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Abstract

These lecture notes provide a basic summary of the module “Mathematical Foundations of Com-
puter Science” offered at Constructor University (formerly Jacobs University Bremen). Topics ad-
dressed are algorithms, properties of algorithms, foundations of discrete mathematics, data repre-
sentation, boolean algebra, propositional and predicate logic, basics of abstract algebra, foundations
of graph theory, and software correctness. The course assumes that students have a general un-
derstanding of mathematical concepts at the level provided by high school education. The material
does not require any programming competence but some programming knowledge might be helpful to
understand how certain mathematical concepts relate to programming.

https://cnds.constructor.university/courses/mfcs-2023
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Part I

Algorithms, Complexity, Correctness

In this part we explore what computer science is all about, namely the notion of algorithms. After
introducing the terms algorithm and algorithmic thinking, we will study two typical problems, namely the
creation of mazes and the search of a pattern in a string. We will demonstrate that it is useful to look at
a problem from different perspectives in order to find efficient algorithms to solve the problem.

By the end of this part, students should be able to

• explain what an algorithm and algorithmic thinking is;

• understand the importance of precise problem formalization;

• use mathematical notations for describing graphs;

• understand the difference between an abstract object and its representations;

• execute Kruskal’s algorithm to calculate (minimum) spanning trees;

• describe why the Boyer-Moore algorithm outperforms a naive string search algorithm;

• execute the Boyer-Moore algorithm to find strings in a text;

• explain time and space complexity of an algorithm;

• understand Landau sets and the big O notation;

• define partial and total correctness of an algorithm.
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Computer Science

• Computer science is the study of computers and algorithmic processes, including
their principles, their hardware and software designs, their applications, and their
impact on society.
[ACM 2003]

• Computer science is the study of computation, information, and automation.
[Wikipedia, 2024-09-05]

• Computer Science is a field of study that deals with the theory, design,
development, and application of computers and computational systems.
[ChatGPT 3.5, 2023-07-28]
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James W. McGuffee presents different definitions of Computer Science, and he investigates how they
are perceived by students [15]. Peter J. Denning et al. discuss misconceptions about Computer Science
[2]. Some typical misconceptions are:

1. Computer Science equals programming.

While computing professionals are expected to be able to program, they are also expected to do
many things that are not programming.

2. Once you master variables, sequencing, conditionals, loops, abstraction, modularization, and de-
composition, you are a computing professional.

This again reduces computer science to programming concepts.

3. Programming is easy to learn.

Programming is a skill set and programmers progress from beginners to experts over a long period
of time.

4. Computer Science is basically science and math.

While science and math are key enablers, computer science also is driven by engineering.

5. Old Computer Science is obsolete. The important developments in Computer Science are Artificial
Intelligence.

Artificial Intelligence is an old idea of computer science, recent advances in machine learning are
enabled by the availability of huge datasets and large amounts of processing power, which are the
results of decades of continuous improvements of “old” computer science.

Perhaps the most classic and most comprehensive book series presenting core algorithms and con-
cepts of Computer Science is the series “The Art of Computer Programming’ by Donald E. Knuth
[9, 12, 10, 11].

Further online information:

• Wikipedia: Computer Science

• YouTube: Map of Computer Science
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Algorithm

Definition (algorithm)

In computer science, an algorithm is a self-contained sequence of actions to be
performed in order to achieve a certain task.

• If you are confronted with a problem, do the following steps:
• first think about the problem to make sure you fully understand it
• afterwards try to find an algorithm to solve the problem
• try to assess the properties of the algorithm (will it handle corner cases correctly?

how long will it run? will it always terminate?, . . . )
• consider possible alternatives that may have “better” properties
• finally, write a program to implement the most suitable algorithm you have selected

• Is the above an algorithm to find algorithms to solve a problem?
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The notion of an algorithm is central to computer science. Computer science is all about algorithms.
A program is an implementation of an algorithm. While programs are practically important (since you
can execute them), we usually focus on the algorithms and their properties and less on the concrete
implementations of algorithms.

Another important aspect of computer science is the definition of abstractions that allow us to describe
and implement algorithms efficiently. A good education in computer science will (i) strengthen your
abstract thinking skills and (ii) train you in algorithmic thinking.

Some algorithms are extremely old. Algorithms were used in ancient Greek, for example the Euclidean
algorithm to find the greatest common divisor of two numbers. Marks on sticks were used before Roman
numerals were invented. Later in the 11th century, Hindu–Arabic numerals were introduced into Europe
that we still use today.

The word algorithm goes back to Muhammad ibn Musa al-Khwarizmi, a Persian mathematician, who
wrote a document in Arabic language that got translated into Latin as “Algoritmi de numero Indorum”.
The Latin word was later altered to algorithmus, leading to the corresponding English term ’algorithm’.

Further online information:

• Wikipedia: Algorithm
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Algorithmic Thinking

Algorithmic thinking is a collection of abilities that are essential for constructing and
understanding algorithms:

• the ability to analyze given problems

• the ability to specify a problem precisely

• the ability to determine basic actions adequate to solve a given problem

• the ability to construct a correct algorithm using the basic actions

• the ability to think about all possible special and normal cases of a problem

• the ability to assess and improve the efficiency of an algorithm
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We will train you in algorithmic thinking [4]. This is going to change how you look at the world. You will
start to enjoy (hopefully) the beauty of well designed abstract theories and elegant algorithms. You will
start to appreciate systems that have a clean and pure logical structure.

But beware that the real world is to a large extend not based on pure concepts. Human natural lan-
guage is very imprecise, sentences often have different interpretations in different contexts, and the real
meaning of a statement often requires to know who made the statement and in which context. Making
computers comprehend natural language is still a hard problem to be solved.

Example: Consider the following problem: Implement a function that returns the square root of a number
(on a system that does not have a math library). At first sight, this looks like a reasonably clear definition
of the problem. However, on second thought, we discover a number of questions that need further
clarification.

• What is the input domain of the function? Is the function defined for natural numbers, integer
numbers, real numbers (or an approximate representation of real numbers), complex numbers?

• Are we expected to always return the principal square root, i.e., the positive square root?

• What happens if the function is called with a negative number? Shall we return a complex number
or indicate a runtime exception? In the later case, how exactly is the runtime exception signaled?

• In general, square roots can not be calculated and represented precisely (recall that
√
2 is irra-

tional). Hence, what is the precision that needs to be achieved?

While thinking about a problem, it is generally useful to go through a number of examples. The examples
should cover regular cases and corner cases. It is useful to write the examples down since they may
serve later as test cases for an implementation of an algorithm that has been selected to solve the
problem.

Further online information:

• YouTube: The Essentials of Problem Solving
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Maze (33 x 11)
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Jürgen Schönwälder (Constructor University) Mathematical Foundations: Algorithms, Complexity, Correctness CC-BY-NC-ND September 5, 2024 22 / 285

This is a simple 33x11 maze. How do you find a path through the maze from the entry (left top) to the
exit (bottom right)?

We are not going to explore maze solving algorithms here. Instead we look at the generation of mazes.

Further online information:

• Wikipedia: Maze Solving Algorithms

• YouTube: Maze Solving - Computerphile
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Problem Statement

Problem:

• Write a program to generate mazes.

• Every maze should be solvable, i.e., it should have a
path from the entrance to the exit.

• We want maze solutions to be unique.

• We want every “room” to be reachable.

Questions:

• How do we approach this problem?

• Are there other properties that make a maze a “good”
or a “challenging” maze?
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It is quite common that problem statements are not very precise. A customer might ask for “good” mazes
or “challenging” mazes or mazes with a certain “difficulty level” without being able to say precisely what
this means. As a computer scientist, we appreciate well defined requirements but what we usually get
is imprecise and leaves room for interpretation.

What still too often happens is that the computer scientist discovers that the problem is under-specified
and then decides to go ahead to produce a program that, according to his understanding of the problem,
seems to close the gaps in a reasonable way. The customer then later sees the result and is often
disappointed by the result. To avoid such negative surprises, it is crucial to reach out to the customer if
the problem definition is not precise enough.
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Hacking. . .
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While hacking can be fun, it is often far more effective to think first before opening the editor and starting
to write code. It often also helps to discuss the problem with others. Even coding together in pairs of two
(pair programming) has been found to lead to better programs. Despite common believes, computer
science in practice usually means a lot of team work and requires a great deal of communication.

Further online information:

• Wikipedia: Pair Programming
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Problem Formalization (1/3)

• Think of a maze as a (two-dimensional) grid of rooms
separated by walls.

• Each room can be given a name.

• Initially, every room is surrounded by four walls

• General idea:
• Randomly knock out walls until we get a good maze.
• How do we ensure there is a solution?
• How do we ensure there is a unique solution?
• How do we ensure every room is reachable?
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Thinking of a maze as a (two-dimensional) grid seems natural, probably because we are used to two-
dimensional mazes in the real world since childhood.

But what about one-dimensional mazes? Are they useful?

What about higher-dimensional mazes? Should we generalize the problem to consider arbitrary n-
dimensional mazes? Quite surprisingly, generalizations sometimes lead to simpler solutions. As we will
see later, the dimensionality of the maze does not really matter much.

And finally, what about mazes that are not rectangular?
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Problem Formalization (2/3)

Lets try to formalize the problem in mathematical terms:

• We have a set V of rooms.

• We have a set E of pairs {x , y} with x ∈ V and y ∈ V
of adjacent rooms that have an open wall between them.

In the example, we have

• V = {a, b, c , d , e, f , g , h, i , j , k , l ,m, n, o, p}
• {a, b} ∈ E and {g , k} ∈ E and {a, c} /∈ E and
{e, f } /∈ E

Abstractly speaking, this is a mathematical structure called a
graph consisting of a set of vertices (also called nodes) and a
set of edges (also called links).
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Graphs are very fundamental in computer science. Many real-world structures and problems have a
graph representation. Relatively obvious are graphs representing the structure of relationships in social
networks or graphs representing the structure of communication networks. Perhaps less obvious is that
compilers internally often represent source code as graphs.

