore

• There is no input combination anymore for “keep and do not change”
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There are different ways to create a D latch. The basic idea of a D latch is that the S and R signals
are created from a data signal D and a control signal C. Real-world circuits on the market often also
expose the R and S (or R̄ and S̄) lines in order to provide a direct way to control the latch.

State diagrams provide another way to describe the behaviour of latches (or more complex digital cir-
cuits). In a state diagram, we first draw a node for each state that the circuit can be in. The D latch has
the two states Q = 0 and Q = 1 (we ignore Q̄ since it is just the negation of Q). We then draw labeled
arrows indicating how the state changes when certain inputs are received. Below is a state diagram for
the D latch with the inputs D and C.

Q = 0

ED=00 or 01 or 10

Q = 1

   ED=11   

   ED=10   

ED=00 or 01 or 11

Further online information:

• YouTube: Latches and Flip-Flops 3 - The Gated D Latch
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Level-triggered versus Edge-triggered

Definition (level-triggered)

A digital circuit is called level-triggered if changes of the inputs affect the output as
long as the clock input is high (i.e., as long as the circuit is enabled).

Definition (edge-triggered)

A digital circuit is called edge-triggered if the inputs affect the output only when the
clock input transitions from low to high (positive edge-triggered) or from high to low
(negative edge-triggered).
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Level-triggered D latch:

0 1 2 3 4 5 6 7 8 9

E

D

Q

Q

Positive edge-triggered D latch:

0 1 2 3 4 5 6 7 8 9

E

D

Q

Q

Negative edge-triggered D latch:

0 1 2 3 4 5 6 7 8 9

E

D

Q

Q

Further online information:

• YouTube: Latches and Flip-Flops 4 - The Clocked D Latch
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Latch Types and Symbols

S Q

QR
SR Latch

S Q

QR

E Gated SR Latch

D Q

QE
Gated D Latch
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D Flip-Flop (positive and negative edge-triggered)

D Q

QE

D Q

QE

Q

Q

D

C

D Q

QE

D Q

QE

Q

Q

D

C

• Edge-triggered D flip-flops propagate changes from the primary to the secondary
latch on either the rising edge of a clock or the falling edge of the clock.

• Positive edge-triggered: state changes when the clock becomes high

• Negative edge-triggered: state changes when the clock becomes low
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A major problem with latches is timing in situations where the bit stored in the latch is read (i.e., to
provide input to an adder circuit) and also being written (i.e., to store the output produced by the adder
circuit). This can only work with very tight constraints on the gate delays. Flip-flops solve this problem
since one latch (the primary latch) can receive a new bit while the other latch (the secondary latch) still
reports the old bit.

Timing diagram for a negative edge-triggered D flip-flop:

0 1 2 3 4 5 6 7 8 9 10 11 12

D

C

Primary Q

Secondary Q

A positive edge-triggered D flip-flop can be constructed out of three SR latches using a circuit only using
NAND gates.

Q

C

D

Q

Further online information:

• YouTube: Latches and Flip-Flops 5 – D Type Flip Flop
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Flip-Flop Types, State Diagrams, and Symbols

S Q

QR
Q = 0

SR=00 or 01

Q = 1

   SR=10    

   SR=01   

SR=00 or 10

SR Flip-Flop

J Q

QK
Q = 0

JK=00 or 01

Q = 1

JK=10 or 11

JK=01 or 11

JK=00 or 10

JK Flip-Flop

D Q

Q
Q = 0

  D=0

Q = 1

    D=1    

    D=0    

  D=1

D Flip-Flop

T Q

Q
Q = 0

  T=0

Q = 1

    T=1    

    T=1    

  T=0

T Flip-Flop
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All flip-flops are edge triggered on the clock input C.

• SR flip-flop:

If the S input is asserted, then the bit stored in the flip-flop is set. If the R input is asserted, then
the bit stored in the flip-flop is cleared. If the S and R inputs are both asserted, then the flip-flop
behaviour is undefined. If neither S nor R is set, then the bit stored in the flip-flop does not change.

• JK flip-flop:

If the J input is asserted, then the bit stored in the flip-flop is set. If the K input is asserted, then
the bit stored in the flip-flop is cleared. If the J and K inputs are both asserted, then the bit stored
in the flip-flop is toggled, i.e., it moves from 0 to 1 or from 1 to 0. If neither J nor K is set, then the
bit stored in the flip-flop does not change.

• D flip-flop:

If the D input is asserted, then the bit stored in the flip-flop is set. If the D input is not asserted,
then the bit stored in the flip-flop is cleared.

• T flip-flop:

The T flip-flop toggles the bit stored in the flip-flop. If the T input is asserted, the bit stored in the
flip-flop is toggled. Otherwise, the bit does not change.
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Section 25: Von Neumann Computer Architecture

23 Combinational Digital Circuits

24 Sequential Digital Circuits

25 Von Neumann Computer Architecture
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Von Neumann computer architecture

• Control unit contains an instruction
register and a program counter

• Arithmetic/logic unit (ALU) performs
integer arithmetic and logical
operations

• Processor registers provide small
amount of storage as part of a central
processing unit

• The memory unit stores data and program instructions

• The central processing unit (CPU) carries out the actual computations
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• Mass storage and input/output devices communicate with the central processing unit.

• The memory unit stores both data and program instructions.

• The ALU contains many basic digital circuits, such as N-bit adder and comparator.

• The processor usually operates on binary data with a certain number of bits (8-bit processor,
16-bit processor, 32-bit processor, 64-bit processor).

• The processor is controlled by a clock (usually measured in GHz) that drives the actions performed
by the central processing unit.

• Instructions may need one or multiple clock cycles to be carried out.

• A central processing unit may try to “overlap” the execution of instructions (e.g., fetch and decode
the next instruction while the current instruction is carried out in the ALU).

• Modern systems often have multiple tightly integrated central processing units (often called cores)
in order to perform computations concurrently.

The von Neumann architecture is quite popular but there have been other proposals. Most widely know
is the Harvard architecture, which separates instruction memory from data memory.

Further online information:

• Wikipedia: von Neumann architecture
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Computer system bus (data, address, and control)

Memory Input and
Output

Control bus

Address bus

Data bus S
ys

te
m

 b
us

CPU • The data bus transports data
(primarily between registers and main
memory).

• The address bus selects which memory
cell is being read or written.

• The control bus activates components
and steers the data flow over the data
bus and the usage of the address bus.

• The Peripheral Component Interconnect (PCI) is an example of a CPU external
system bus (exists in multiple versions)
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Parallel busses carry data words in parallel using multiple wires. Parallel busses are highly efficient if
the distance between the components is small. Close to the central processing unit, busses are usually
parallel. Examples of parallel busses:

• PATA: Parallel Advanced Technology Attachment (primarily used to connect hard drives, also
known as IDE)

• SCSI: Small Computer System Interface (SCSI) (primarily used to connect external storage de-
vices)

• PCI: Peripheral Component Interconnect (primarily used internally to interconnect computer com-
ponents)

Serial busses carry data in bit-serial form over simple wires. Serial busses are highly efficient if the
distance to cover is long. Examples of serial busses:

• SATA: Serial ATA (primarily used to connect hard drives)

• PCI-E: Peripheral Component Interconnect Express (serial bus designed to replace PCI)

• RS-232: Recommended Standards 232 (very old serial bus widely used for low-speed communi-
cation)

• USB: Universal Serial Bus (primarily used to connect external devices)

• Thunderbold: (combines PCI Express with a video interface)

Further online information:

• Wikipedia: Bus (computing)
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Simple Central Processing Unit

Control

Instruction Register

Decoder Multiplexer

Program Counter

Arithmetic Logic Unit

Accumulator

0

7

8

9

9

C

D

1

2

3

4

5

6

A

B

E

F

Memory

+1

Central Processing Unit

Data

Address
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This is a model of a very simple central processing unit.

• The Accumulator (a single register) is used to carry out all operations.

• The Accumulator is connected to the Arithmetic/Logic Unit, which consists of digital circuits (such
as an 8-bit adder).

• The Instruction Register holds the current instruction being executed.

• The Decoder determines from the Instruction which digital circuit needs to be activated.

• The Multiplexor controls whether the operand is read from a memory cell or out of the Instruction
itself.

• The Program Counter holds the address of the current instruction in the Random Access Memory
(RAM).

• The +1 circuit increments the Program Counter after each instruction.

Real CPUs usually have multiple registers, they provide vary instruction sets and registers to support
different privilege levels, and they have special units for floating point arithmetic or cryptographic oper-
ations.
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Instruction cycle (fetch – decode – execute cycle)

while True:

instruction = fetch();

advance_program_counter();

decode(instruction);

execute(instruction);

• The CPU runs in an endless
loop fetching instructions,
decoding them, and executing
them.

• The set of instructions a CPU
can execute is called the
CPU’s machine language

• Typical instructions are to add two N-bit numbers, to test whether a certain register
is zero, or to jump to a certain position in the ordered list of machine instructions.

• An assembly programming language is a mnemonic representation of machine code.
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Further online information:

• Wikipedia: Instruction cycle

• Wikipedia: Machine code

• Wikipedia: Assembly language

• YouTube: Inside the CPU - Computerphile

• YouTube: Fetch Decode Execute Cycle in more detail
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Simple Machine Language

Op-code Instruction Function

001 LOAD Load the value of the operand into the accumulator
010 STORE Store the value of the accumulator at the address specified by

the operand
011 ADD Add the value of the operand to the accumulator
100 SUB Subtract the value of the operand from the accumulator
101 EQUAL If the value of the operand equals the value of the Accumu-

lator, skip the next instruction
110 JUMP Jump to a specified instruction by setting the program counter

to the value of the operand
111 HALT Stop execution

• Each instruction of the machine language is encoded into 8 bits:
• 3 bits are used for the op-code
• 1 bit indicates whether the operand is a constant (1) or a memory address (0)
• 4 bits are used to carry a constant or a memory address (the operand)
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Further online information:

• http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html
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Program #1 in our simple machine language

Cell Machine Code Assembler Description

0 001 1 0010 LOAD #2 acc = 2
1 010 0 1101 STORE 13 m[13] = acc
2 001 1 0101 LOAD #5 acc = 5
3 010 0 1110 STORE 14 m[14] = acc
4 001 0 1101 LOAD 13 acc = m[13]
5 011 0 1110 ADD 14 acc += m[14]
6 010 0 1111 STORE 15 m[15] = acc
7 111 0 0000 HALT stop

• What is an equivalent C program?
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Below is a trace of the execution of the program (showing the initial memory content, the machine
instructions executed (PC = program counter, IR = instruction register, ACC = accumulator), and the
final memory content. Numbers starting with 0x are in hexadecimal notation.

