
Introduction to Computer Science Module: CH-232
Constructor University Date: 2023-10-20
Dr. Jürgen Schönwälder Due: 2023-10-27

Problem Sheet #7

Problem 7.1: not-or is a universal boolean function (3 points)

Prove that not-or (∨) is a universal boolean function by showing how ∨ functions can implement
the classic universal Boolean functions ∧,∨,¬.

Problem 7.2: simplify a boolean expression using algebraic equivalence laws (4 points)

During our class meeting, we discussed the following boolean function:

F (X,Y, Z) = (((X ∧ Y) ∨ (X ∧ ¬Z)) ∨ (Z ∧ ¬0))

Using a truth table, we found that F is equivalent to G:

G(X,Y, Z) = (X ∨ Z)

By applying boolean equivalence laws, show that the boolean expression defining F can be trans-
formed into the boolean expression defining G. In each step of your derivation, identify which
boolean equivalence law you apply.

Problem 7.3: munged passwords (haskell) (1+1+1 = 3 points)

Some people try to create stronger passwords through character substitutions. The substitutions
can be anything the user finds easy to remember. We use the following substitution:

character a b c d e f g h i l o q s x y

substitution @ 8 (6 3 { 9 # 1 ! 0 2 $ % ?

Using this table, the string hello world is munged into the string #3!!0 w0r!6.

a) Write a collection of unit tests for the functions described below using the HUnit unit testing
framework for Haskell.

b) Implement a function encChar :: Char -> Char receiving a character and returning either the
character itself or a substitution of it. Implement another function decChar :: Char -> Char

implementing the inverse of encChar.

c) Implement a function enc :: [Char] -> [Char] receiving a string and returning a string with
all character substitutions applied. Implement another function dec :: [Char] -> [Char] im-
plementing the inverse of enc.

Submit your Haskell code plus an explanation (in Haskell comments) as a plain text file.