Note: What is missing in this problem formalization is how we represent (or determine) that two rooms
are adjacent. (This is where the dimensions of the space come in.)

Further online information:

• Wikipedia: Graph
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Why use a mathematical formalization?

• Data structures are typically defined as mathematical structures

• Mathematics can be used to reason about the correctness and efficiency of data
structures and algorithms

• Mathematical structures make it easier to think — to abstract away from
unnecessary details and to avoid “hacking”
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Formalizing a problem requires us to think abstractly about what needs to be done. It requires us to
identify clearly

• what our input is,

• what our output is, and

• what the task is that needs to be achieved.

Formalization also leads to a well-defined terminology that can be used to talk about the problem.
Having a well-defined terminology is crucial for any teamwork. Without it, a lot of time is wasted because
people talk past each other, often without discovering it. Keep in mind that larger programs are almost
always the result of teamwork.
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Problem Formalization (3/3)

Definition:

• A maze M = (G , S ,X ) consists of a graph
G = (V ,E ), the start node S , and and the
exit node X .

Interpretation:

• Each graph node x ∈ V represents a room

• An edge {x , y} ∈ E indicates that rooms x and y are
adjacent and there is no wall in between them

• The first special node S is the start of the maze

• The second special node X is the exit of the maze
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Another way of formulating this is to say that a maze M is described by a structure M = (G,S,X) where
G = (V,E) is a graph with the vertices V and the edges E and S ∈ V is the start node and X ∈ V is
the exit node.

Given this formalization, the example maze M is represented as follows:

M = (G,S,X)

G = (V,E)

V = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p}
E = {{a, b}, {a, e}, {b, c}, {d, h}, {e, i}, {f, g}, {f, j}, {g, h},

{g, k}, {i, j}, {k, o}, {l, p}, {m,n}, {n, o}, {o, p}}
S = a

X = p

The maze M is constructed as a subgraph of a supergraph GT = (VT , ET ) representing the adjacency
(topology) of the rooms:

GT = (VT , ET )

VT = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p}
ET = {{a, b}, {b, c}, {c, d}, {e, f}, {f, g}, {g, h}, {i, j}, {j, k}, {k, l}, {m,n}, {n, o}, {o, p},

{a, e}, {b, f}, {c, g}, {d, h}, {e, i}, {f, j}, {g, k}, {h, i}, {i,m}, {j, n}, {k, o}, {l, p}}

Note that this is just one out of many different possible representations of a maze. Finding a good
representation of a given problem requires experience and knowledge of many different possible repre-
sentation approaches.
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Mazes as Graphs (Visualization via Diagrams)

• Graphs are very abstract objects, we need a good,
intuitive way of thinking about them.

• We use diagrams, where the nodes are visualized as
circles and the edges as lines between them.

• Note that the diagram is a visualization of the graph,
and not the graph itself.

• A visualization is a representation of a structure intended
for humans to process visually.
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Visualizations help humans to think about a problem. The human brain is very good in recognizing
structures visually. But note that a visualization is just another representation and it might not be the
best representation for a computer program. Also be aware that bad visualizations may actually hide
structures.

Graphs like the one discussed here can also be represented using a graph notation. Here is how the
graph looks like in the dot notation (used by the graphviz tools):

1 graph maze {

2 a -- b -- c;

3 a -- e -- i -- j -- f -- g;

4 g -- h -- d;

5 g -- k -- o;

6 o -- m -- n;

7 o -- p -- l;

8

9 // _S an _X are additional invisible nodes with an edge

10 // to the start and exit nodes.

11 _S [style=invis]

12 _S -- a

13 _X [style=invis]

14 p -- _X

15 }

Several graph drawing tools can read graph representations in dot notation and render graphs. Produc-
ing “good” drawings for a given graph is a non-trivial problem. You can look at different drawings of the
graph by saving the graph definition in a file (say maze.dot) and then running the following commands
to produce .pdf files (assuming you have the graphviz software package installed).

1 $ neato -T pdf -o maze-neato.pdf maze.dot

2 $ dot -T pdf -o maze-dot.pdf maze.dot

Further online information:

• Wikipedia: Graph Drawing

• Web: Graphviz
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Mazes as Graphs (Good Mazes)

Recall, what is a good maze?

• We want maze solutions to be unique.

• We want every room to be reachable.

Solution:

• The graph must be a tree (a graph with a unique root
node and every node except the root node having a
unique parent).

• The tree should cover all nodes (we call such a tree a
spanning tree).

Since trees have no cycles, we have a unique solution.
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Apparently, we are not interested in arbitrary graphs but instead in spanning trees. So we need to solve
the problem to construct a spanning tree rooted at the start node. This turns out to be a fairly general
problem which is not specific to the construction of mazes.

Note that in graph theory, a spanning tree T = (V,E′) of an simple connected graph G = (V,E) is a
connected subgraph of G with a minimum number of edges over all vertices of G. In general, a graph
may have several spanning trees.

Spanning trees are important for communication networks in order to avoid loops. Spanning trees are
also often used as building blocks in more complex algorithms.

Computer scientists draw trees in a somewhat unconventional fashion: The root is usually at the top
and the tree grows towards the bottom.

Further online information:

• Wikipedia: Spanning Tree
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Kruskal’s Algorithm (1/2)

General approach:

• Randomly add a branch to the tree if it won’t create a cycle (i.e., tear down a wall).

• Repeat until a spanning tree has been created (all nodes are connected).

Questions:

• When adding a branch (edge) (x , y) to the tree, how do we detect that the branch
won’t create a cycle?

• When adding an edge (x , y), we want to know if there is already a path from x to
y in the tree (if there is one, do not add the edge (x , y).

• How can we quickly determine whether there is already a path from x to y?
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Kruskal’s algorithm was published in 1956 [13] and has since then become one of the standard textbook
algorithms for generating spanning trees. Kruskal’s algorithm can be used to create minimum spanning
trees if the edges of the graph are weighted and in each step an edge with the smallest weight is
selected and added to the graph.

Further online information:

• Wikipedia: Kruskal’s Algorithm
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Kruskal’s Algorithm (2/2)

The Union Find Algorithm successively puts nodes into an equivalence class if there is a
path connecting them. With this idea, we get the following algorithm to construct a
spanning tree:

1. Initially, every node is in its own equivalence class and the set of edges is empty.

2. Randomly select a possible edge (x , y) such that x and y are not in the same
equivalence class.

3. Add the edge (x , y) to the tree and join the equivalence classes of x and y .

4. Repeat the last two steps if there are still multiple equivalence classes.
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Further online information:

• Wikipedia: Equivalence Class

• Wikipedia: Disjoint Set Data Structure
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Randomized Depth-first Search

Are there other algorithms? Of course there are. Here is a different approach to build a
tree rooted at the start node.

1. Make the start node the current node and mark it as visited.

2. While there are unvisited nodes:
2.1 If the current node has any neighbours which have not been visited:

2.1.1 Choose randomly one of the unvisited neighbours
2.1.2 Push the current node to the stack (of nodes)
2.1.3 Remove the wall between the current node and the chosen node
2.1.4 Make the chosen node the current node and mark it as visited

2.2 Else if the stack is not empty:

2.2.1 Pop a node from the stack (of nodes)
2.2.2 Make it the current node
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There are quite a few different algorithms to create mazes. Selecting a “good” one may not be easy. The
different algorithms tend to create slightly different mazes in terms of the number of branching points,
the number of dead ends, the path length distribution and other relevant properties.

Further online information:

• Wikipedia: Maze Generation Algorithm
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Section 3: String Search Algorithms
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Problem Statement

Problem:

• Write a program to find a (relatively short) string in a (possibly long) text.

• This is sometimes called finding a needle in a haystack.

Questions:

• How can we do this efficiently?

• What do we mean with long?

• What exactly is a string and what is text?
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Searching is one of the main tasks computers do for us.

• Searching in the Internet for web pages.

• Searching within a web page for a given pattern.

• Searching for a pattern in network traffic.

• Searching for a pattern in a DNA.

• Searching for a malware pattern in executable files.

The search we are considering here is more precisely called a substring search. There are more
expressive search techniques that we do not consider here, e.g., searching for regular expressions or
fuzzy search techniques that support non-exact matches.

Further online information:

• Wikipedia: String Searching Algorithm
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Problem Formalization

• Let Σ be a finite set, called an alphabet.

• Let k denote the number of elements in Σ.

• Let Σ∗ be the set of all words that can be created out of Σ (Kleene closure of Σ):

Σ0 = {ϵ}
Σ1 = Σ

Σi = {wv : w ∈ Σi−1, v ∈ Σ} for i > 1

Σ∗ = ∪i≥0Σ
i

• Let t ∈ Σ∗ be a (possibly long) text and p ∈ Σ∗ be a (typically short) pattern.

• Let n denote the length of t and m denote the length of p with n≫ m.

• Find the first occurance of p in t.
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The formalization introduces common terms that make it easier to discuss the problem. Furthermore,
we introduce the abstract notion of an alphabet and we do not care anymore about the details how such
an alphabet looks like. Some examples for alphabets:

• The characters of the Latin alphabet.

• The characters of the Universal Coded Character Set (Unicode)

• The binary alphabet Σ = {0, 1}.
• The DNA alphabet Σ = {A,C,G, T} used in bioinformatics.

• The values 0. . . 255 of a byte.

The Kleene closure Σ∗ of the alphabet Σ is the (infinite) set of all words that can be formed with elements
out of Σ. This includes the empty word of length 0, typically denoted by ϵ. Note that words here are any
concatenation of elements of the alphabet, it does not matter whether the word is meaningful or not.