MEM = 0x32 4d 35 4e 2d 6e 4f e0 00 00 00 00 00 00 00 00

1: PC= 0 IR= 0x32 ACC= 0x02 ; LOAD #2

2: PC= 1 IR= 0x4d ACC= 0x02 ; STORE 13

3: PC= 2 IR= 0x35 ACC= 0x05 ; LOAD #5

4: PC= 3 IR= 0x4e ACC= 0x05 ; STORE 14

5: PC= 4 IR= 0x2d ACC= 0x02 ; LOAD 13

6: PC= 5 IR= 0x6e ACC= 0x07 ; ADD 14

7: PC= 6 IR= 0x4f ACC= 0x07 ; STORE 15

8: PC= 7 IR= 0xe0 ACC= 0x07 ; HALT

MEM = 0x32 4d 35 4e 2d 6e 4f e0 00 00 00 00 00 02 05 07
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Program #2 in our simple machine language

Cell Machine Code Assembler Description

0 001 1 0101 LOAD #5 acc = 5
1 010 0 1111 STORE 15 m[15] = acc
2 001 1 0000 LOAD #0 acc = 0
3 101 0 1111 EQUAL 15 if acc == m[15] skip
4 110 1 0110 JUMP #6 pc = 6
5 111 0 0000 HALT halt
6 011 1 0001 ADD #1 acc += 1
7 110 1 0011 JUMP #3 pc = 3

• What is an equivalent C program?
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Below is a trace of the execution of the program using the same notation as used before.

MEM = 0x35 4f 30 af d6 e0 71 d3 00 00 00 00 00 00 00 00

1: PC= 0 IR= 0x35 ACC= 0x05 ; LOAD #5

2: PC= 1 IR= 0x4f ACC= 0x05 ; STORE 15

3: PC= 2 IR= 0x30 ACC= 0x00 ; LOAD #0

4: PC= 3 IR= 0xaf ACC= 0x00 ; EQUAL 15

5: PC= 4 IR= 0xd6 ACC= 0x00 ; JUMP #6

6: PC= 6 IR= 0x71 ACC= 0x01 ; ADD #1

7: PC= 7 IR= 0xd3 ACC= 0x01 ; JUMP #3

8: PC= 3 IR= 0xaf ACC= 0x01 ; EQUAL 15

9: PC= 4 IR= 0xd6 ACC= 0x01 ; JUMP #6

10: PC= 6 IR= 0x71 ACC= 0x02 ; ADD #1

11: PC= 7 IR= 0xd3 ACC= 0x02 ; JUMP #3

12: PC= 3 IR= 0xaf ACC= 0x02 ; EQUAL 15

13: PC= 4 IR= 0xd6 ACC= 0x02 ; JUMP #6

14: PC= 6 IR= 0x71 ACC= 0x03 ; ADD #1

15: PC= 7 IR= 0xd3 ACC= 0x03 ; JUMP #3

16: PC= 3 IR= 0xaf ACC= 0x03 ; EQUAL 15

17: PC= 4 IR= 0xd6 ACC= 0x03 ; JUMP #6

18: PC= 6 IR= 0x71 ACC= 0x04 ; ADD #1

19: PC= 7 IR= 0xd3 ACC= 0x04 ; JUMP #3

20: PC= 3 IR= 0xaf ACC= 0x04 ; EQUAL 15

21: PC= 4 IR= 0xd6 ACC= 0x04 ; JUMP #6

22: PC= 6 IR= 0x71 ACC= 0x05 ; ADD #1

23: PC= 7 IR= 0xd3 ACC= 0x05 ; JUMP #3

24: PC= 3 IR= 0xaf ACC= 0x05 ; EQUAL 15

25: PC= 5 IR= 0xe0 ACC= 0x05 ; HALT

MEM = 0x35 4f 30 af d6 e0 71 d3 00 00 00 00 00 00 00 05
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Improvements of the Simple Machine Language

• We can improve our simple machine language in a number of ways:

1. Moving to a 16-bit instruction format, where 6 bits are used to identify op-codes
(allowing up to 64 instructions), 2 bits are used for different addressing modes, and
8 bits are used as operands (giving us an address space of 256 memory cells).

2. Adding additional registers so that intermediate results do not always have to be
written back to memory.

3. Adding indirect addressing modes using base registers in order to move to 16-bit
address spaces (65536 memory cells).

4. Adding support for function calls and returns to modularize assembly code and to
support code reuse.

• Some processors often use variable length instruction formats where an instruction
may take one or several bytes to encode the instruction.
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Call Stacks and Stack Frames

Definition (call stack and stack frames)

A call stack holds a stack frame for every active function call. A stack frame provides
memory space to store

1. the return address to load into the program counter when the function returns,

2. local variables that exist during an active function call,

3. arguments that are passed into the function or results returned by the function.

To support function calls, a CPU needs to provide

• a register pointing to the top of the call stack (stack pointer),

• a register pointing to the start of the current stack frame (frame pointer),

• a mechanism to call a function (allocating a new stack frame on the call stack),

• an mechanism to return from a function (deleting a stack frame from the stack).
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The drawing below shows a typical call stack growing downwards from large addresses towards small
addresses. Each active function call results in a stack frame where the return address, a frame pointer,
saved registers, function arguments and local variables are stored. Stack frames enable nested and
recursive function calls. They also provide a very efficient way to allocate memory for local variables.

0xffffffff

: : : :

| .-> +======================+ -:

| | | saved return address | |

| | +----------------------+ |

'-|-- | saved frame pointer | | previous

| +----------------------+ | stack

| : saved registers : | frame

| : function arguments : |

| : local variables : |

fp ----> +======================+ -:

| | saved return address | |

| +----------------------+ |

'-- | saved frame pointer | | current

+----------------------+ | stack

: saved registers : | frame

: function arguments : |

: local variables : |

sp ----> +======================+ -'

v v

0x00000000
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Function call prologue and epilogue

Definition (function call prologue)

A function call prologue is a sequence of machine instructions at the beginning of a
function that prepare the stack and the registers for use in the function.

Definition (function call epilogue)

A function call epilogue is a sequence of machine instructions at the end of a function
that restores the stack and CPU registers to the state they were in before the function
was called.

Definition (stack and frame pointer)

The stack pointer is a register pointing to the beginning of the function call stack. The
frame pointer is a register pointing to the beginning of the current stack frame.
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RISC-V Instruction Set Architecture

Name Description Version Status

RV32I Base Integer Instruction Set, 32-bit 2.1 Ratified
RV64I Base Integer Instruction Set, 64-bit 2.1 Ratified
M Integer Multiplication and Division 2.0 Ratified
A Atomic Instructions 2.1 Ratified
F Single-Precision Floating-Point 2.2 Ratified
D Double-Precision Floating-Point 2.2 Ratified
Zicsr Control and Status Register (CSR) 2.0 Ratified
Zifencei Instruction-Fetch Fence 2.0 Ratified
C Compressed Instructions 2.0 Ratified
. . . . . .

• Open source RISC instruction set architecture (UC Berkeley, 2010)
• Meanwhile owned by RISC-V International, a Swiss nonprofit business association
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The RISC-V base 32-bit integer ISA [18] supports 32 registers, each register being 32 bit long, plus
a 32-bit program counter. The 64-bit integer ISA expands all registers to 64-bit. The following table
summarizes how the registers are commonly used.

Register ABI Name Description

x0 zero Hard-wired zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5-7 t0-2 Temporaries
x8 s0/fp Saved register / frame pointer
x9 s1 Saved register
x10-11 a0-1 Function arguments / return value
x12-17 a2-7 Function arguments
x18-27 s2-s11 Saved registers
x28-31 t3-6 Temporaries

pc pc Program counter

The saved registers s0 to s11 are typically preserved across function calls, while the argument registers
a0 to a7 and the temporary registers t0 to t6 are not.

The ISA supports a minimalistic set of instructions. Assemblers often support additional pseudo instruc-
tions that make assembler code more readable but essentially expand to ISA instructions. For example,
the nop (no operation) assembler instruction translates into addi x0, x0, 0, which says add 0 to zero

and store the result into zero.

Further online information:

• YouTube: emulsiV: A visual simulator for the RISC-V instruction set

• Web: emulsiV: A visual simulator for the RISC V instruction set
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Inst Name Description (C) Note

add ADD rd = rs1 + rs2

sub SUB rd = rs1 - rs2

xor XOR rd = rs1 ^ rs2

or OR rd = rs1 | rs2

and AND rd = rs1 & rs2

sll Shift Left Logical rd = rs1 << rs2

srl Shift Right Logical rd = rs1 >> rs2

sra Shift Right Arith* rd = rs1 >> rs2 msb-extends
slt Set Less Than rd = (rs1 < rs2) ? 1 : 0

sltu Set Less Than (U) rd = (rs1 < rs2) ? 1 : 0 zero-extends

addi ADD Immediate rd = rs1 + imm

xori XOR Immediate rd = rs1 ^ imm

ori OR Immediate rd = rs1 | imm

andi AND Immediate rd = rs1 & imm

slli Shift Left Logical Imm rd = rs1 << imm[0:4]

srli Shift Right Logical Imm rd = rs1 >> imm[0:4]

srai Shift Right Arith Imm rd = rs1 >> imm[0:4] msb-extends
slti Set Less Than Imm rd = (rs1 < imm)?1:0

sltiu Set Less Than Imm (U) rd = (rs1 < imm)?1:0 zero-extends

lb Load Byte rd = M[rs1+imm][0:7] zero-extends
lh Load Half rd = M[rs1+imm][0:15] zero-extends
lw Load Word rd = M[rs1+imm][0:31]

lbu Load Byte (U) rd = M[rs1+imm][0:7]

lhu Load Half (U) rd = M[rs1+imm][0:15]

sb Store Byte M[rs1+imm][0:7] = rs2[0:7]

sh Store Half M[rs1+imm][0:15] = rs2[0:15]

sw Store Word M[rs1+imm][0:31] = rs2[0:31]

beq Branch == if (rs1 == rs2) PC += imm

bne Branch != if (rs1 != rs2) PC += imm

blt Branch < if (rs1 < rs2) PC += imm

bge Branch ≥ if (rs1 >= rs2) PC += imm

bltu Branch < (U) if (rs1 < rs2) PC += imm zero-extends
bgeu Branch ≥ (U) if (rs1 >= rs2) PC += imm zero-extends

jal Jump And Link rd = PC+4; PC += imm

jalr Jump And Link Reg rd = PC+4; PC = rs1 + imm

lui Load Upper Imm rd = imm << 12

auipc Add Upper Imm to PC rd = PC + (imm << 12)

ecall Environment Call Transfer control to OS

ebreak Environment Break Transfer control to debugger

RV32I Base Integer Instructions (derived from https://github.com/jameslzhu/riscv-card).
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RISC-V Software and Hardware

• Software
• GNU compiler toolchain for RISC V (C compiler, assembler, linker)
• Linux running on RISC V
• RISC V emulation using qemu
• Educational software (simulators)

• Hardware
• Boards similar to Arduino
• Boards similar to Raspberry Pi
• BeagleV similar to Beagle Boards
• ESP32-C embedded WLAN MCU
• Open source FPGA implementations
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RISC V processors are not yet performing at the speed of established mobile/desktop/server CPUs
(arm, x86) that have been optimized over several decades. However, having an open ISA enables
research on RISC-V technology and industrial implementations are catching up.

