
Introduction to Computer Science Module: CH-232
Constructor University Date: 2024-01-08
Dr. Jürgen Schönwälder Due: 2024-01-15

Problem Sheet #13

This sheet is only for students who failed to obtain the module achievement.

Problem 13.1: sum formula (2 points)

Prove that 1 + 4 + . . .+ (3n− 2) =
1

2
n(3n− 1) for n ∈ N and n > 0.

Problem 13.2: equivalence relation (2 points)

Let A = N+ × N+ be the set of pairs of positive natural numbers. Let ∼ ⊆ A × A be a binary
relation on A. The tuple ((a, b), (c, d)) is an element of ∼ if and only if ad = bc (the product of a and
d is equal to the product of b and c).

Show that ∼ is an equivalence relation (i.e., ∼ is reflexive, symmetric and transitive). For each
property, first state what you are trying to show before you provide the argument.

Problem 13.3: not-or is a universal boolean function (3 points)

Prove that not-or (∨) is a universal boolean function by showing how ∨ functions can implement
the classic universal Boolean functions ∧,∨,¬.

Problem 13.4: bnf grammar reduction (2 points)

Let Σ = { 0, 1, . . . , 9, x, y, z,+, ∗, (,) }. Consider the following grammar in Backus Naur Format:

<expression> ::= <term> | <expression> "+" <term>

<term> ::= <factor> | <term> "*" <factor>

<factor> ::= <constant> | <variable> | "(" <expression> ")"

<variable> ::= "x" | "y" | "z"

<constant> ::= <digit> | <digit> <constant>

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

a) Use the grammar to reduce the expression 42 + 8 * x to the start symbol. Show each step
of your derivation.

b) Show four different examples of syntactically invalid expressions and describe which grammar
rules are detecting the errors.

Problem 13.5: divisors in haskell (1 point)

Write a function divisors :: Int -> [Int] that returns the list of proper divisors of a given
positive integer x. The result of divisors x includes 1, but not the number x itself. For example:

Prelude> divisors 6

[1,2,3]

Prelude> divisors 12

[1,2,3,4,6]

Prelude> divisors 15

[1,3,5]

Prelude> divisors 1

[]

Prelude> divisors 2

[1]

Recall that the Haskell function div gives you the result of an integer division (truncated toward
negative infinity) and the function mod gives you the integer modulus (remainder of an integer
division).

Problem 13.6: folds in haskell (1 point)

Consider the following function definition:

1 m f xs = foldr g [] xs

2 where g y ys = (f y) : ys

How is the expression m (*2) [1..3] evaluated? Explain step-by-step how the expression is
expanded and how the result is produced. Describe what the function m is doing, i.e., to which
standard Haskell function it relates.