Note that the problem formalization details that we are searching for the first occurrence of p in t. We
could have defined the problem differently, e.g., searching for the last occurrence of p in t, or searching
for all occurrences of p in t, or searching for any occurrence of p in t.
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Naive String Search

• Check at each text position whether the pattern matches (going left to right).

• Lowercase characters indicate comparisons that were skipped.

• Example: t = FINDANEEDLEINAHAYSTACK, p = NEEDLE

F I N D A N E E D L E I N A H A Y S T A C K

N e e d l e

N e e d l e

N E e d l e

N e e d l e

N e e d l e

N E E D L E
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An implementation of naive string search in an imperative language like C is straight forward (see
Listing 1). You need two nested for-loops, the outer loop iterates over all possible alignments and the
inner loop iterates over the pattern to test whether the pattern matches the current part of the text.

1 /*

2 * naive-search/search.c --

3 *

4 * Implementation of naive string search in C.

5 */

6

7 #include <stdlib.h>

8 #include "search.h"

9

10 const char *

11 search(const char *haystack, const char *needle)

12 {

13 const char *t, *p, *r;

14

15 for (t = haystack; *t; t++) {

16 for (p = needle, r = t; *r && *p && *r == *p; p++, r++) ;

17 if (! *p) {

18 return t;

19 }

20 }

21

22 return NULL;

23 }

Listing 1: Naive string search implemented in C
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Naive String Search Performance

• How “fast” is naive string search?

• Idea: Lets count the number of comparisons.

• Problem: The number of comparisons depends on the strings.

• Idea: Consider the worst case possible.

• What is the worst case possible?
• Consider a haystack of length n using only a single symbol of the alphabet (e.g.,

“aaaaaaaaaa” with n = 10).
• Consider a needle of length m which consists of m − 1 times the same symbol

followed by a single symbol that is different (e.g., “aax” with m = 3).
• With n≫ m, the number of comparisons needed will be roughly n ·m.
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When talking about the performance of an algorithm, it is often useful to consider performance in the
best case, performance in the worst case, and performance in average cases. Furthermore, perfor-
mance is typically discussed in terms of processing steps (time) and in terms of memory required
(space). There is often an interdependency between time and space and it is often possible to trade
space against time or vice versa.

The naive string search is very space efficient but not very time efficient. Alternative search algorithms
can be faster, but they require some extra space.
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Boyer-Moore: Bad character rule (1/2)

• Idea: Lets compare the pattern right to left instead left to right. If there is a
mismatch, try to move the pattern as much as possible to the right.

• Bad character rule: Upon mismatch, move the pattern to the right until there is a
match at the current position or until the pattern has moved past the current
position.

• Example: t = FINDANEEDLEINAHAYSTACK, p = NEED

F I N D A N E E D L E I N A H A Y S T A C K skip

n e E D 1

n e e D 2

N E E D
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The bad character rule allows us to skip alignments:

1. In the initial alignment, we find that D is matching but E is not matching the N. So we check
whether there is an N in the part of the pattern not tested yet that we can align with the N. In this
case there is an N in the pattern and we can skip 1 alignment.

2. In the second alignment, we find that D is not matching N and so we check whether there is an N
in the part of the pattern not tested yet. In this case, we can skip 2 alignments.

3. In the third alignment, we find a match.

In this case, we have skipped 3 alignments and we used 3 alignments to find a match. With the naive
algorithm we would have used 6 alignments. We have performed 7 comparisons in this case while the
naive algorithm used 12 comparisons.
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Boyer-Moore: Bad character rule (2/2)

• Example: t = FINDANEEDLEINAHAYSTACK, p = HAY

F I N D A N E E D L E I N A H A Y S T A C K skip

h a Y 2

h a Y 2

h a Y 2

h a Y 2

h a Y 1

H A Y

• How do we decide efficiently how far we can move the pattern to the right?
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In this example, we test four times against a character in the text that is not present in the pattern.
Hence we can skip 2 alignments each time. In the fifth alignment, we compare Y against H and since
H is in the pattern, we skip 1 alignment. So overall, we have skipped 9 alignments. (With naive string
search, we would check 15 alignments, Boyer-Moore only requires 6 alignments.)

In order to determine how many alignments we can skip, we need a function that takes the current
position in the pattern and the character of the text that does not match and returns the number of align-
ments that can be skipped. A naive implementation of this function requires again several comparisons.
In order to make this more efficient, we can pre-compute all possible skips and store the skips in a
two-dimensional table. This way, we can simply lookup the number of alignments that can be skipped
by indexing into the table. The table can be seen as a function that maps the unmatched character and
the position in the pattern to the number of alignments that can be skipped.

Example: Lets assume p = NEED and an alphabet consisting of the characters A-Z. Then the table
looks as shown below on the left (counting character positions in the pattern starting with 0). Since
all rows for characters not appearing in the pattern are similar, we might also represent them using a
wildcard row as shown below on the right.




0 1 2 3

A 0 1 2 3
B 0 1 2 3
C 0 1 2 3
D 0 1 2 −
E 0 − − 0
...

...
...

...
...

N − 0 1 2
...

...
...

...
...

Z 0 1 2 3







0 1 2 3

D 0 1 2 −
E 0 − − 0
N − 0 1 2
∗ 0 1 2 3




The pre-computation of a lookup table is key to the performance of the Boyer-Moore bad character rule.
The size of the lookup table and the time to compute it depends only on the length of the pattern and
the size of the alphabet. The effort is independent of the length of the text. Since we assume that the
text is significantly longer than the pattern, the effort to calculate the lookup table becomes irrelevant for
very long texts.
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Boyer-Moore: Good suffix rule (1/3)

• Idea: If we already matched a suffix and the suffix appears again in the pattern,
skip the alignment such that we keep the good suffix.

• Good suffix rule: Let s be a non-empty suffix already matched in the inner loop. If
there is a mismatch, skip alignments until (i) there is another match of the suffix
(which may include the mismatching character), or (ii) a prefix of p matches a
suffix of s or (iii) skip until the end of the pattern if neither (i) or (ii) apply to the
non-empty suffix s.

• Example: t = FINDANEEDLEINAHAYSTACK, p = NEEDUNEED

F I N D A N E E D L E I N A H A Y S T A C K skip

n e e d U N E E D 4

n e e d u n e e D
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This example demonstrates case (i) of the good suffix rule. We have matched the suffix NEED and we
have a mismatch of U against A. Since the pattern contains this suffix again left to the current comparison
position, we move the pattern right to align with this suffix.
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Boyer-Moore: Good suffix rule (2/3)

• Example: t = FINDANEEDLEINAHAYSTACK, p = EDISUNEED

F I N D A N E E D L E I N A H A Y S T A C K skip

e d i s U N E E D 6

e d i s u n e e D
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This example demonstrates case (ii) of the good suffix rule. We have matched the suffix NEED and we
have a mismatch of U against A. The prefix of the pattern contains the suffix ED of our suffix NEED and
hence we move to align this prefix with the matched suffix of our suffix.
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Boyer-Moore: Good suffix rule (3/3)

• Example: t = FINDANEEDLEINAHAYSTACK, p = FOODINEED

F I N D A N E E D L E I N A H A Y S T A C K skip

f o o d I N E E D 8

f o o d i n e e D

• How do we decide efficiently how far we can move the pattern to the right?
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This example demonstrates case (iii) of the good suffix rule. We neither have a matching suffix nor does
the prefix match a suffix of the suffix. Hence we skip alignments until the end of the current alignment.

The good suffix rule is actually a bit complex. Consult wikipedia or a textbook on algorithms or the
original publication for a complete description of the good suffix rule.

To implement the good suffix rule efficiently, lookup tables are again needed to quickly lookup how many
alignments can be skipped. Given a pattern p, the lookup tables can be calculated, that is, the lookup
tables do not depend on the text being searched.
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Boyer-Moore Rules Combined

• The Boyer-Moore algorithm combines the bad character rule and the good suffix
rule. (Note that both rules can also be used alone.)

• If a mismatch is found,
• calculate the skip sb by the bad character rule
• calculate the skip sg by the good suffix rule

and then skip by s = max(sb, sg ).

• The Boyer-Moore algorithm often does the substring search in sub-linear time.

• However, it does not perform better than naive search in the worst case if the
pattern does occur in the text.

• An optimization by Gali results in linear runtime across all cases.
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The Boyer-Moore algorithm demonstrates that in computer science we sometimes trade space against
time. The lookup table reduces the time needed to perform the search but it requires additional space
to store the lookup table.

The Boyer-Moore algorithm was introduced in 1977 [1] and the improvement by Gali for worst cases in
1979 in [5].

Further online information:

• YouTube: Boyer-Moore: basics

• YouTube: Boyer-Moore: putting it all together

32

https://www.youtube.com/watch?v=4Xyhb72LCX4
https://www.youtube.com/watch?v=Wj606N0IAsw


Section 4: Complexity and Correctness

1 Computer Science and Algorithms

2 Maze Generation Algorithms

3 String Search Algorithms

4 Complexity and Correctness
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Complexity of Algorithms

• Maze algorithm questions:
• Which maze generation algorithm is faster?
• What happens if we consider mazes of different sizes or dimensions?

• String search algorithm questions:
• Which string algorithm is faster (worst, average, best case)?
• Is there a fastest string search algorithm?

• Instead of measuring execution time (which depends on the speed of the hardware
and implementation details), we like to use a more neutral notion of “fast”.

• Complexity is an abstract measure of computational effort (time complexity) and
memory usage (space complexity) as a function of the problem size.

• Computer science is about analyzing the time and space complexity of algorithms.
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The performance analysis of algorithms is a very important part of computer science. Since we are
generally not so much interested in execution times that depend on the hardware components of a
computer system, we like to have a more abstract way of talking about the “performance” of an algorithm.
We call this abstract measure of “performance” the complexity of an algorithm and we usually distinguish
the time complexity (the computational effort) and the space complexity (how much storage is required).