Below is a hello world program written in C that can be compiled to run on the emulsiV RISC-V simulator.

1 /*

2 * emulsiv/hello.c

3 */

4

5 #define EMULSIV_OUT_ADDR 0xc0000000

6

7 void putc(char c)

8 {

9 char *out = (char *) (EMULSIV_OUT_ADDR);

10 *out = c;

11 }

12

13 int print(char *s)

14 {

15 int i;

16

17 for (i = 0; s[i]; i++) {

18 putc(s[i]);

19 }

20 return i;

21 }

22

23 void main(void)

24 {

25 print("Hello Emulsiv!\n");

26 }
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Comiling the C code using gcc 8.3.0 with optimizations turned off gives us the following RISC-V assem-
bler code. Comments were added manually to make it easy to understand the assembler code and how
it relates to the C code.

1 print:

2 addi sp,sp,-48 ; sp = sp - 48 ; allocate stack frame

3 sw ra,44(sp) ; mem[sp+44] = ra ; save the return address

4 sw s0,40(sp) ; mem[sp+40] = sfp ; save frame pointer

5 addi s0,sp,48 ; sfp = sp + 48 ; set new frame pointer

6 sw a0,-36(s0) ; mem[sfp-36] = a0 ; save argument s

7 sw zero,-20(s0) ; mem[sfp-20] = 0 ; initialize variable i

8 j .L2 ; pc = .L2 ; jump to .L2

9 .L1:

10 lw a5,-20(s0) ; a5 = sfp[-20] ; load i into a5

11 lw a4,-36(s0) ; a4 = sfp[-36] ; load s into a4

12 add a5,a4,a5 ; a5 = a4 + a5 ; calc s+i

13 lbu a5,0(a5) ; a5 = mem[a5] ; load mem[s+i]

14 mv a0,a5 ; a0 = a5 ; load argument

15 call putc ; ; call putc()

16 lw a5,-20(s0) ; a5 = sfp[-20] ; load i

17 addi a5,a5,1 ; a5 = a5 + 1 ; increment i

18 sw a5,-20(s0) ; mem[sfp-20] = a5 ; store i

19 .L2:

20 lw a5,-20(s0) ; a5 = sfp[-20] ; load i into a5

21 lw a4,-36(s0) ; a4 = sfp[-36] ; load s into a4

22 add a5,a4,a5 ; a5 = a4 + a5 ; calc s+i

23 lbu a5,0(a5) ; a5 = mem[a5] ; load mem[s+i]

24 bne a5,zero,.L4 ; pc = .L1 if a5 != 0

25 lw a5,-20(s0) ; a5 = sfp[-20] ; load i into a5

26 mv a0,a5 ; a0 = a5 ; load return value

27 lw ra,44(sp) ; ra = mem[sp+44] ; restore return address

28 lw s0,40(sp) ; sfp = mem[sp+40] ; restore frame pointer

29 addi sp,sp,48 ; sp = sp + 48 ; deallocate stack frame

30 jr ra ; ; jump to return address

Obviously, the assembler code is not very smart since it carries out redundant machine instructions.
The code changes significantly once compiler optimizations are enabled.
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Part VI

System Software

System software is all the software needed to make a barebone computer do useful things. This includes
the operating system kernel, compilers, linkers, and so on.

In this part, we first take a look at compilers and interpreters in order to get a rough idea how they
function and differ from each other. Afterwards, we take a look at some of the services provided by
operating systems in order to understand how the (concurrent) execution of multiple programs can be
organized. We will also touch on some of the higher level abstractions operating system kernels usually
provide to programs.

By the end of this part, students should be able to

• explain the difference between compiled and interpreted programming languages;

• illustrate some optimizations performed by an optimizing compiler;

• describe the processing phases of a compiler;

• define multi-language and multi-target compilers;

• elaborate the purpose of an abstract syntax tree;

• use the backus-naur form to define some simple formal languages;

• outline the basic working principle of an interpreter;

• enumerate the differences between virtual machines and emulators;

• name services and abstractions provided by an operating system;

• understand the process lifecycle on POSIX operating systems;

• explain filesystems concepts and file system operations;

• motivate the relevance of different inter-process communication services.
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Section 26: Interpreter and Compiler

26 Interpreter and Compiler

27 Operating Systems
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Are there better ways to write machine or assembler code?

• Observations:
• Writing machine code or assembler code is difficult and time consuming.
• Maintaining machine code or assembler code is even more difficult and time

consuming (and most cost is spent on software maintenance).

• A high-level programming language is a programming language with strong
abstraction from the low-level details of the computer.

• Rather than dealing with registers and memory addresses, high-level languages deal
with variables, arrays, objects, collections, complex arithmetic or boolean
expressions, subroutines and functions, loops, threads, locks, and other abstract
computer science concepts, with a focus on usability over optimal program
efficiency.
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Higher-level programming languages are often designed (at least originally) to be implemented either
with a compiler or an interpreter.

Examples of (typically) compiled programming languages:

• C, C++, Java, C#, Objective C, Rust, Go, Pascal, Fortran, Cobol, . . .

Examples of (typically) interpreted programming languages:

• Python, PHP, JavaScript, Perl, Basic, Bash, . . .

Many (typically) interpreted languages are not executed by pure interpreters anymore these days. Mod-
ern interpreters often compile the source code into an intermediate byte-code format, which is executed
by a byte-code interpreter. However, this internal compilation step is usually transparent for the user;
the languages keep their highly interactive programming interface, and they do not require an explicit
compilation step to be initiated by the programmer.
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RISC-V machine code (gcc 12.2.0 without optimizations)

/* C source code */

int main(void)

{

int a = 5;

int b = 2;

int c = a + b;

return c;

}

00000044 <main>:

44: fe010113 addi sp,sp,-32

48: 00812e23 sw s0,28(sp)

4c: 02010413 addi s0,sp,32

50: 00500793 li a5,5

54: fef42623 sw a5,-20(s0)

58: 00200793 li a5,2

5c: fef42423 sw a5,-24(s0)

60: fec42703 lw a4,-20(s0)

64: fe842783 lw a5,-24(s0)

68: 00f707b3 add a5,a4,a5

6c: fef42223 sw a5,-28(s0)

70: fe442783 lw a5,-28(s0)

74: 00078513 mv a0,a5

78: 01c12403 lw s0,28(sp)

7c: 02010113 addi sp,sp,32

80: 00008067 ret
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Assuming the source code is in the file ’add.c’, type the following commands into your shell:

1 $ gcc -o add add.c

2 $ ./add

3 $ echo $?

The first command calls the gcc compiler and instructs it to compile and link the source code contained
in add.c into an executable file add. The second command executes the program add stored in the
current directory. The third command prints (echoes) the result of the last program execution, which is
stored in the shell variable $?. You should see the number 7 printed to the terminal.

The objdump utility can be used to disassemble the machine code generated by the gcc compiler.
Disassembling means the translation of binary machine code into a mnemonic representation humans
can read more easily. Here is a description of the disassembled machine instructions:

1 main:

2 addi sp,sp,-32 ; allocate a new stack frame

3 sw s0,28(sp) ; save old frame pointer

4 addi s0,sp,32 ; setup the new frame pointer

5 li a5,5 ; load 5 into register a5

6 sw a5,-20(s0) ; save a5 in the stack frame

7 li a5,2 ; load 2 into register a5

8 sw a5,-24(s0) ; save a5 in the stack frame

9 lw a4,-20(s0) ; load 5 from the stack frame into a4

10 lw a5,-24(s0) ; load 2 from the stack frame into a5

11 add a5,a4,a5 ; add a4 and a5 and place the result in a5

12 sw a5,-28(s0) ; save a5 in the stack frame

13 lw a5,-28(s0) ; load a5 from the stack frame

14 mv a0,a5 ; copy a5 to a2 (a2 returns the result)

15 lw s0,28(sp) ; restore the old frame pointer

16 addi sp,sp,32 ; deallocate the stack frame

17 jr ra ; return from function call
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RISC-V machine code (gcc 12.2.0 with optimizations)

/* C source code */

int main(void)

{

int a = 5;

int b = 2;

int c = a + b;

return c;

}

00000044 <main>:

44: 00700513 li a0,7

48: 00008067 ret
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With optimization enabled, the compiler detected that the expression only depends on constants and
thus the expression can be evaluated at compile time instead of runtime. Furthermore, the compiler
determined that the variables a, b, and c are not used outside of the function main() and hence it is not
necessary to store any values in the stack frame and since no other function is called from main(), it is
not necessary to have a stack frame at all.

As a result, the function now translates into two instructions (8 bytes of machine code): one to load the
constant 7 into register a0 and one to return from the function. The previous version used 16 instructions
(64 bytes of machine code).

A compiler can be smart and produce machine code that is optimized for a certain processor archi-
tecture. More generally, an optimizing compiler can rewrite parts of the program logic as long as the
execution leads to the same runtime behavior.

Most of the time, compilers optimize for speed but it is also possible to ask the compiler to optimize
for space. In this example, we got both a speed and a size improvement. In some cases, however,
machine code may become longer in order to achieve better execution time (e.g., inlining of functions
or loop unrolling).
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Phases of a Compiler

Source File Lexical Analysis
  source code  

Syntax Analysis

  sequence of token

Semantic Analysis

  parse tree

Intermediate Code Generation

  abstract syntax tree

Optimization

  intermediate code

Target Code Generation

  optimized intermediate code

Object File
 machine code  
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A compiler translates source code to machine code in several phases:

1. The lexical analysis phase converts a sequence of characters into a sequence of tokens. The
tokens can have attributes, such as the name of an identifier or the value of a constant. The
format of the different tokens is often specified using regular expressions.

