Introduction to Computer Science
Module: CH-232
Constructor University
Dr. Jürgen Schönwälder

Problem Sheet \#9

Problem 9.1: triangle display
$(2+2+2=6$ points $)$
The leadership of a company decided that all meeting rooms should have an indicator outside displaying how the room is used. A smart room monitoring system has been installed to determine a room's occupancy number, reported as a value in the range 0 (empty) to 6 (full). Your task is to design a display using light emitting diodes (LEDs). The display should resemble the form of a triangle with LEDs positioned as follows:

$$
\begin{gathered}
a \\
b c \\
d e f
\end{gathered}
$$

The numbers 0 to 6 are displayed as follows (a star indicates a LED producing light, a circle indicates an LED currently off).

0	$*$	0	$*$	$*$	$*$	$*$
00	0	$*$	$*$	$*$	$*$	$*$

Your display is driven by three input lines x_{2}, x_{1}, x_{0} indicating a binary number.
a) Write a truth table defining the boolean functions driving the differnet LEDs.
b) Provide (simple) boolean expressions for the boolean functions.
c) Create a digital circuit using https://simulator.io/. Submit an image of your digital circuit and a link resolving to your digital circuit on https://simulator.io/.

Problem 9.2: map function equivalence proof in haskell
The map function is defined as follows:

```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs
```

Using structural induction, proof that map (f.g) = map $f . \operatorname{map} \mathrm{g}$.
Problem 9.3: left and right folds in haskell
The foldl and foldr functions are defined as follows:

```
foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f e [] = e
foldl f e (x:xs) = foldl f (f e x) xs
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f e [] = e
foldr f e (x:xs) = f x (foldr f e xs)
```

a) Show step-by-step how the expression foldl (/) 50 [4,2,5] is evaluated.
b) Show step-by-step how the expression foldr (/) 50 [4,2,5] is evaluated.