We will discuss this further later in the course and we will introduce a framework that allows us to define
classes of complexity.
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Performance and Scaling

size n t(n) = 100n µs t(n) = 7n2 µs t(n) = 2n µs

1 100 µs 7 µs 2 µs
5 500 µs 175 µs 32 µs
10 1ms 700 µs 1024 µs
50 5ms 17.5ms 13 031.25 d
100 10ms 70ms
1000 100ms 7 s

10 000 1 s 700 s
100 000 10 s 70 000 s

• Suppose we have three algorithms to choose from (linear, quadratic, exponential).

• With n = 50, the exponential algorithm runs for more than 35 years.

• For n ≥ 1000, the exponential algorithm runs longer than the age of the universe!
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Something that scales exponentially with the problem size quickly becomes intractable. In theoretical
computer science, we will look at the question whether there are problems that are inherently exponen-
tial. We will also investigate whether we can show the best possible solution for a given problem in terms
of complexity. Once you prove for a given problem that the best possible solution is lets say quadratic,
you can stop searching for a linear solution (this can literally save you endless nights of work).
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Big O Notation (Landau Notation)

Definition (asymptotically bounded)

Let f , g : N→ N be two functions. We say that f is asymptotically bounded by g ,
written as f ≤a g , if and only if there is an n0 ∈ N , such that f (n) ≤ g(n) for all
n > n0.

Definition (Landau Sets)

The three Landau Sets O(g),Ω(g),Θ(g) are defined as follows:

• O(g) = { f | ∃k ∈ N.f ≤a k · g }
• Ω(g) = { f | ∃k ∈ N.k · g ≤a f }
• Θ(g) = O(g) ∩ Ω(g)
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Interpretation of the three Landau Sets:

• f ∈ O(g): f does not grow significantly faster than g

• f ∈ Ω(g): f grows not significantly slower than g

• f ∈ Θ(g): f grows as fast as g

For a given function f , we are usually interested in finding the “smallest” upper bound O(g) and the
“largest” lower bound Ω(g). The “smallest upper bound” is interesting when we consider the worst case
behaviour of an algorithm, the “largest lower bound” is interesting when we consider the best case
behaviour.

n0

f
Ο(g)
Ω(g)

Ο(g) and Ω(g) enclose f starting at n0

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  2  4  6  8  10  12  14  16  18n0

f(n) = 3*n*n+9*n+3
g = 4*n*n
h = 3*n*n

f(n) is in Ο(n*n) and in Ω(n*n) with n0 = 9

As an example, lets consider the function f(n) = 3n2 + 9n+ 3. We try to prove that f ∈ Θ(n2):

• Lets first show that f is in O(n2). We have to find a k ∈ N and an n0 ∈ N such that f(n) ≤ kn2 for
n > n0. Lets pick k = 4. Apparently, f(n) = 3n2 + 9n+ 3 ≥ 4n2 for n ∈ {0, . . . , 9}, but f(n) ≤ 4n2

for n > 9 = n0. Hence, f is in O(n2).

• We now show that f is in Ω(n2). We have to find a k ∈ N and an n0 ∈ N such that f(n) ≥ kn2 for
n > n0. Lets pick k = 3. Apparently, f(n) = 3n2 + 9n + 3 ≥ 3n2 since we add a positive value to
3n2. Hence, f is in Ω(n2).

• Since f ∈ O(n2) and f ∈ Ω(n2), it follows that f ∈ Θ(n2).
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Commonly Used Landau Sets

Landau Set class name rank

O(1) constant 1
O(log2(n)) logarithmic 2
O(n) linear 3
O(n log2(n)) linear logarithmic 4

Landau Set class name rank

O(n2) quadratic 5
O(nk) polynomial 6
O(kn) exponential 7

Theorem (Landau Set Ranking)

The commonly used Landau Sets establish a ranking such that

O(1) ⊂ O(log2(n)) ⊂ O(n) ⊂ O(n log2(n)) ⊂ O(n2) ⊂ O(nk) ⊂ O(ln)

for k > 2 and l > 1.
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Landau Set Rules

Theorem (Landau Set Computation Rules)

We have the following computation rules for Landau sets:

• If k ̸= 0 and f ∈ O(g), then (kf ) ∈ O(g).

• If f1 ∈ O(g1) and f2 ∈ O(g2), then (f1 + f2) ∈ O(max{g1, g2}).
• If f1 ∈ O(g1) and f2 ∈ O(g2), then (f1f2) ∈ O(g1g2).

Examples:

• f (n) = 42 =⇒ f ∈ O(1)

• f (n) = 26n + 72 =⇒ f ∈ O(n)

• f (n) = 856n10 + 123n3 + 75 =⇒ f ∈ O(n10)

• f (n) = 3 · 2n + 42 =⇒ f ∈ O(2n)
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• The Big O Notation describes the limiting behavior of a function when the argument tends towards
a particular value of infinity.

• We classify a function describing the (time or space) complexity of an algorithm by determining
the closest Landau Set it belongs to.

• Good sequential sorting algorithms achieve a time complexity O(n log n), simpler algorithms often
belong to O(n2). Some sorting algorithms do not need any extra memory, so they achieve O(1) in
terms of space complexity.

• Use O classes for worst case complexity, use Ω classes for best case complexity.
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Correctness of Algorithms and Programs

• Questions:
• Is our algorithm correct?
• Is our algorithm a total function or a partial function?
• Is our implementation of the algorithm (our program) correct?
• What do we mean by “correct”?
• Will our algorithm or program terminate?

• Computer science is about techniques for proving correctness of programs.

• In situations where correctness proofs are not feasible, computer science is about
engineering practices that help to avoid or detect errors.
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Note the difference between the correctness of an algorithm and the correctness of a program im-
plementing an algorithm. While correctness proofs are feasible, they are difficult and thus expensive.
As a consequence, they are done mostly in situations where a potential failure of an algorithm or its
implementation can cause damages that are far more costly than the correctness proof.

Hence, for many software systems, we tend to rely on testing techniques in the hope that good test
coverage will reduce errors and the likelihood of bad failures. But testing never can proof the absence
of errors (unless all possible inputs and outputs can be tested - which usually is infeasible for anything
more complicated than a hello world program).
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Partial Correctness and Total Correctness

Definition (partial correctness)

An algorithm starting in a state that satisfies a precondition P is partially correct with
respect to P and Q if results produced by the algorithm satisfy the postcondition Q.
Partial correctness does not require that a result is always produced, i.e., the algorithm
may not always terminate.

Definition (total correctness)

An algorithm is totally correct with respect to P and Q if it is partially correct with
respect to P and Q and it always terminates.
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In order to talk about the correctness of an algorithm, we need a specification that clearly states the
precondition P and the postcondition Q. In other words, an algorithm is always correct regarding a spec-
ification, i.e., a problem formalization. Without a precise specification, it is impossible to say whether an
algorithm is correct or not.

The distinction between partial correctness and total correctness is important. Total correctness re-
quires a termination proof and unfortunately an automated termination proof is impossible for arbitrary
algorithms.
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Deterministic Algorithms

Definition (deterministic algorithm)

A deterministic algorithm is an algorithm which, given a particular input, will always
produce the same output, with the execution always passing through the same sequence
of states.

• Some factors making algorithms non-deterministic:
• external state
• user input
• timers
• random values
• hardware errors
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Deterministic algorithms are often easier to understand and analyze. Real software systems, however,
are rarely fully deterministic since they interact with a world that is largely non-deterministic.

Computer science is spending a lot of effort trying to make the execution of algorithms deterministic.
Operating systems, for example, deal with a large amount of nondeterminism originating from computing
hardware and they try to provide an execution environment for programs that is less nondeterministic
than the hardware components.
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Randomized Algorithms

Definition (randomized algorithm)

A randomized algorithm is an algorithm that employs a degree of randomness as part of
its logic.

• A randomized algorithm uses randomness in order to produce its result; it uses
randomness as part of the logic of the algorithm.

• A perfect source of randomness is not trivial to obtain on digital computers.

• Random number generators often use algorithms to produce so called pseudo
random numbers, sequences of numbers that “look” random but that are not really
random (since they are calculated using a deterministic algorithm).
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Randomized algorithms are sometimes desirable, for example to create cryptographic keys or to drive
computer games. For some problems, some randomized algorithms provide solutions faster than de-
terministic solutions. The question for which classes of problems randomized algorithms provide an
advantage is an import question investigated in theoretical computer science.

Pseudo random numbers are commonly provided as library functions (e.g., the long random(void)

function of the C library). You have to be very careful with the usage of these pseudo random numbers.
A common problem is that not all bits of a random number have the same degree of “randomness”.
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Engineering of Software

• Questions:
• Can we identify building blocks (data structures, generic algorithms, design pattern)

that we can reuse?
• Can we implement algorithms in such a way that the program code is easy to read

and understand?
• Can we implement algorithms in such a way that we can easily adapt them to

different requirements?

• Computer science is about modular designs that are both easier to get right and
easier to understand. Finding good software designs often takes time and effort.

• Software engineering is about applying structured approaches to the design,
development, maintenance, testing, and evaluation of software.

• The main goal is the production of software with predictable quality and costs.
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Software engineering is the application of engineering to the development of software in a systematic
method. Another definition says that software engineering is the application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of software.

Further online information:

• Wikipedia: Software Engineering
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Part II

Proofs, Sets, Relations, Functions

This part introduces basic elements of discrete mathematics that are essential for many courses in
computer science. We start introducing basic terminology and then discuss basic methods to construct
proofs. Afterwards, we discuss sets, relations and finally functions.

Recommended background reading are the first five chapters of the book “Mathematics for Computer
Science” by Eric Lehmann, F. Thomson Leighton, and Albert R. Meyer [14]. Students interested to dive
deeper into proof methods may want to study Richard Hammack’s “Book of Proof” [6]. Both books are
available online and in print.