2. The syntax analysis phase turns the sequence of tokens into a parse tree. This is done by match-
ing the sequence of tokens against syntax rules. The syntactic structure of programming lan-
guages is commonly defined using a formal grammar, which is a set of rules defining the structure
of syntactically correct programs. A program is syntactically correct if the syntax analysis is able
to derive a syntax tree conforming to the grammar of the programming language. (A syntactically
correct program is considered to be a word of the language of all syntactically correct programs.)

3. The semantic analysis phase adds semantic information to the parse tree, resulting in an abstract
syntax tree. Semantic annotations concern for example type information and the determination
whether the program is using types correctly.

4. The intermediate code generation phase converts the abstract syntax tree into an intermediate
code representation. The intermediate code is abstract and not specific to any target machine
languages. For example, intermediate code may assume that there is an arbitrary large number
of registers.

5. The optimization phase optimizes the intermediate code. Optimizations include the removal of
unreachable code, inlining of short frequently used code, unrolling of loops, moving invariant code
out of loops, evaluating constant expressions, and many more things.

6. The target code generation phase converts the intermediate code into code for the target machine
languages. Compilers often generate assembler code that is finally converted by an assembler
into machine code. During the target code generation phase, the final allocation of registers or
the exact format of stack frames is decided. Some optimizations that are specific to a given target
machine language happen at this stage.
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Multi-language and Multi-target Compiler

Source File Language A

Frontend Language A

  source code

Source File Language B

Frontend Language B

  source code

Optimizer

 intermediate code

Backend Target M

  intermediate code

Backend Target N

Object File Target M

  machine code

Object File Target N

  machine code
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Multi-language compiler support multiple language frontends that produce a common abstract syntax
tree. Multi-language compiler enable the reuse of the compiler backend phases, most importantly the
code optimization and code generation phases. The construction of multi-language compiler is, how-
ever, non-trivial since the intermediate formats need to be able to express all features of all programming
languages supported.

Multi-target compiler generate code for multiple target machine architectures. This can be achieved by
integrating code generators for different machine languages. Modern compiler usually support multiple
targets.

Two popular generic compiler infrastructures are the GNU compiler collection (gcc) provided by the
GNU project and the LLVM compiler infrastructure provided by the LLVM Project. The GNU compiler
project started around 1987, the LLVM project is much more recent, it started around 2004 [14].

Further online information:

• Wikipedia: Compiler

• Web: GNU Compiler Collection

• Web: LLVM Compiler Infrastructure
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Abstract Syntax Tree Example

statement
sequence

while-stmt return

while-bodywhile-condition variable
name: a

compare
op: !=

variable
name: b

constant
value: 0

if-stmt

if-condition if-body else-body

compare
op: > assignment assignment

variable
name: a

variable
name: b

variable
name: a

operation
op: -

variable
name: b

operation
op: -

variable
name: a

variable
name: b

variable
name: b

variable
name: a

Euclidean algorithm to find the greatest
common divisor of a and b:

int gcd(int a, int b)

{

while (b != 0) {

if (a > b) {

a = a - b;

} else {

b = b - a;

}

}

return a;

}
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From a compiler perspective, programmers are simply busy people writing trees down in a linear fash-
ion...
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Backus-Naur-Form and Formal Languages

The syntax of programming languages is commonly defined using syntax rules. A
common notation for syntax rules is the Backus-Naur-Form (BNF):

• Terminal symbols are enclosed in quotes

• Non-terminal symbols are enclosed in <>

• A BNF rule consists of a non-terminal symbol followed by the defined-as operator
::= and a rule expression

• A rule expression consists of terminal and non-terminal symbols and operators; the
empty operator denotes contatenation and the | operator denotes an alternative

• Parenthesis may be used to group elements of a rule expression

A set of BNF rules has a non-terminal starting symbol.
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Example: Let Σ = {0, 1, . . . , 9, x, y, z,+, ∗, (, )}.
1 <expression> ::= <term> | <expression> "+" <term>

2 <term> ::= <factor> | <term> "*" <factor>

3 <factor> ::= <constant> | <variable> | "(" <expression> ")"

4 <variable> ::= "x" | "y" | "z"

5 <constant> ::= <digit> | <digit> <constant>

6 <digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

Using <expression> as a start symbol, the grammar defines a simplified format of expressions. Here
is a sample step-by-step derivation:

<expression>

-> <expression> + <term>

-> <term> + <term>

-> <factor> + <term>

-> <factor> + <term> * <factor>

-> <constant> + <term> * <factor>

-> <digit> <constant> + <term> * <factor>

-> <digit> <digit> + <term> * <factor>

-> <digit> <digit> + <factor> * <factor>

-> <digit> <digit> + <constant> * <factor>

-> <digit> <digit> + <digit> * <factor>

-> <digit> <digit> + <digit> * <variable>

-> 42+8*x

While a grammar can be used to derive a word of the language from a start symbol, it can also be used
to reduce a given input to the start symbol if the input is a valid word of the language. This is used by
compilers to test whether a given program text is a (syntactically) valid word of the language.

The BNF of the Haskell language can be found in Section 10.5 of the Haskell 2010 report [16].
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Interpreter

• A basic interpreter parses a statement, executes it, and moves on to the next
statement (very similar to a fetch-decode-execute cycle).

• More advanced interpreter do a syntactic analysis to determine syntactic
correctness before execution starts.

• Properties:
• Highly interactive code development (trial-and-error coding)
• Limited error detection capabilities before code execution starts
• Interpretation causes a certain runtime overhead
• Development of short pieces of code can be very fast

• Examples: command interpreter (shells), scripting languages
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Interpreters often implement read–eval–print loops (REPLs). REPLs facilitate exploratory programming
because the programmer can inspect the result before deciding which expression to provide for the next
read. The read–eval–print loop is more interactive than the edit-compile-run-debug cycle of compiled
languages.

However, highly interactive REPLs can also trick programmers to spend a lot of time on trial-and-error
coding efforts in situations where thinking about the problem and the algorithms to solve a problem
would have been overall more time effective.
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Compiler and Interpreter

[1] Source Code --> Interpreter

[2] Source Code --> Compiler --> Machine Code

[3] Source Code --> Compiler --> Byte Code --> Interpreter

[4] Source Code --> Compiler --> Byte Code --> Compiler --> Machine Code

• An interpreter is a computer program that directly executes source code written in a higher-level
programming language.

• A compiler is a program that transforms source code written in a higher-level programming
language (the source language) into a lower-level computer language (the target language).
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• Many modern high-level programming languages use both compilation and interpretation

– Source code is first compiled (either using an explicit compilation step or on-the-fly) into an
intermediate byte code.

– The byte code is afterwards interpreted by an byte-code interpreter.

– As an optimization, the byte code might be further compiled to machine code (on-the-fly
compilation).

• Byte-code is often generated for Stack Machines that differ from Register Machines by not having
registers and performing all operations on a stack.

• An interpreter is usually written in a higher-level programming language and compiled into ma-
chine code.

Further online information:

• Wikipedia: Register machine

• Wikipedia: Stack machine
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Virtual Machines and Emulators

Definition (virtual machine)

A virtual machine (VM) replicates the computer architecture and functions of the
underlying real physical computer.

Definition (emulator)

An emulator emulates the functions of one computer system (the guest system) on
another computer system (the host system) where the emulated guest system can be
different from the underlying host system.

• Terminology is not very consistent, people commonly refer to the software running
on an emulator as a virtual machine.
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Virtual machines were invented in the 1970s (mainframes) and reinvented in the 1990s (personal com-
puters). Virtual machines and emulators have facilitated the development of cloud computing since they
are easy to start / stop / clone / migrate and they separate the software implementing services form the
underlying hardware.

• The software virtualizing the underlying hardware is called a hypervisor.

• Full virtualization: Virtual machines run a complete operating system inside of the virtual machine.
The hypervisor virtualizes all aspects of the underlying hardware (e.g., VmWare).

• Operating-system level virtualization: Virtual machines (often called virtual servers) all run on a
single underlying operating system instance; virtualization is achieved by partitioning operating
system services (e.g., Linux Container).

• Paravirtualization: Virtual machines different operating systems that have been adapted to redirect
certain services to a special designated operating system instance (e.g., Xen).

Further online information:

• Wikipedia: Emulator

• Wikipedia: Virtual machine
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Section 27: Operating Systems

26 Interpreter and Compiler

27 Operating Systems
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Hardware vs. System Software vs. Application Software

System Libraries

Operating System Kernel

Integrated circuits

Microprogramms

Machine language

Memory Devices

system calls

Hardware

System
Software

library calls

interrupts

Shells, Editors, Utilities, Compiler, Linker, ...

Browser, Databases, Office Software, Games, ...
Software
Application
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The operating system kernel provides services to application programs. Applications use services
provided by the kernel by making system calls. The operating system kernel controls all hardware
components and mediates between the hardware and application programs. The kernel executes at
a different privilege level and uses hardware assisted mechanisms to isolate applications from each
other. Application programs are written against the system call interface (and associated libraries).
Some relevant Linux tools to understand the difference between library and system calls:

• The strace tool can trace the system calls made by a program at runtime.

• The ltrace tool can trace the library calls made by a program at runtime.

