
Introduction to Computer Science Module: CH-232
Constructor University Date: 2023-11-24
Dr. Jürgen Schönwälder Due: 2023-12-01

Problem Sheet #12

Problem 12.1: bnf grammar for boolean expressions (2+1 = 3 points)

We define the syntax of boolean expressions as follows:

(1) The two Boolean constants 0 and 1 are Boolean formulas.

(2) Every Boolean variable Xn is a Boolean formula (where n is a natural number)

(3) If A and B are Boolean formulas, then (A ∗B) is a Boolean formula.

(4) If A and B are Boolean formulas, then (A+B) is a Boolean formula.

(5) If A is a Boolean formula, then A′ is a Boolean formula.

For readability, we allow space characters around the binary operators + and * and around the
parenthesis. Here are some examples of syntactically valid boolean expressions:

a) Define a grammar in Backus-Naur form (BNF) for the non-terminal start symbol <EXP>. Some
expressions your grammar should accept:

X0

1

0'

X1'

(1*0)

(1+(X5*1))

b) Extend the grammer to allow space characters around the binary operators + and * and around
the parenthesis, but not before the unary postfix operator '. Some expressions your grammar
should accept:

X0

1

0'

X1'

(1 * 0)

(1 + (X5* 1))

You may use online tools such as the BNF Playground to test your BNF grammar. Submit your
solution as a text file.

Problem 12.2: operating system processes (1+1+1 = 3 points)

Consider the following RISC-V assembler program. Assume that all system calls succeed at run-
time (error handling code has been left out for brevity).

.global main

.text # text segment (holding machine code)

main: # called by C library's startup code

addi sp, sp, -16 # allocate stack frame

sd ra, 8(sp) # save return address

sd s0, 0(sp) # save frame pointer

addi s0, sp, 16 # establish new frame point

https://bnfplayground.pauliankline.com/

jal fork

bne a0, zero, done

jal fork

bne a0, zero, done

jal fork

la a0, date

mv a1, zero

jal execvp

done:

la a0, bye

jal puts

mv a0, zero

ld ra, 8(sp) # restore return address

ld s0, 0(sp) # restore frame pointer

addi sp, sp, 16 # deallocate stack frame

ret # return to C library code

.data # data segment (holding data)

bye:

.asciz "bye"

date:

.asciz "date"

a) Annotate the assembler instructions without comments.

b) Draw a tree diagram showing the processes created during the execution of the program (in-
clude the initial process created when the program is started in your diagram).

c) What will the program print to the standard output? Explain.

Problem 12.3: pre- and postconditions (1+1+2 = 4 points)

Determine the weakest precondition (respectively strongest postcondition) for the following algo-
rithms. Explain how you arrived at your result.

a) What is the strongest postcondition of algorithm 1? Explain.

Algorithm 1
Precondition: X > 8

1: Z := X · 2
2: Y := Z + 2
3: X := Y · 3

Postcondition: . . .

b) What is the weakest precondition of algorithm 2? Explain.

Algorithm 2
Precondition: . . .

1: X := X + 2
2: Y := X · 4
3: X := Y − 4

Postcondition: X > 10 ∧ Y < 20

c) Determine the weakest precondition for algorithm 3. Explain.

Algorithm 3
Precondition: . . .

1: X := 3 · Y − 2
2: if X < 12 then
3: Y := 3 ·X − 9
4: else
5: Y := X + 6
6: fi
7: Y := Y − 2

Postcondition: 7 ≤ Y < 25