By the end of this part, students should be able to

• understand the role of axioms, theorems, lemmata, and corollaries;

• recall the Peano axioms defining natural numbers;

• familiar with mathematical notation and the notion of predicates and quantifiers;

• use different techniques to construct mathematical proofs;

• construct induction proofs over inductively defined sets;

• use sets and basic set operations to model scenarios;

• understand the concept and properties of relations;

• recognize equivalence and (strict) partial order relations;

• interpret functions as special relations;

• describe basic operations on functions;

• decide whether functions are injective, surjective, or bijective;

• explain Lambda notation of functions and currying.
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Section 5: Proofs

5 Proofs

6 Sets

7 Relations

8 Functions
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Propositions

Definition (proposition)

A proposition is a statement that is either true or false.

Examples:

• 1 + 1 = 1 (false proposition)

• The sum of the integer numbers 1, . . . , n is equal to 1
2
n(n + 1). (true proposition)

• “In three years I will have obtained a CS degree.” (not a proposition)

• “This sentence is false.” (a paradox)
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A key property is that a proposition is either true or false. Every statement that is only true or false in
a certain context is not a proper proposition. In addition, any statement that depends on something
undefined (e.g., something happening in the future) is not a proposition.

Beware that there can be logically self-contradictory statements. This has bothered mathematicians for
a long time but for now we keep things simple by ignoring the fact that there can be paradoxes.
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Axioms

Definition (axiom)

An axiom is a proposition that is taken to be true.

Definition (Peano axioms for natural numbers)

P1 0 is a natural number.

P2 Every natural number has a successor.

P3 0 is not the successor of any natural number.

P4 If the successor of x equals the successor of y , then x equals y .

P5 If a statement is true for the natural number 0, and if the truth of that statement
for a natural number implies its truth for the successor of that number, then the
statement is true for every natural number.
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When developing a theory and using formal proofs, it is important to be clear about the underlying
axioms that are used. Ideally, a small number of well defined axioms are sufficient to develop and proof
a complex theory. Finding a minimal set of axioms that are sufficient to derive all knowledge of a certain
theory is an important part of research.

The five Peano axioms, defined in 1889 by Giuseppe Peano, are sufficient to derive everything we know
about natural numbers. The fifths Peano axiom is particularly interesting since it allows us to prove a
statement for all natural numbers even though there are infinite many natural numbers. We will make
use of this technique, called induction, frequently.
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Theorems, Lemmata, Corollaries

Definition (theorem, lemma, corollary)

An important true proposition is called a theorem. A lemma is a preliminary true
proposition useful for proving other propositions (usually theorems) and a corollary is a
true proposition that follows in just a few logical steps from a theorem.

Definition (conjecture)

A proposition for which no proof has been found yet and which is believed to be true is
called a conjecture.

• There is no clear boundary between what is a theorem, a lemma, or a corollary.
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Theorem 1 (Fermat’s last theorem). There are no positive integers x, y, and z such that

xn + yn = zn

for some integer n > 2.

Fermat claimed to have a proof for this conjecture in 1630 but he had not enough space on the margin
of the book he was reading to write it down. Fermat’s last theorem was finally proven to be true by
Andrew Wiles in 1995. Sometimes it takes time to fully work out a proof.
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Predicates

• A predicate is a statement that may be true or false depending on the values of its
variables. It can be thought of as a function that returns a value that is either true
or false.

• Variables appearing in a predicate are often quantified:
• A predicate is true for all values of a given set of values.
• A predicate is true for at least one value of a given set of values.

(There exists a value such that the predicate is true.)

• There may be multiple quantifiers and they may be combined (but note that the
order of the quantifiers matters).

• Example: (Goldbach’s conjecture) For every even integer n greater than 2, there
exists primes p and q such that n = p + q.
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Human language is often ambiguous. The statement “Every American has a dream.” can be interpreted
in two different ways:

a) There exists a dream d out of the set of all dreams D and forall persons a out of the set of Americans
A, person a has dream d.

b) Forall persons a out of the set of Americans A, there exists a dream d out of the set of all dreams D
such that persons a has dream d.

Our common sense says that b) is the more likely interpretation but for machines, which lack a notion of
common sense, such ambiguities are difficult to work with. (And this makes natural language processing
difficult for computers. Machine learning helps here as it provides a statistical basis to determine the
likely meaning of a natural language expression.) In mathematics and computer science, we try hard to
avoid ambiguities.

Note that predicates can be simple or more complex and as a consequence we have different logics:

• Propositional logic (or zeroth-order logic) deals with simple propositions like “Socrates is a man”.
Boolean algebra provides the algebraic rules for handling statements in propositional logic.

• Predicate logic (or first-order logic) extends propositional logic with quantified variables like for
example “there exists x such that x is Socrates and x is a man”.

• Second order logic is even more expressive than first-order logic.

For computer scientists, a fundamental question is whether logics are decidable (Entscheidungsprob-
lem): Is there an algorithm that takes a logic statement as input and decides whether it is true or false?
For some logics, such an algorithm exists, for others there are proofs that they cannot exist. For those
logics where such an algorithm exists, the second question typically concerns the complexity of such
an algorithm.

There are special logics such as Horn clauses that have nice bounds on the computational complexity
and that have been used as the foundation of logic programming languages like Prolog.
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Mathematical Notation

Notation Explanation

P ∧ Q logical and of propositions P and Q
P ∨ Q logical or of propositions P and Q
¬P negation of proposition P

∀x ∈ S .P the predicate P holds for all x in the set S
∃x ∈ S .P there exists an x in the set S such that the predicate P holds
P → Q the statement P implies statement Q
P ↔ Q the statement P holds if and only if (iff) Q holds
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Some examples:

• Lets formalize the two interpretations of the statement “every American has a dream”. Let A be
the set of Americans and D be the set of dreams:

∀a ∈ A.∃d ∈ D.dream(a, d)

∃d ∈ D.∀a ∈ A.dream(a, d)

• Goldbach’s conjecture is stated in mathematical notation as follows:

Let E be the set all even integers larger than two and P the set of prime numbers. Then
the following holds:

∀n ∈ E.∃p ∈ P.∃q ∈ P.n = p+ q

Note that n = p+q is a predicate over the variables n, p, and q. Also recall that changing the order
of the quantifiers may alter the statement.

• We can write the five Peano axioms in mathematical notation. Lets assume that the function
s : N→ N returns the successor of its argument.

P1 0 ∈ N (zero is a natural number)

P2 ∀n ∈ N.s(n) ∈ N ∧ n ̸= s(n) (closed under successor, distinct)

P3 ¬(∃n ∈ N.0 = s(n)) (zero is not a successor)

P4 ∀n ∈ N.∀m ∈ N.s(n) = s(m)⇒ n = m (different successors)

P5 ∀P.(P (0) ∧ (∀n ∈ N.P (n)⇒ P (s(n))))⇒ (∀m ∈ N.P (m)) (induction)
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Greek Letters

α Α alpha β Β beta γ Γ gamma
δ Δ delta ε Ε epsilon ζ Ζ zeta
η Η eta θ Θ theta ι Ι iota
κ Κ kappa λ Λ lambda µ Μ mu
ν Ν nu ξ Ξ xi ο Ο omikron
π Π pi ρ Ρ rho σ Σ sigma
τ Τ tau υ Υ upsilon φ Φ phi
χ Χ chi ψ Ψ psi ω Ω omega
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Mathematicians love to use greek letters. And if they run out of greek letters, they love to use roman
letters in different writing styles. And to keep reading math fun, every author is free to choose the letters
he/she likes best.

We observe the same behavior with young programmers until they realize that reading code written by
someone else is way more common than writing code and that things get much simpler if all people
within a project follow common conventions, the so called coding styles.

The same applies to mathematicians to some extend. Different areas of math tend to prefer certain
notations and writing styles. As a novice mathematician or programmer, the best advice one can give
is to follow the conventions that are used by the seniors around you.
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Mathematical Proof

Definition (mathematical proof)

A mathematical proof of a proposition is a chain of logical deductions from a base set
of axioms (or other previously proven propositions) that concludes with the proposition
in question.

• Informally, a proof is a method of establishing truth. There are very different ways
to establish truth. In computer science, we usually adopt the mathematical notion
of a proof.

• There are a certain number of templates for constructing proofs. It is good style to
indicate at the beginning of the proof which template is used.
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Hints for Writing Proofs

• Proofs often start with notes that can be disorganized, have strange diagrams,
obscene words, whatever. But the final proof should be clear and concise.

• Proofs usually begin with the word “Proof” and they end with a delimiter such as
.

• Make it easy to understand your proof. A good proof has a clear structure and it is
concise. Turning an initial proof into a concise proof takes time and patience.

• Introduce notation carefully. Good notation can make a proof easy to follow (and
bad notation can achieve the opposite effect).

• Revise your proof and simplify it. A good proof has been written multiple times.
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Writing good source code is a bit like writing a good proof. Good source code is clear and concise, it
has a well-defined structure, it uses a carefully chosen notation, it is easy to read, and it likely has been
revised a couple of times. Learning how to write good source code (and good proofs) requires practice.
The earlier you start, the faster you get excellent at it. Start right now. Stop producing source code and
proofs that are just good enough, instead challenge yourself to produce source code and proofs that
are elegant and a little piece of “art” you can be proud of. If you do not know how to distinguish beautiful
source code and proofs from just average stuff, start reading other people’s source code and proofs.
Learn from how they are doing things, ask yourself what you like about what you read and what you find
perhaps irritating or difficult. Think how things could have been done differently.

With compiled programming languages, the compiler verifies that our source code is well formed and
complete. In traditional mathematics, proofs are checked by humans. Obviously, this manual approach
does not scale well and opens the floor to oversights. Modern mathematicians therefore often fully
formalize proofs so that tools can verify proofs for correctness and completeness. An example tool for
this purpose is the Lean programming language and theorem prover.