Below is a hello world program in RISC-V assembler language using Linux system calls:

1 /*

2 * Writes "Hello World" to the console using only system calls. Runs on

3 * rv64 Linux only. To assemble and run:

4 *

5 * gcc -c hello-rv64-syscall.s && ld -static hello-rv64-syscall.o && ./a.out

6 */

7

8 .global _start

9 .text

10 _start:

11 # write(1, message, 12)

12 addi a0, zero, 1 # file handle 1 is stdout

13 la a1, message # address of string to write

14 addi a2, zero, 12 # number of bytes to write

15 addi a7, zero, 64 # system call 64 is write

16 ecall # invoke write system call

17 # exit(0)

18 addi a0, zero, 0 # we want return code 0

19 addi a7, zero, 93 # system call 93 is exit

20 ecall # invoke exit system call

21 message:

22 .ascii "Hello World\n"
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Operating System Kernel Functions

• Execute many programs concurrently (instead of just one program at a time)

• Assign resources to running programs (memory, CPU time, . . . )

• Ensure a proper separation of concurrent processes

• Enforce resource limits and provide means to control processes

• Provide logical filesystems on top of block-oriented raw storage devices

• Control and coordinate input/output devices (keyboard, display, . . . )

• Provide basic network communication services to applications

• Provide input/output abstractions that hide device specifics

• Enforce access control rules and privilege separation

• Provide a well defined application programming interface (API)
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Below is a hello world in RISC-V assembler language using a Linux system library function:

1 /*

2 * Writes "Hello World" to the console using a C library. Runs on Linux

3 * rv64 Linux any other rv64 system that does not use underscores for

4 * symbols in its C library. To assemble and run:

5 *

6 * gcc -static hello-rv64-libc.s && ./a.out

7 */

8

9 .global main

10 .text

11 main: # called by C library's startup code

12 addi sp, sp, -16 # allocate stack frame

13 sd ra, 8(sp) # save return address

14 sd s0, 0(sp) # save frame pointer

15 addi s0, sp, 16 # establish new frame pointer

16 la a0, message # first parameter passed in a0

17 jal puts # call puts(message)

18 addi a0, zero, 0 # we want return code 0

19 ld ra, 8(sp) # restore return address

20 ld s0, 0(sp) # restore frame pointer

21 addi sp, sp, 16 # deallocate stack frame

22 ret # return to C library code

23 message:

24 .asciz "Hello World" # asciz puts a 0 byte at the end

Further online information:

• Wikipedia: Operating system
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OS Abstraction #1: Processes and Process Lifecycle

Definition (process)

An instance of a computer program that is being executed is called a process.

• The OS kernel maintains information about each running process and assigns
resources and ensures protection of concurrently running processes.

• In Unix-like Operating Systems

- a new process is created by “cloning” (forking) an already existing process
- a process may load a new program image (machine code) to execute
- a terminating process returns a number to its parent process
- a parent process can wait for child processes to terminate

⇒ A very basic command interpreter can be written in a few lines of code.
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Relevant Linux command line tools to inspect the processes running on a system:

• The tool ps shows a list of processes.

• The tool pstree shows the process tree.

• The tool top periodically shows the list of processes (and threads) sorted by some sorting criteria.

Further online information:

• Wikipedia: Process
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OS Abstraction #1: Processes and Process Lifecycle

write(prompt)

time

fork()

exec("date")

wait()read(...)

date

bash

write(...) exit(0)

read(...)
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The figure illustrates what happens if you type date into a command interpreter like the bash shell. The
shell uses a read() system call to read the input. It then invokes the fork() system call to create a
clone of itself. It then waits for the clone (child process) to finish by invoking the wait() system call.
The child process uses the exec() system call to replace the current process image with the process
image of the date program. The child process finally exits by calling exit(). The process stays around
until the exit code has been delivered to the parent process.

Description of the system calls:

• The fork() system call creates a new child process which is an exact copy of the parent process,
except that the result of the system call differs: 0 is returned to the new process, the process
number of the new process is returned to the parent process.

• The exec() system call replaces the current process image with a new process image.

• The wait() system call waits for a child process to exit.

• The exit() system call terminates the calling process. (Returning from main() eventually leads
to a call of exit().)
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OS Abstraction #1: Processes and Process Lifecycle

while (1) {

show_prompt(); /* display prompt */

read_command(); /* read and parse command */

pid = fork(); /* create new process */

if (pid < 0) { /* continue if fork() failed */

perror("fork");

continue;

}

if (pid != 0) { /* parent process */

waitpid(pid, &status, 0); /* wait for child to terminate */

} else { /* child process */

execvp(args[0], args, 0); /* execute command */

perror("execvp"); /* only reach on exec failure */

_exit(1); /* exit without any cleanups */

}

}

Jürgen Schönwälder (Constructor University) Introduction to Computer Science: System Software CC-BY-NC-ND July 14, 2024 241 / 1

1 module Main where

2

3 import System.IO

4 import System.Exit (exitSuccess)

5 import System.Posix.Process (forkProcess, getProcessStatus, executeFile)

6 import Control.Monad (forever, when)

7

8 runCmd :: [String] -> IO ()

9 runCmd [] = return ()

10 runCmd args = do

11 pid <- forkProcess $ executeFile (head args) True (tail args) Nothing

12 getProcessStatus True False pid

13 return ()

14

15 exitCmd :: IO ()

16 exitCmd = do

17 exitSuccess

18

19 nextCmd :: IO ()

20 nextCmd = do

21 putStr "hsh > "

22 done <- isEOF

23 when done exitCmd

24 line <- getLine

25 when (line == "exit") exitCmd

26 runCmd (words line)

27

28 main :: IO ()

29 main = do

30 hSetBuffering stdout NoBuffering -- make stdout unbuffered

31 forever nextCmd
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OS Abstraction #2: File Systems

• Files are persistent containers for the storage of data

• Unstructured files contain a sequence of bytes

• Applications interpret the content of a file in a specific way

• Files also have meta data (owner, permissions, timestamps)

• Hierarchical file systems use directories to organize files into a hierarchy

• Names of files and directories at one level of the hierarchy usually have to be unique

• The operating system maps the logical structure of a hierarchical file system to a
block-oriented storage device

• The operating system must ensure file system integrity

• The operating system may support compression and encryption of file systems
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• It is difficult to design a file system that satisfies to some extend conflicting requirements:

– It should be fast and at the same time it should maintain data integrity.

– It should not show any aging effects.

– It should work with small and large block storage devices.

– It should work with slow and fast block storage devices.

– It should work well for small and large files.

– It should support file names with international character sets.

– . . .

• General purpose file systems try to find a balance but in general there is not a single ’best’ file
system.

Further online information:

• Wikipedia: File systems
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OS Abstraction #2: File Systems (Unix)

..

2

4 5

76

8 9

..

..

bin

etc

ls vi

usr vmunix

.

.

. .

..

• The logical structure of a typical Unix
file system

• The . in a directory always refers to
the directory itself

• The .. in a directory always refers to
the parent directory, except in the root
directory

• A link is a reference of a file system
object from a directory

• Any file system changes need to
maintain the integrity of these links
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• Some file system operations require updates of multiple data blocks.

• As a consequence, file systems can be temporarily inconsistent.

• If a file system became inconsistent, it needs to be repaired by special programs. Sometimes this
leads to data loss.

• Warning: Removing a file often means only that the name refering to the data blocks is removed
(the link to the file is removed, the file is unlinked).

• Classic storage devices store data on a (rotating) magnetic surface. The magnetic surface ’re-
members’ data even if it was overwritten. Solid state storage devices do not show this behavior.
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OS Abstraction #2: File and Directory Operations (Unix)

File operations

open() open a file
read() read data from the

current file position
write() write data at the cur-

rent file position
seek() seek to a file position
stat() read meta data
close() close an open file
unlink() remove a link to a file

Directory operations

mkdir() create a directory
rmdir() delete a directory
chdir() change to a directory

opendir() open a directory
readdir() read a directory entry
closedir() close a directory
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1 module Main where

2

3 import Control.Monad

4 import System.Environment

5 import System.Directory

6 import System.FilePath.Posix

7

8 ls :: FilePath -> IO ()

9 ls path = do

10 dirExists <- doesDirectoryExist path

11 when dirExists $ do

12 all <- filter (`notElem` [".", ".."]) <$> getDirectoryContents path

13 mapM_ putStrLn all

14 unless dirExists $ putStrLn path

15

16 main :: IO ()

17 main = do

18 args <- getArgs

19 mapM_ ls args
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OS Abstraction #3: Communication

• Primitives to support communication between processes:
• Signals (software interrupts)
• Pipes (local unidirectional byte streams)
• Sockets (local and global bidirectional byte or datagram streams)
• Shared memory (memory regions shared between multiple processes)
• Message queues (a queue of messages between multiple processes)
• . . .

• Sockets are an abstraction for communication between processes over the Internet
• Internet communication starts with resolving names to (numeric) addresses
• In many cases, a connection is then established between a client and a server
• Data exchanges require encoding and decoding functions to achieve interoperability
• Network protocols implemented in the kernel handle the communication flow

Jürgen Schönwälder (Constructor University) Introduction to Computer Science: System Software CC-BY-NC-ND July 14, 2024 245 / 1

1 {-# LANGUAGE OverloadedStrings #-}

2

3 module Main where

4

5 import qualified Control.Exception as E

6 import qualified Data.ByteString.Char8 as C

7 import Network.Socket

8 import Network.Socket.ByteString (recv, sendAll)

9

10 tcpClient :: HostName -> ServiceName -> (Socket -> IO a) -> IO a

11 tcpClient host port client = withSocketsDo $ do

12 addr <- resolve

13 E.bracket (open addr) close client

14 where

15 resolve = do

16 let hints = defaultHints { addrSocketType = Stream }

17 head <$> getAddrInfo (Just hints) (Just host) (Just port)

18 open addr = do

19 sock <- socket (addrFamily addr) (addrSocketType addr) (addrProtocol addr)

20 connect sock $ addrAddress addr

21 return sock

22

23 httpGet :: HostName -> ServiceName -> IO ()

24 httpGet host port = tcpClient host port $ \s -> do

25 sendAll s $ C.pack ("GET / HTTP/1.0\r\nHost:" ++ host ++ "\r\n\r\n")

26 msg <- recv s 1024

27 C.putStrLn msg

28

29 main :: IO ()

30 main = do

31 httpGet "cnds.jacobs-university.de" "http"

Further online information:

• Wikipedia: Inter-process communication
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Part VII

Software Correctness

We generally want our software to be correct. In this part, we define software correctness and we study
a classic technique, called the Floyd-Hoare logic, to prove the correctness of programs written in a
simple imperative programming language.

Once we have developed the necessary ideas to prove the correctness of programs, we will investigate
ways to automate some of the software verification process. The treatment of Floyd-Hoare triples and
Floyd-Hoare logic is largely based on Mike Gordon’s execellent “Background reading on Hoare Logic”.

By the end of this part, students should be able to

• recall the difference between partial and total correctness;

• articulate Floyd-Hoare triples and preconditions and postconditions;

• elaborate the role and importance of formal software specifications;

• describe the rules of the Hoare logic for program verification;

• illustrate precondition strengthening and postcondition weakening;

• explain the relevance of the weakest precondition and the strongest postcondition;

• sketch how annotations help to (partially) automate software verification;

• demonstrate how loop invariants are used for partial correctness proofs;

• outline how loop variants are used for total correctness proofs..
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Section 28: Software Specification

28 Software Specification

29 Software Verification

30 Automation of Software Verification
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Formal Specification and Verification

Definition (formal specification)

A formal specification uses a formal (mathematical) notation to provide a precise
definition of what a program should do.

Definition (formal verification)

A formal verification uses logical rules to mathematically prove that a program satisfies
a formal specification.

• For many non-trivial problems, creating a formal, correct, and complete
specification is a problem by itself.

• A bug in a formal specification leads to programs with verified bugs.
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Processors (CPUs) are designed using hardware description languages and we commonly assume that
processors are correct. However, efficient designs introduce significant complexity and this increases
the likelihood of introducing bugs. Fixing design flaws after silicon has been produced and deployed
is very expensive. A classic example is the Intel Pentium FDIV bug discovered in 1994. Many more
processor design flaws have been discovered since then.

Modern compilers are also very complex software designs, but still they tend to be super reliable for
most users. One reason is that they are tested extensively and serious bugs can be fixed relatively
quickly. This is a fundamental difference to systems that are difficult to fix once deployed. Creating
certified correct compilers is still a very complex undertaking but required in some parts of the industry
where safety-critical code must be written.

Further online information:

• Wikipedia: Pentium FDIV bug
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Floyd-Hoare Triple

Definition (hoare triple)

Given a state that satisfies precondition P , executing a program C (and assuming it
terminates) results in a state that satisfies postcondition Q. This is also known as the
“Hoare triple”:

{P} C {Q }

• Invented by Charles Anthony (“Tony”) Richard Hoare with original ideas from
Robert Floyd (1969).

• Hoare triple can be used to specify what a program should do.

• Example:
{X = 1} X := X + 1 {X = 2 }
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The classic publication introducing Hoare logic is [7]. Tony Hoare has made several other notable
contributions to computer science: He invented the basis of the Quicksort algorithm (published in 1962)
and he has developed the formalism Communicating Sequential Processes (CSP) to describe patterns
of interaction in concurrent systems (published in 1978).

P and Q are logcial expressions on program variables. They are written using standard mathematical
notation and logical operators. The predicate P defines the subset of all possible states for which a
program C is defined. Similarly, the predicate Q defines the subset of all possible states for which the
program’s result is defined.

It is possible that different programs satisfy the same specification:

{X = 1 } Y := 2 {X = 1 ∧ Y = 2 }

{X = 1 } Y := 2 ∗X {X = 1 ∧ Y = 2 }
{X = 1 } Y := X +X {X = 1 ∧ Y = 2 }
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Partial Correctness and Total Correctness

Definition (partial correctness)

An algorithm starting in a state that satisfies a precondition P is partially correct with
respect to P and Q if results produced by the algorithm satisfy the postcondition Q.
Partial correctness does not require that a result is always produced, i.e., the algorithm
may not terminate for some inputs.

Definition (total correctness)

An algorithm is totally correct with respect to P and Q if it is partially correct with
respect to P and Q and it always terminates.
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The distinction between partial correctness and total correctness is of fundamental importance. Total
correctness requires termination, which is generally impossible to prove in an automated way as this
would require to solve the famous halting problem. Alan Turing proved in 1936 that a general algorithm
to solve the halting problem for all possible program-input pairs cannot exist.

A definition of the form {P} C {Q } usually provides a partial correctness specification. We use the
notation [ P ] C [ Q ] for a total correctness specification.

Further online information:

• YouTube: How This One Question Breaks Computers
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Hoare Notation Conventions

1. The symbols V , V1, . . . , Vn stand for arbitrary variables. Examples of particular
variables are X , Y , R etc.

2. The symbols E , E1, . . . , En stand for arbitrary expressions (or terms). These are
expressions like X + 1,

√
2 etc., which denote values (usually numbers).

3. The symbols S , S1, . . . , Sn stand for arbitrary statements. These are conditions
like X < Y , X 2 = 1 etc., which are either true or false.

4. The symbols C , C1 , . . . , Cn stand for arbitrary commands of our programming
language; these commands are described on the following slides.

• We will use lowercase letters such as x and y to denote auxiliary variables (e.g., to
denote values stored in variables).
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We are focusing in the following on a purely imperative programming model where a global set of
variables determines the current state of the computation. A subset of the variables are used to provide
the input to an algorithm and another subset of the variables provides the output of an algorithm.

Note that we talk about a programming language consisting of commands and we use the term state-
ments to refer to conditions. This may be a bit confusing since programming languages often call our
commands statements and they may call our statements conditions.
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Hoare Assignments

• Syntax: V := E

• Semantics: The state is changed by assigning the value of the expression E to the
variable V . All variables are assumed to have global scope.

• Example: X := X + 1
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Hoare Skip Command

• Syntax: SKIP

• Semantics: Do nothing. The state after executing the SKIP command is the same
as the state before executing the SKIP command.

• Example: SKIP
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The SKIP command does nothing. It is still useful since it allows us to construct a single conditional
command.

246



Hoare Command Sequences

• Syntax: C1; . . . ;Cn

• Semantics: The commands C1, . . . ,Cn are executed in that order.

• Example: R := X ;X := Y ;Y := R
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The example sequence shown above swaps the content of X and Y . Note that it has a side-effect since
it also assigns the initial value of X to R. A specification of the swap program as a Floyd-Hoare triple
would be the following:

{ X = x ∧ Y = y } R := X;X := Y ;Y := R { X = y ∧ Y = x }

Since the program does not involve any loops, we can easily specify total correctness as well:

[ X = x ∧ Y = y ] R := X;X := Y ;Y := R [ X = y ∧ Y = x ]
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Hoare Conditionals

• Syntax: IF S THEN C1 ELSE C2 FI

• Semantics: If the statement S is true in the current state, then C1 is executed. If S
is false, then C2 is executed.

• Example: IF X < Y THEN M := Y ELSE M := X FI
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Note that we can use SKIP to create conditional statements without a THEN or ELSE branch:

IF S THEN C ELSE SKIP FI

IF S THEN SKIP ELSE C FI

248



Hoare While Loop

• Syntax: WHILE S DO C OD

• Semantics: If the statement S is true in the current state, then C is executed and
the WHILE-command is repeated. If S is false, then nothing is done. Thus C is
repeatedly executed until the value of S becomes false. If S never becomes false,
then the execution of the command never terminates.

• Example: WHILE ¬(X = 0) DO X := X − 2 OD
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Our notation uses a convention that was popular in the 1970s to denote the end of a programming
language construct by repeating a keyword with the letters reversed. An early programming language
using this notation was Algol 68. You find similar syntactic ideas in Bourne shells (if / fi, case / esac).
More modern languages tend to use curly braces instead or they require suitable indentation to find the
end of a command sequence.
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Termination can be Tricky

1: function collatz(X )
2: while X > 1 do
3: if (X%2) ̸= 0 then
4: X ← (3 · X ) + 1
5: else
6: X ← X/2
7: end if
8: end while
9: return X
10: end function

• Collatz conjecture: The program will eventually return the number 1, regardless of
which positive integer is chosen initially.
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This program calculates the so called Collatz sequence. The Collatz conjecture says that no matter
what value of n ∈ N you start with, the sequence will always reach 1. For example, starting with n = 12,
one gets the sequence 12, 6, 3, 10, 5, 16, 8, 4, 2, 1.

Further online information:

• Wikipedia: Collatz conjecture

• YouTube: The Simplest Math Problem No One Can Solve - Collatz Conjecture
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Specification can be Tricky

• Specification for the maximum of two variables:

{T} C { Y = max(X ,Y ) }
• C could be:

IF X > Y THEN Y := X ELSE SKIP FI

• But C could also be:

IF X > Y THEN X := Y ELSE SKIP FI

• And C could also be:

Y := X

• Use auxiliary variables x and y to associate Q with P :

{ X = x ∧ Y = y } C { Y = max(x , y) }
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Obviously, multiple programs can satisfy a given specification:

{ X = 1 } Y := 2 { X = 1 ∧ Y = 2 }

{ X = 1 } Y := X + 1 { X = 1 ∧ Y = 2 }
{ X = 1 } Y := 2 ∗X { X = 1 ∧ Y = 2 }

A slightly more complex example (factorial):

Precondition: {X > 0 ∧X = x}
1: F := 1
2: while X > 0 do
3: F := F ·X
4: X := X − 1
5: od

Postcondition: {F = x!}
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Section 29: Software Verification

28 Software Specification

29 Software Verification

30 Automation of Software Verification
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Floyd-Hoare Logic

• Floyd-Hoare Logic is a set of inference rules that enable us to formally proof partial
correctness of a program.

• If S is a statement, we write ⊢ S to mean that S has a proof.

• The axioms of Hoare logic will be specified with a notation of the following form:

⊢ S1, . . . ,⊢ Sn

⊢ S

• The conclusion S may be deduced from ⊢ S1, . . . ,⊢ Sn, which are the hypotheses
of the rule.

• The hypotheses can be theorems of Floyd-Hoare logic or they can be theorems of
mathematics.
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So far we have discussed the formal specification of software using preconditions and postconditions
and we have introduced a simple imperative programming language consisting essentially of variables,
expressions and variable assignments, a conditional command, a loop command, and command se-
quences. The next step is to define inference rules that allow us to make inferences over the commands
of this simple programming language. This will give us a formal framework to prove that a program pro-
cessing input satisfying the precondition will produce a result satisfying the postcondition.

Floyd-Hoare logic is a deductive proof system for Floyd-Hoare triples. It can be used to extract ver-
ification conditions (VCs), which are proof obligations or proof subgoals that must be proven so that
{ P } C { Q } is true.
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Precondition Strengthening

• If P implies P ′ and we have shown {P ′} C {Q}, then {P} C {Q} holds as well:

⊢ P → P ′, ⊢ {P ′} C {Q}
⊢ {P} C {Q}

• Example: Since ⊢ X = n→ X + 1 = n + 1, we can strengthen

⊢ { X + 1 = n + 1 } X := X + 1 { X = n + 1 }

to
⊢ { X = n } X := X + 1 { X = n + 1 }.
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The precondition P is stronger than P ′ (P → P ′) if the set of states {s|s ⊢ P} ⊆ {s|s ⊢ P ′}.
Precondition strengthening applied to the assignment axiom gives us a triple that feels more intuitive.
But keep in mind that ⊢ { X = n } X := X + 1 { X = n + 1 } has been derived by combining the
assignment axiom with precondition strengthening.
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Postcondition Weakening

• If Q ′ implies Q and we have shown {P} C {Q ′}, then {P} C {Q} holds as well:

⊢ {P} C {Q ′}, ⊢ Q ′ → Q

⊢ {P} C {Q}

• Example: Since X = n + 1→ X > n, we can weaken

⊢ { X = n } X := X + 1 { X = n + 1 }

to
⊢ { X = n } X := X + 1 { X > n }
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The postcondition Q is weaker than Q′ (Q′ → Q) if the set of states {s|s ⊢ Q′} ⊆ {s|s ⊢ Q}.
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Weakest Precondition

Definition (weakest precondition)

Given a program C and a postcondition Q, the weakest precondition wp(C ,Q) denotes
the largest set of states for which C terminates and the resulting state satisfies Q.