Further online information:

• Web: Programming Language and Theorem Prover — Lean
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Prove an Implication by Derivation

• An implication is a proposition of the form “If P , then Q”, or P → Q.

• One way to prove such an implication is by a derivation where you start with P and
stepwise derive Q from it.

• In each step, you apply theorems (or lemmas or corollaries) that have already been
proven to be true.

• Template:

Assume P . Then, . . . Therefore . . . [. . . ] This finally leads to Q.
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Theorem 2. Let x and y be two integers. If x and y are both odd, then the product xy is odd.

Proof. Assume x and y are two odd integers. We can write x as x = 2a + 1 and y as y = 2b + 1 with
suitable integers a and b. With this, we can write the product of x and y as follows:

xy = (2a+ 1)(2b+ 1)

= 4ab+ 2a+ 2b+ 1

= 2(2ab+ a+ b) + 1

Since 2(2ab+ a+ b) is even and we add 1 to it, it follows that the product of x and y is odd.
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Prove an Implication by its Contrapositive

• An implication is a proposition of the form “If P , then Q”, or P → Q.

• Such an implication is logically equivalent to its contrapositive, ¬Q → ¬P .
• Proving the contrapositive is sometimes easier than proving the original statement.

• Template:

Proof. We prove the contrapositive, if ¬Q, then ¬P . We assume ¬Q. Then,
. . . Therefore . . . [. . . ] This finally leads to ¬P .
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Theorem 3. Let x be an integer. If x2 is even, then x is even.

Proof. We prove the contrapositive, if x is not even, then x2 is odd. Assume x is not even. Since the
product of two odd numbers results in an odd number (see Theorem 2), it follows that x2 = x · x is
odd.

Note that the proof above relies on Theorem 2 to be true.
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Prove an “if and only if” by two Implications

• A statement of the form “P if and only if Q”, P ↔ Q, is equivalent to the two
statements “P implies Q” and “Q implies P”.

• Split your proof into two parts, the first part proving P → Q and the second part
proving Q → P .

• Template:

Proof. We prove P implies Q and vice-versa.

First, we show P implies Q. Assume P . Then, . . . Therefore . . . [. . . ] This finally
leads to Q.

Now we show Q implies P . Assume Q. Then, . . . . Therefore . . . [. . . ] This finally
leads to P .
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Theorem 4. An integer x is even if and only if its square x2 is even.

Proof. We prove x is even implies x2 is even and vice versa. First, we show that if x is even, then x2

is even. Since x is even, it can be written as x = 2k for some suitable number k. With this, we obtain
x2 = (2k)2 = 2(2k2). Hence, x2 is even.

Next, we show that if x2 is even, then x is even. Since x2 is even, we can write it as x2 = 2k for some
suitable number k, i.e., 2 divides x2. This means that 2 divides either x or x, which implies that x is
even.

This approach to prove an equivalence can be extended. Suppose that you have to show that A ⇔ B,
B ⇔ C and C ⇔ A, then it is sufficient to prove a single chain of implications, namely that A ⇒ B and
B ⇒ C and C ⇒ A. It is not necessary to prove B ⇒ A since this follows from B ⇒ C ⇒ A. Similarly,
it is not necessary to prove C ⇒ B since this follows form C ⇒ A⇒ B.
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Prove an “if and only if” by a Chain of “if and only if”s

• A statement of the form “P if and only if Q” can be shown to hold by constructing
a chain of “if and only if” equivalence implications.

• Constructing this kind of proof is often harder then proving two implications, but
the result can be short and elegant.

• Template:

Proof. We construct a proof by a chain of if-and-only-if implications.

P holds if and only if P ′ holds, which is equivalent to [. . . ], which is equivalent to
Q.
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Phrases commonly used as alternatives to P “if and only if” Q include:

• Q is necessary and sufficient for P

• P is equivalent (or materially equivalent) to Q

• P precisely if Q

• P exactly when Q

• P just in case Q
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Breaking a Proof into Cases

• It is sometimes useful to break a complicated statement P into several cases that
are proven separately.

• Different proof techniques may be used for the different cases.

• It is necessary to ensure that the cases cover the complete statement P .

• Template:

Proof. We prove P by considering the cases c1, . . . , cN .

Case 1: Suppose c1. Prove of P for c1.

. . .

Case N : Suppose cN . Prove of P for cN .

Since P holds for all cases c1, . . . cN , the statement P holds.
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Theorem 5. For every integer n ∈ Z, n2 + n is even.

Proof. We prove n2 + n is even for all n ∈ Z by considering the case where n is even and the case
where n is odd.

• Case 1: Suppose n is even:

n can be written as 2k with k ∈ Z. This gives us:

n2 + n = (2k)2 + (2k) = 4k2 + 2k = 2(2k2 + k)

Since the result is a multiple of two, it is even.

• Case 2: Suppose n is odd:

n can be written as 2k + 1 with k ∈ Z. This gives us:

n2 + n = (2k + 1)2 + (2k + 1) = (4k2 + 4k + 1) + (2k + 1) = 4k2 + 6k + 2 = 2(2k2 + 3k + 1)

Since the result is a multiple of two, it is even.

Since n2 + n is even holds for the two cases n is even and n is odd, it holds for all n ∈ Z.
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Proof by Contradiction

• A proof by contradiction for a statement P shows that if the statement were false,
then some false fact would be true.

• Starting from ¬P , a series of derivations is used to arrive at a statement that
contradicts something that has already been shown to be true or which is an axiom.

• Template:

Proof. We prove P by contradiction.

Assume ¬P is true. Then . . . Therefore . . . [. . . ] This is a contradiction. Thus, P
must be true.
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Theorem 6.
√
2 is irrational.

Proof. We use proof by contradiction. Suppose the claim is false and
√
2 is rational. Then we can write√

2 as a fraction in lowest terms, i.e.,
√
2 = a

b with two integers a and b. Since a
b is in lowest terms, at

least one of the integers a or b must be odd.

By squaring the equation, we get 2 = a2

b2 which is equivalent to a2 = 2b2.

Since the square of an odd number is odd (see Theorem 2) and a2 apparently is even (a multiple of 2),
b must be odd.

On the other hand, if a is even, then a2 is a multiple of 4. If a2 is a multiple of 4 and a2 = 2b2, then 2b2 is
a multiple of 4, and therefore b2 must be even, and hence b must be even.

Obviously, b cannot be even and odd at the same time. This is a contradiction. Thus,
√
2 must be

irrational.
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Proof by Induction

• If we have to prove a statement P on nonnegative integers (or more generally an
inductively defined well-ordered infinite set), we can use the induction principle.

• We first prove that P is true for the “lowest” element in the set (the base case).

• Next we prove that if P holds for a nonnegative integer n, then the statement P
holds for n + 1 (induction step).

• Since we can apply the induction step m times, starting with the base, we have
shown that P is true for arbitrary nonnegative integers m.

• Template:

Proof. We prove P by induction.

Base case: We show that P(0) is true. [. . . ]

Induction step: Assume P(n) is true. Then, . . . This proves that P(n + 1) holds.
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Theorem 7. For all n ∈ N, 0 + 1 + 2 + 3 + . . .+ n = n(n+1)
2 .

Proof. We prove 0 + 1 + 2 + 3 + . . .+ n = n(n+1)
2 by induction.

• Base case:

We show that the equation is true for n = 0. Setting n = 0, the equation becomes

0 =
0(0 + 1)

2
= 0

1

2
= 0

and hence the equation holds for n = 0.

• Induction step:

Assume that the equation holds for some n ∈ N. Lets consider the case n+ 1:

0 + 1 + 2 + 3 + . . .+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1)

=
n(n+ 1) + 2(n+ 1)

2

=
n2 + n+ 2n+ 2

2

=
(n+ 2)(n+ 1)

2

This shows that the equation holds for n+ 1.

It follows by induction that 0+1+2+3+ . . .+n = n(n+1)
2 holds for arbitrary nonnegative integers n.

In computer science, we are frequently interested in structural induction. Instead of proving a proposition
over the set of natural numbers, we often prove a proposition over an inductively defined structure
(hence the term structural induction). One can view structural induction as a generalization of the
mathematical induction over natural numbers. (Natural numbers can be seen as just an example of an
inductively defined structure.)
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Summary of Proof Techniques

Statement Techniques Description

A→ Z A→ B → C → . . .→ Z proof by derivation
¬Z → ¬A proof by contrapositive

A↔ Z A↔ B ↔ C ↔ . . .↔ Z chain of equivalences
A→ Z ∧ Z → A proof by two implications

A ¬A→ B → C → . . .→ ⊥ proof by contradiction

∀n ∈ N.A(n) A(0) ∧ (A(n)→ A(n + 1)) proof by induction
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Sets

• Informally, a set is a well-defined collection of distinct objects. The elements of the
collection can be anything we like the set to contain, including other sets.

• In modern mathematics, sets are defined using axiomatic set theory, but for us the
informal definition above is sufficient.

• Sets can be defined by
• listing all elements in curly braces, e.g., { a, b, c },
• describing all objects using a predicate P, e.g., { x | x ≥ 0 ∧ x < 28 },
• stating element-hood using some other statements.

• A set has no order of the elements and every element appears only once.

• The two notations { a, b, c } and { b, a, a, c } are different representations of the
same set.
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Some popular sets in mathematics:

symbol set elements

∅ empty set { }
N nonnegative integers { 0, 1, 2, 3, . . . }
Z integers { . . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
Q rational numbers 1

2 , 42, etc.
R real numbers π,

√
2, 0 etc.

C complex numbers i, 5 + 9i, 0, π etc.

Sets can be very confusing. A mathematician called Georg Cantor tried to formalize the notion of sets,
introducing so called naive set theory. According to naive set theory, any definable collection is a set.
Bertrand Russell, another mathematician, discovered a paradox that is meanwhile known as Russell’s
paradox:

Let R be the set of all sets that are not members of themselves. If R is not a member of itself,
then its definition dictates that it must contain itself, and if it contains itself, then it contradicts
its own definition as the set of all sets that are not members of themselves. Symbolically:

Let R = {x | x /∈ x }, then R ∈ R⇔ R /∈ R.