Definition (weakest liberal precondition)

Given a program C and a postcondition Q, the weakest liberal precondition wlp(C ,Q)
denotes the largest set of states for which C leads to a resulting state satisfying Q.

• The “weakest” precondition P means that any other valid precondition implies P .

• The definition of wp(C ,Q) is due to Dijkstra (1976) and it requires termination
while wlp(C ,Q) does not require termination.
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In Hoare Logic, we can usually define many valid preconditions. For example, all of the following are
valid Hoare triples:

⊢ { X = 1 } X := X + 1 { X > 0 }

⊢ { X > 0 } X := X + 1 { X > 0 }
⊢ { X > −1 } X := X + 1 { X > 0 }

Obviously, the second preconditions is weaker than the first since X = 1 implies X > 0. With a similar
argument, the third precondition is weaker than the second since X > 0 implies X > −1. How does the
precondition X = 0 compare to the second and third alternative?

The weakest liberal precondition for X := X + 1 and the postcondition X > 0 is:

wlp(X := X + 1, X > 0) = (X > −1)

Since we can assume that the assignment always terminates in this specific case, we have:

wp(X := X + 1, X > 0) = wlp(X := X + 1, X > 0) = (X > −1)
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Strongest Postcondition

Definition (stronges postcondition)

Given a program C and a precondition P , the strongest postcondition sp(C ,P) has the
property that ⊢ { P } C { sp(C ,P) } and for any Q with ⊢ { P } C { Q }, we have
⊢ sp(C ,P)→ Q.

• The “strongest” postcondition Q means that any other valid postcondition is
implied by Q (via postcondition weakening).
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Our goal is to find the weakest precondition and the strongest postcondition. This translates into finding
the largest set of states that are valid inputs of the computation C and the smallest set of possible result
states. Finding P = wp(C,Q) makes it easy to cover any P ′ for which P ′ → P holds. Similarly, finding
Q = sp(C,P ) makes it easy to cover any Q′ for which Q→ Q′ holds.

Q −> Q’

P

{P} C {Q}

P’ −> P

Q

Q’
C

P’
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Assignment Axiom

• Let P[E/V ] (P with E for V ) denote the result of substituting the expression E for
all occurances of the variable V in the statement P .

• An assignment assigns a variable V an expression E :

⊢ { P[E/V ] } V := E { P }

• Example:
{ X + 1 = n + 1 } X := X + 1 { X = n + 1 }
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The assignment axiom kind of works backwards. In the example, we start with P , which is {X = n+1}.
In P , we substitute E, which is X + 1, for V , which is X. This gives us {X + 1 = n+ 1}.
Note that the term E is evaluated in a state where the assignment has not yet been carried out. Hence,
if a statement P is true after the assignment, then the statement obtained by substituting E for V in P
must be true before the assignment.

Two common erroneous intuitions:

1. ⊢ {P} V := E {P [V/E]}
This has the consequence ⊢ { X = 0 } X := 1 { X = 0 } since X = 0[X/1] is equal to X = 0
(since 1 does not occur in X = 0).

2. ⊢ {P} V := E {P [E/V ]}
This has the consequence ⊢ { X = 0 } X := 1 { 1 = 0 } since one would substitute X with 1 in
X = 0.

Warning: An important assumption here is that expressions have no side effects that modify the program
state. The assignment axiom depends on this property. (Many real-world programming languages,
however, do allow side effects.) To see why side effects cause problems, consider an expression (C;E)
that consists of a command C and an expression E, e.g. (Y := 1; 2). With this, we would get ⊢ { Y =
0 } X := (Y := 1; 2) { Y = 0 } (the substitution would not affect Y ).
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Specification Conjunction and Disjunction

• If we have shown { P1 } C { Q1 } and { P2 } C {Q2}, then
{ P1 ∧ P2 } C { Q1 ∧ Q2 } holds as well:

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∧ P2} C {Q1 ∧ Q2}

• We get a similar rule for disjunctions:

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∨ P2} C {Q1 ∨ Q2}

• These rules allows us to prove ⊢ { P } C { Q1 ∧ Q2 } by proving both
⊢ { P } C { Q1 } and ⊢ { P } C { Q2 }.
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The rules can be easily understood by looking at the sets of states satisfying the predicates. The
conjunction P1 ∧ P2 translates to the intersection of the corresponding sets of states and in the same
way the conjunction Q1 ∧Q2 translates to the intersection of the corresponding sets of states. The rule
then follows directly from the fact that { P1 ∧ P2 } C { Q1 ∧ Q2 } maps from the intersection to the
intersection.

P2

Q1

Q2

C

P1

The disjunction P1 ∨ P2 translates to the union of the sets of states associated with P1 and P2 and the
disjunction Q1 ∨ Q2 to the union of the sets of states associated with Q1 and Q2. In order to cover the
entire space, it is necessary that both { P1 } C { Q1 } and { P2 } C { Q2 } are true.

P2

Q1

Q2

C

C

P1
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Skip Command Rule

• Syntax: SKIP

• Semantics: Do nothing. The state after executing the SKIP command is the same
as the state before executing the command SKIP .

• Skip Command Rule:

⊢ {P} SKIP {P}
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Sequence Rule

• Syntax: C1; . . . ;Cn

• Semantics: The commands C1, . . . ,Cn are executed in that order.

• Sequence Rule:

⊢ {P} C1 {R}, ⊢ {R} C2 {Q}
⊢ {P} C1;C2 {Q}

The sequence rule can be easily generalized to n > 2 commands:

⊢ {P} C1 {R1}, ⊢ {R1} C2 {R2}, . . . , ⊢ {Rn−1} Cn {Q}
⊢ {P} C1;C2; . . . ;Cn {Q}
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Example (swapping two numbers):

Precondition: { X = x ∧ Y = y }
1: R := X
2: X := Y
3: Y := R

Postcondition: { X = y ∧ Y = x }

The proof of the correctness of the sequence of assignments is broken down into the following steps:

(i) ⊢ { X = x ∧ Y = y } R := X { R = x ∧ Y = y } (assignment axiom)

(ii) ⊢ { R = x ∧ Y = y } X := Y { R = x ∧X = y } (assignment axiom)

(iii) ⊢ { R = x ∧X = y } Y := R { Y = x ∧X = y } (assignment axiom)

(iv) ⊢ { X = x ∧ Y = y } R := X;X := Y { R = x ∧X = y } (sequence rule for (i) and (ii))

(v) ⊢ { X = x ∧ Y = y } R := X;X := Y ;Y := R { Y = x ∧X = y } (sequence rule for (iv) and (iii))
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Conditional Command Rule

• Syntax: IF S THEN C1 ELSE C2 FI

• Semantics: If the statement S is true in the current state, then C1 is executed. If S
is false, then C2 is executed.

• Conditional Rule:

⊢ {P ∧ S} C1 {Q}, ⊢ {P ∧ ¬S} C2 {Q}
⊢ {P} IF S THEN C1 ELSE C2 FI {Q}
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Consider the following specification and program (max):

Precondition: { X = x ∧ Y = y }
1: if X ≥ Y then
2: M := X
3: else
4: M := Y
5: fi

Postcondition: {M = max(x, y) }

In order to prove the partial correctness of this program, we have to prove the correctness of the two
assignments under the statement X ≥ Y being either true or false. The application of the assignment
axiom gives us the following two statements:

{ X = x ∧ Y = y ∧X ≥ Y }M := X {M = x ∧X = x ∧ Y = y ∧X ≥ Y }

{ X = x ∧ Y = y ∧X < Y }M := Y {M = y ∧X = x ∧ Y = y ∧X < Y }
The definition of max(x, y) we are going to use is the following:

max(x, y) =

{
x x ≥ y
y x < y

This gives us the following implications:

M = x ∧X = x ∧ Y = y ∧X ≥ Y →M = max(x, y)

M = y ∧X = x ∧ Y = y ∧X < Y →M = max(x, y)

Postcondition weakening gives us:

{ X = x ∧ Y = y ∧X ≥ Y }M := X {M = max(x, y) }

{ X = x ∧ Y = y ∧X < Y }M := Y {M = max(x, y) }
Applying the conditional rule, we get:

{ X = x ∧ Y = y } IF X ≥ Y THEN M := X ELSE M := Y FI {M = max(x, y) }
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While Command Rule

• Syntax: WHILE S DO C OD

• Semantics: If the statement S is true in the current state, then C is executed and
the WHILE-command is repeated. If S is false, then nothing is done. Thus C is
repeatedly executed until the value of S becomes false. If S never becomes false,
then the execution of the command never terminates.

• While Rule:

⊢ {P ∧ S} C {P}
⊢ {P} WHILE S DO C OD {P ∧ ¬S}

P is an invariant of C whenever S holds. Since executing C preserves the truth of
P , executing C any numbner of times also preserves the truth of P .
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Finding invariants is the key to prove the correctness of while loops. The invariant should

• say what has been done so far together with what remains to be done;

• hold at each iteration of the loop;

• give the desired result when the loop terminates.