Another formulation provided by Bertrand Russell and known as the barber paradox:

You can define a barber as “one who shaves all those, and only those, who do not shave
themselves.” The question is, does the barber shave himself?
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Basic Relations between Sets

Definition (basic relations between sets)

Lets A and B be two sets. We define the following relations between sets:

1. (A ≡ B) :↔ (∀x .x ∈ A↔ x ∈ B) (set equality)

2. (A ⊆ B) :↔ (∀x .x ∈ A→ x ∈ B) (subset)

3. (A ⊂ B) :↔ (A ⊆ B) ∧ (A ̸≡ B) (proper subset)

4. (A ⊇ B) :↔ (∀x .x ∈ B → x ∈ A) (superset)

5. (A ⊃ B) :↔ (A ⊇ B) ∧ (A ̸≡ B) (proper superset)

• Obviously:
• (A ⊆ B) ∧ (B ⊆ A)→ (A ≡ B)
• (A ⊆ B)↔ (B ⊇ A)

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Proofs, Sets, Relations, Functions CC-BY-NC-ND September 5, 2024 76 / 285

Apparently, N ⊂ Z ⊂ Q ⊂ R ⊂ C for the popular sets in mathematics.

In the real world, sets and their relations are often not well defined. For example, consider the set
representing the faculty of a university. How do you think this set is defined? And is it a proper subset
of the set of all employees of the university?
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Operations on Sets 1/2

Definition (set union)

The union of two sets A and B is defined as A ∪ B = { x | x ∈ A ∨ x ∈ B }.

Definition (set intersection)

The intersection of two sets A and B is defined as A ∩ B = { x | x ∈ A ∧ x ∈ B }.

Definition (set difference)

The difference of two sets A and B is defined as A \ B = { x | x ∈ A ∧ x ̸∈ B }.
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Some basic properties of set unions:

A ∪B = B ∪A commutativity
A ∪ (B ∪ C) = (A ∪B) ∪ C associativity
A ⊆ (A ∪B)

A ∪A = A idempotency
A ∪ ∅ = A identity
A ⊆ B ⇔ A ∪B = B

Some basic properties of set intersections:

A ∩B = B ∩A commutativity
A ∩ (B ∩ C) = (A ∩B) ∩ C associativity
A ∩B ⊆ A

A ∩A = A idempotency
A ∩ ∅ = ∅
A ⊆ B ⇔ A ∩B = A

Some basic properties of set differences:

A \A = ∅
A \ ∅ = A

Some basic properties of combinations of set operations:

A ∪ (A ∩B) = A absorption
A ∩ (A ∪B) = A absorption
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) distributivity
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) distributivity
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Operations on Sets 2/2

Definition (power set)

The power set P(A) of a set A is the set of all subsets S of A, including the empty set
and A itself. Formally, P(A) = { S | S ⊆ A }.

Definition (cartesian product)

The cartesian product of the sets X1, . . . ,Xn is defined as
X1 × . . .× Xn = { (x1, . . . , xn) | ∀i ∈ {1, . . . , n}.xi ∈ Xi }.
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Cardinality of Sets

Definition (cardinality)

If A is a finite set, the cardinality of A, written as |A|, is the number of elements in A.

Definition (countably infinite)

A set A is countably infinite if and only if there is a bijective function f : A→ N.

Definition (countable)

A set A is countable if and only if it is finite or countably infinite.
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Theorem 8. If S is a finite set with |S| = n elements, then the number of subsets of S is |P(S)| = 2n.

Theorem 9. Let A and B be two finite sets. Then the following holds:

1. |(A ∪B)| ≤ |A|+ |B|
2. |(A ∩B)| ≤ min(|A|, |B|)
3. |(A×B)| = |A| · |B|

There are sets that are not countable, so called uncountable sets. The best known example of an
uncountable set is the set R of all real numbers. Cantors diagonal argument, published in 1891, is a
famous proof that there are infinite sets that can not be counted.
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Relations

Definition (relation)

A relation R over the sets X1, . . . ,Xk is a subset of their Cartesian product, written
R ⊆ X1 × . . .× Xk .

• Relations are classified according to the number of sets in the defining Cartesian
product:
• A unary relation is defined over a single set X
• A binary relation is defined over X1 × X2

• A ternary relation is defined over X1 × X2 × X3

• A k-ary relation is defined over X1 × . . .× Xk
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We do not really need ternary, . . . , k-ary relations. For example, we can view a ternary relation A×B×C
as a binary relation A× (B × C). Hence, we will focus on binary relations.

Relations are a fairly general concept. Relations play an important role while developing data models
for computer applications. There is a class of database systems, the so called relational database
management systems (RDMS), that are based on a formal relational model. The idea is to model a
domain as a collection of relations that can be represented efficiently as database tables.

Entity relationship models describe a part of a world as sets of typed objects (entities), relations between
entities, and attributes of entities or relations. An example for a system like CampusNet:

• Entities:

– Student

– Instructor

– Course

– Module

– Person

– . . .

• Relations:

– enrolled in ⊆ (Student× Course)

– is a ⊆ (Student× Person)

– is a ⊆ (Instructor × Person)

– belongs to ⊆ (Course×Module)

– teaches ⊆ (Instructor × Course)

– tutor of ⊆ (Student× Course)

– . . .

Entity relationship models are often defined using a graphical notation. A standard graphical notation is
part of the Unified Modeling Language (UML).

Figure 1 provides a UML diagram representation of relations in a campus information system. The
symbols used in UML diagrams have well defined semantics. We do not go into the details here. For
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<<Entity>>

Student
<<Entity>>

Instructor

<<Entity>>

Person

<<Entity>>

Course

<<Entity>>

Module

is a is a

enrolled in

belongs to

teaches

tutor of

Figure 1: A UML diagram showing relations using a graphical notation

now, just note that special line ends (unfilled arrow heads) are used for is a relations. The reason is that
is a relations are quite common and programming languages or database systems often have special
support for representing is a relations.
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Binary Relations

Definition (binary relation)

A binary relation R ⊆ A× B consists of a set A, called the domain of R , a set B , called
the codomain of R , and a subset of A× B called the graph of R .

Definition (inverse of a binary relation)

The inverse of a binary relation R ⊆ A× B is the relation R−1 ⊆ B × A defined by the
rule

b R−1 a↔ a R b.

• For a ∈ A and b ∈ B , we often write a R b to indicate that (a, b) ∈ R .

• The notation a R b is called infix notation while the notation R(a, b) is called the
prefix notation. For binary relations, we commonly use the infix notation.
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Another way to define the inverse relation is to use the set builder notation: Given a binary relation
R ⊆ A×B, we define the inverse relation R−1 as R−1 = { (b, a) ∈ (B ×A) | (a, b) ∈ R }.
It is also possible to define the complement relation of a binary relation. Given a binary relation R ⊆
A×B, we define the complement relation R̄ as R̄ = { (a, b) ∈ (A×B) | (a, b) /∈ R }.
A good example is the relation of students with their teaching assistants. Let S be the set of students
in this course and let T be the set of teaching assistants of this course. Then is assigned to is a binary
relation over S × T and S is the domain and T is the codomain of this relation.

We sometimes use the notation dom(R) and codom(R) to refer to the domain and the codomain of a
relation R.
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Image and Range of Binary Relations

Definition (image of a binary relation)

The image of a binary relation R ⊆ A× B , is the set of elements of the codomain B of
R that are related to some element in A.

Definition (range of a binary relation)

The range of a binary relation R ⊆ A× B is the set of elements of the domain A of R
that relate to at least one element in B .
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For small binary relations, it is possible to draw relation diagrams, with points representing the domain
on the left side, points representing the codomain on the right side, and arrows representing the relation,
pointing from the domain points to the codomain points.

As an example, consider R ⊆ A×B with A = { a, b, c, d, e, f } and B = { 1, 2, 3, 4, 5 }. We define R using
the graphviz dot notation:

1 digraph R {

2 a -> 1;

3 b -> 3;

4 c -> 4;

5 d -> 2;

6 e -> 3;

7 }

The range of R is { a, b, c, d, e } and the image of R is { 1, 2, 3, 4 }.
The inverse R−1 of R defined in the graphviz dot notation:

1 digraph Rinv {

2 1 -> a;

3 3 -> b;

4 4 -> c;

5 2 -> d;

6 3 -> e;

7 }

The complement R̄ of R defined in the graphviz dot notation:

1 digraph Rbar {

2 a -> 2; a -> 3; a -> 4; a -> 5;

3 b -> 1; b -> 2; b -> 4; b -> 5;

4 c -> 1; c -> 2; c -> 3; c -> 5;

5 d -> 1; d -> 3; d -> 4; d -> 5;

6 e -> 1; e -> 2; e -> 4; e -> 5;

7 f -> 1; f -> 2; f -> 3; f -> 4; f -> 5;

8 }
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Properties of Binary Relations (Endorelations)

Definition
A relation R ⊆ A× A is called

• reflexive iff ∀a ∈ A.(a, a) ∈ R

• irreflexive iff ∀a ∈ A.(a, a) ̸∈ R

• symmetric iff ∀a, b ∈ A.(a, b) ∈ R → (b, a) ∈ R

• asymmetric iff ∀a, b ∈ A.(a, b) ∈ R → (b, a) ̸∈ R

• antisymmetric iff ∀a, b ∈ A.((a, b) ∈ R ∧ (b, a) ∈ R)→ a = b

• transitive iff ∀a, b, c ∈ A.((a, b) ∈ R ∧ (b, c) ∈ R)→ (a, c) ∈ R

• connected iff ∀a, b ∈ A.(a, b) ∈ R ∨ (b, a) ∈ R ∨ a = b

• serial iff ∀a ∈ A.∃b ∈ A.(a, b) ∈ R
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Note: There are relations that are neither reflexive nor irreflexive.