Example (factorial):

Precondition: { Y = 1 ∧ Z = 0 ∧X = x ∧X ≥ 0 }
1: while Z ̸= X do
2: Z := Z + 1
3: Y := Y ∗ Z
4: od

Postcondition: { Y = x! }

We need to find an invariant P such that:

• { P ∧ Z ̸= X } Z := Z + 1; Y := Y ∗ Z { P } (while rule)

• Y = 1 ∧ Z = 0→ P (precondition strengthening)

• P ∧ ¬(Z ̸= X)→ Y = X! (postcondition weakening)

The invariant Y = Z! serves the purpose:

• Y = Z! ∧ Z ̸= X → Y · (Z + 1) = (Z + 1)!
{ Y · (Z + 1) = (Z + 1)! } Z := Z + 1 { Y · Z = Z! } (assignment axiom)
{ Y · Z = Z! } Y := Y ∗ Z { Y = Z! } (assignment axiom)
{ Y = Z! } Z := Z + 1; Y := Y ∗ Z { Y = Z! } (sequence rule)

• Y = 1 ∧ Z = 0→ Y = Z! since 0! = 1

• Y = Z! ∧ ¬(Z ̸= X)→ Y = X! since ¬(Z ̸= X) is equivalent to Z = X
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Section 30: Automation of Software Verification

28 Software Specification

29 Software Verification

30 Automation of Software Verification
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Proof Automation

• Proving even simple programs manually takes a lot of effort

• There is a high risk to make mistakes during the process

• General idea how to automate the proof:

(i) Let the human expert provide annotations of the specification (e.g., loop invariants)
that help with the generation of proof obligations

(ii) Generate proof obligations automatically (verification conditions)
(iii) Use automated theorem provers to verify some of the proof obligations
(iv) Let the human expert prove the remaining proof obligations (or let the human

expert provide additional annotations that help the automated theorem prover)

• Step (ii) essentially compiles an annotated program into a conventional
mathematical problem.
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Consider the following program:

Precondition: {⊤}
1: R := X
2: Q := 0
3: while Y ≤ R do
4: R := R− Y
5: Q := Q+ 1
6: od

Postcondition: {X = Y ·Q+R ∧R < Y }
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Annotations

• Annotations are required

(i) before each command Ci (with i > 1) in a sequence C1;C2; . . . ;Cn, where Ci is not
an assignment command and

(ii) after the keyword DO in a WHILE command (loop invariant)

• The inserted annotation is expected to be true whenever the execution reaches the
point of the annotation.

• For a properly annotated program, it is possible to generate a set of proof goals
(verification conditions).

• It can be shown that once all generated verification conditions have been proved,
then ⊢ {P} C {Q}.
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We add suitable annotations:

Precondition: {⊤}
1: R := X
2: Q := 0
3: {R = X ∧Q = 0}
4: while Y ≤ R do
5: {X = Y ·Q+R}
6: R := R− Y
7: Q := Q+ 1
8: od

Postcondition: {X = Y ·Q+R ∧R < Y }

This should (ideally automatically) lead to the following proof obligations (verification conditions):

1. ⊤ → (X = X ∧ 0 = 0)

2. (R = X ∧Q = 0)→ (X = Y ·Q+R)

3. (X = Y ·Q+R ∧ ¬(Y ≤ R))→ (X = Y ·Q+R ∧R < Y )

4. (X = Y ·Q+R ∧ Y ≤ R)→ (X = Y · (Q+ 1) + (R− Y )
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Generation of Verification Conditions

• Assignment {P} V := E {Q}:
Add verification condition P → Q[E/V ].

• Conditions {P} IF S THEN C1 ELSE C2 FI {Q}
Add verification conditions generated by {P ∧ S} C1 {Q} and {P ∧ ¬S} C2 {Q}
• Sequences of the form {P} C1; . . . ;Cn−1; {R} Cn {Q}
Add verification conditions generated by {P} C1; . . . ;Cn−1 {R} and {R} Cn {Q}
• Sequences of the form {P} C1; . . . ;Cn−1; V := E {Q}
Add verification conditions generated by {P} C1; . . . ;Cn−1 {Q[E/V ]}
• While loops {P} WHILE S DO {R} C OD {Q}
Add verification conditions P → R and R ∧ ¬S → Q
Add verificiation conditions generated by {R ∧ S} C {R}
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Starting with the annotated example:

Precondition: {⊤}
1: R := X
2: Q := 0
3: {R = X ∧Q = 0}
4: while Y ≤ R do
5: {X = Y ·Q+R}
6: R := R− Y
7: Q := Q+ 1
8: od

Postcondition: {X = Y ·Q+R ∧R < Y }

According to the second sequence rule, we have to generate VCs for the while loop and the sequence
consisting of the initial assignments. The initial assignments reduce to ⊤ → (X = X ∧0 = 0) as follows:

{⊤} R := X; Q := 0 {R = X ∧Q = 0}
{⊤} R := X {R = X ∧ 0 = 0}
⊤ → (X = X ∧ 0 = 0)

The while loop rule gives us the following two VCs

(R = X ∧Q = 0)→ (X = Y ·Q+R)

(X = Y ·Q+R ∧ ¬(Y ≤ R))→ (X = Y ·Q+R ∧R < Y )

and the VC generated as follows:

{X = Y ·Q+R ∧ Y ≤ R} R := R− Y ; Q := Q+ 1 {X = Y ·Q+R}
{X = Y ·Q+R ∧ Y ≤ R} R := R− Y ; {X = Y · (Q+ 1) +R}
(X = Y ·Q+R ∧ Y ≤ R)→ (X = Y · (Q+ 1) + (R− Y ))
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Total Correctness

• We assume that the evaluation of expressions always terminates.

• With this simplifying assumption, only WHILE commands can cause loops that
potentially do not terminate.

• All rules for the other commands can simply be extended to cover total correctness.

• The assumption that expression evaluation always terminates is often not true.
(Consider recursive functions that can go into an endless recursion.)

• We have so far also silently assumed that the evaluation of expressions always
yields a proper value, which is not the case for a division by zero.

• Relaxing our assumptions for expressions is possible but complicates matters
significantly.
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If C does not contain any while commands, then we have the simple rule:

⊢ {P} C {Q}
⊢ [P ] C [Q]
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Rules for Total Correctness [1/4]

• Assignment axiom
⊢ [P[E/V ]] V := E [P]

• Precondition strengthening

⊢ P → P ′, ⊢ [P ′] C [Q]

⊢ [P] C [Q]

• Postcondition weakening

⊢ [P] C [Q ′], ⊢ Q ′ → Q

⊢ [P] C [Q]
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Rules for Total Correctness [2/4]

• Specification conjunction

⊢ [P1] C [Q1], ⊢ [P2] C [Q2]

⊢ [P1 ∧ P2] C [Q1 ∧ Q2]

• Specification disjunction

⊢ [P1] C [Q1], ⊢ [P2] C [Q2]

⊢ [P1 ∨ P2] C [Q1 ∨ Q2]

• Skip command rule

[P] SKIP [P]
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Rules for Total Correctness [3/4]

• Sequence rule

⊢ [P] C1 [R1], ⊢ [R1] C2 [R2], . . . , ⊢ [Rn−1] Cn [Q]

⊢ [P] C1;C2; . . . ;Cn [Q]

• Conditional rule
⊢ [P ∧ S ] C1 [Q], ⊢ [P ∧ ¬S ] C2 [Q]

⊢ [P] IF S THEN C1 ELSE C2 FI [Q]
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Rules for Total Correctness [4/4]

• While rule

⊢ [P ∧ S ∧ E = n] C [P ∧ (E < n)], ⊢ P ∧ S → E ≥ 0

⊢ [P] WHILE S DO C OD [P ∧ ¬S ]

E is an integer-valued expression
n is an auxiliary variable not occuring in P , C , S , or E

• A prove has to show that a non-negative integer, called a variant, decreases on
each iteration of the loop command C .
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We show that the while loop in the following program terminates.

Precondition: {⊤}
1: R := X
2: Q := 0
3: while Y ≤ R do
4: R := R− Y
5: Q := Q+ 1
6: od

Postcondition: {X = Y ·Q+R ∧R < Y }

We apply the while rule with

P = Y > 0

S = Y ≤ R
E = R

and we have to show the following to be true:

1. [P ∧ S ∧ E = n] R := R− Y ;Q := Q+ 1 [P ∧ (E < n)]

This follows from the following derivation:

[P ∧ S ∧ E = n] R := R− Y ;Q := Q+ 1 [P ∧ (E < n)]

[Y > 0 ∧ Y ≤ R ∧R = n] R := R− Y ;Q := Q+ 1 [Y > 0 ∧ (R < n)]

Y > 0 ∧ Y ≤ R ∧R = n→ Y > 0 ∧ (R < n)[Q+ 1/Q][R− Y/R]
Y > 0 ∧ Y ≤ R ∧R = n→ Y > 0 ∧ ((R− Y ) < n)

2. P ∧ S → E ≥ 0

This follows from:

P ∧ S → E ≥ 0

Y > 0 ∧ Y ≤ R→ R > 0
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Generation of Termination Verification Conditions

• The rules for the generation of termination verificiation conditions follow directly
from the rules for the generation of partial correctness verificiation conditions,
except for the while command.

• To handle the while command, we need an additional annotation (in square
brackets) that provides the variant expression.

• For while loops of the form {P} WHILE S DO {R} [E ] C OD {Q} add the
verification conditions

P → R

R ∧ ¬S → Q

R ∧ S → E ≥ 0

and add verificiation conditions generated by {R ∧ S ∧ (E = n)} C {R ∧ (E < n)}
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Annotated example including the variant annotation for termination verification rule generation:

Precondition: {⊤}
1: R := X
2: Q := 0
3: {R = X ∧Q = 0}
4: while Y ≤ R do
5: {X = Y ·Q+R}
6: [R]
7: R := R− Y
8: Q := Q+ 1
9: od

Postcondition: {X = Y ·Q+R ∧R < Y }

The while loop rule gives use the following termination VCs

(R = X ∧Q = 0)→ (X = Y ·Q+R)

(X = Y ·Q+R ∧ ¬(Y ≤ R))→ (X = Y ·Q+R ∧R < Y )

(X = Y ·Q+R ∧ (Y ≤ R))→ R ≥ 0

and the VC generated as follows:

{X = Y ·Q+R ∧ Y ≤ R ∧R = n} R := R− Y ; Q := Q+ 1 {X = Y ·Q+R ∧R < n}
{X = Y ·Q+R ∧ Y ≤ R ∧R = n} R := R− Y ; {X = Y · (Q+ 1) +R ∧R < n}
(X = Y ·Q+R ∧ Y ≤ R ∧R = n)→ (X = Y · (Q+ 1) + (R− Y ) ∧ (R− Y ) < n)

The last VC is not true in general and hence the algorithm does not always terminate:

Y = 0 :

((X = R ∧ 0 ≤ R ∧R = n)→ (X = R ∧R < n))→ ⊥

Y < 0 :

((X = Y ·Q+R ∧ Y ≤ R ∧R = n)→ (X = Y · (Q+ 1) + (R− Y ) ∧ (R− Y ) < n))→ ⊥
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Termination and Correctness

• Partial correctness and termination implies total correctness:

⊢ {P} C {Q}, ⊢ [P] C [T]

⊢ [P] C [Q]

• Total correctness implies partial correctness and termination:

⊢ [P] C [Q]

⊢ {P} C {Q}, ⊢ [P] C [T]
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