Examples:

• The relation is as old as on the set of persons is reflexive.

• The relation is older than on the set of persons is irreflexive.

• The relation is sibling of on the set of persons is symmetric.

• The relation is mother of on the set of persons is asymmetric.

• The relation is not older as on the set of persons is antisymmetric.

• The relation is ancestor of on the set of persons transitive.
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Equivalence, Partial Order, and Strict Partial Order

Definition (equivalence relation)

A relation R ⊆ A× A is called an equivalence relation on A if and only if R is reflexive,
symmetric, and transitive.

Definition (partial order and strict partial order)

A relation R ⊆ A× A is called a partial order on A if and only if R is reflexive,
antisymmetric, and transitive on A. The relation R is called a strict partial order on A if
and only if it is irreflexive, asymmetric and transitive on A.

Definition (linear order)

A partial order R is called a linear order on A if and only if all elements in A are
comparable, i.e., the partial order is total.
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A symbol commonly used for equivalence relations is ≡, a symbol commonly used for strict partial
orders is ≺, and a symbol commonly used for non-strict partial orders is ⪯.

Note: A partial order ⪯ induces a strict partial order a ≺ b⇔ a ⪯ b ∧ a ̸= b.

Note: A strict partial order ≺ induces a partial order a ⪯ b⇔ a ≺ b ∨ a = b.

Examples:

• The relation is as old as is reflexive, symmetric and transitive. Hence it is an equivalence relation.

• The relation is not older as on the set of persons is reflexive, antisymmetric, and transitive and
hence it is a partial order.

• The relation is younger as is irreflexive, asymmetric, and transitive and hence it is a strict partial
order.

Note: An equivalence relation induces equivalence classes. Given a set of persons, the is as old as
relation induces classes of persons with the same age.

Another example for a partial order is the following order relation defined on vectors x⃗ and y⃗ in Rn:

x⃗ ⪯ y⃗ ⇔ ∀i ∈ { 1, . . . , n }.xi ≤ yi

This is a partial order since the vectors x⃗ = (0, 1) and y⃗ = (1, 0) have no order relationship.

Another example for a partial order is the happened before relation on events in a distributed system,
which expresses the fact that an event a that happened before an event b may have influenced the event
b.
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Summary of Properties of Binary Relations

Let ∼ be a binary relation over A× A and let a, b, c ∈ A arbitrary.

property ≡ ⪯ ≺ definition = ≤ <

reflexive ✓ ✓ a ∼ a ✓ ✓
irreflexive ✓ a ̸∼ a ✓
symmetric ✓ a ∼ b → b ∼ a ✓
asymmetric ✓ a ∼ b → b ̸∼ a ✓
antisymmetric ✓ a ∼ b ∧ b ∼ a→ a = b ✓
transitive ✓ ✓ ✓ a ∼ b ∧ b ∼ c → a ∼ c ✓ ✓ ✓
≡ equivalence relation, ⪯ partial order, ≺ strict partial order
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This table summarizes the properties of relations and how they map to equivalence relations, partial
orders, and strict partial orders. The right column shows the equivalence, less-than-or-equal, and less-
than examples that we are all familiar with from the sets of numbers.

75



Section 8: Functions

5 Proofs

6 Sets

7 Relations

8 Functions
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Functions

Definition (partial function)

A relation f ⊆ X × Y is called a partial function if and only if for all x ∈ X there is at
most one y ∈ Y with (x , y) ∈ f . We call a partial function f undefined at x ∈ X if and
only if (x , y) ̸∈ f for all y ∈ Y .

Definition (total function)

A relation f ⊆ X × Y is called a total function if and only if for all x ∈ X there is
exactly one y ∈ Y with (x , y) ∈ f .
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Notation:

• If f ⊆ X × Y is a total function, we write f : X → Y .

• If (x, y) ∈ f , we often write f(x) = y.

• If a partial function f is undefined at x ∈ X, we often write f(x) = ⊥.
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Function Properties

Definition (injective function)

A function f : X → Y is called injective if every element of the codomain Y is mapped
to by at most one element of the domain X : ∀x , y ∈ X .f (x) = f (y)→ x = y

Definition (surjective function)

A function f : X → Y is called surjective if every element of the codomain Y is
mapped to by at least one element of the domain X : ∀y ∈ Y .∃x ∈ X .f (x) = y

Definition (bijective function)

A function f : X → Y is called bijective if every element of the codomain Y is mapped
to by exactly one element of the domain X . (That is, the function is both injective and
surjective.)
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If a function f : X → Y is bijective, we can easily obtain an inverse function f−1 : Y → X.

• Example of an injective-only function f : { 1, 2, 3 } → {A,B,C,D } in graphviz dot notation:

1 digraph f {

2 1->D

3 2->B

4 3->C

5 A

6 }

• Example of a surjective-only function f : { 1, 2, 3, 4 } → {B,C,D } in graphviz dot notation:

1 digraph f {

2 1->D

3 2->B

4 3->C

5 4->C

6 }

• Example of a bijective function f : { 1, 2, 3, 4 } → {A,B,C,D } in graphviz dot notation:

1 digraph f {

2 1->D

3 2->B

4 3->C

5 4->A

6 }

• Example of a function f : { 1, 2, 3 } → {A,B,C,D } that is neither:

1 digraph f {

2 1->D

3 2->D

4 A

5 3->C

6 B

7 }
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Operations on Functions

Definition (function composition)

Given two functions f : A→ B and g : B → C , the composition of g with f is defined
as the function g ◦ f : A→ C with (g ◦ f )(x) = g(f (x)).

Definition (function restriction)

Let f be a function f : A→ B and C ⊆ A. Then we call the function
f |C = {(c , b) ∈ f |c ∈ C} the restriction of f to C .
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Haskell provides the . operator for function composition.

1 last' :: [a] -> a

2 last' = (head . reverse)

1 import Data.List

2 rsort :: Ord a => [a] -> [a]

3 rsort = (reverse . sort)

1 odd' :: Integral a => a -> Bool

2 odd' = not . even

1 sumOfOdds :: Integral a => [a] -> a

2 sumOfOdds = sum . filter (not . even)
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Lambda Notation of Functions

• It is sometimes not necessary to give a function a name.

• A function definition of the form { (x , y) ∈ X × Y | y = E }, where E is an
expression (usually involving x), can be written in a shorter lambda notation as
λx ∈ X .E .

• Examples:
• λn ∈ N.n (identity function for natural numbers)
• λx ∈ N.x2 (f (x) = x2)
• λ(x , y) ∈ N× N.x + y (addition of natural numbers)

• Lambda calculus is a formal system for expressing computation based on function
abstraction and application using variable bindings and substitutions.

• Lambda calculus is the foundation of functional programming languages like
Haskell.
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The lambda notation λx ∈ X.E implies a set that consists of elements of the form (x, y) ∈ X × Y , i.e.,
the function argument(s) and the function value.

• Identity function for natural numbers:

λn ∈ N.n = { (x, y) ∈ N× N | y = x }
= { (0, 0), (1, 1), (2, 2), . . . }

• f(x) = x2:

λx ∈ N.x2 = { (x, y) ∈ N× N | y = x2 }
= { (0, 0), (1, 1), (2, 4), . . . }

• Addition of natural numbers:

λ(x, y) ∈ N× N.x+ y = { ((x, y), z) ∈ (N× N)× N | z = x+ y }
= { ((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 2), . . . }

The following example demonstrates lambda functions and function composition in Haskell.

1 f :: Num a => a -> a

2 f = (\x->x^2) . (\x->x+1)

Further online information:

• Wikipedia: Lambda Calculus
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Currying

• Lambda calculus uses only functions that take a single argument. This is possible
since lambda calculus allows functions as arguments and results.

• A function that takes two arguments can be converted into a function that takes
the first argument as input and which returns a function that takes the second
argument as input.

• This method of converting functions with multiple arguments into a sequence of
functions with a single argument is called currying.

• The term currying is a reference to the mathematician Haskell Curry.
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The Haskell programming language uses currying to convert all functions with multiple arguments into
a sequence of functions with a single argument.
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Part III

Data Representation

In this part, we look at some fundamental data types such as different kinds of numbers, characters,
strings, or dates and time. We explore how such data is commonly represented in computing machines.

We start by looking at different number systems. While we know number systems such as natural
numbers, rational numbers, or real numbers from school, it turns out that computers tend to prefer
some restricted versions of these number systems. It is important to be aware of the differences in
order to produce software that behaves well.

Most numbers have associated units and hence we briefly discuss the international system of units and
metric prefixes.

We then turn to characters and some character representation and encoding issues. While characters
in principle look like a simple concept, they actually are not if we consider the different character sets
used in the word. Operations like character comparisons can become quite challenging in practice.

Finally, we look at the notion of time in computer systems and the representation of time and dates.
This again turns out to be much more complicated than one might have hoped. Time is often not a
good concept in distributed systems since establishing an accurate common notion of time is quite
challenging.

By the end of this part, students should be able to

• represent natural numbers in number systems with arbitrary bases;

• convert integer numbers into fixed size (b-1) and b-complement representations;

• explain the difference between real numbers and floating point numbers;

• convert decimal fractions into IEEE floating point numbers;

• describe the limitations of floating point numbers;

• recognize the importance of units and the International system of units;

• apply metric and binary prefixes properly;

• illustrate different representations of characters and strings;

• summarize the ASCII and UNICODE character sets and the UTF-8 encoding;

• explain the value of standardized date and time formats.
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Numbers can be confusing. . .

• There are only 10 kinds of people in the world: Those who understand binary and
those who don’t.

• Q: How easy is it to count in binary?
A: It’s as easy as 01 10 11.

• A Roman walks into the bar, holds up two fingers, and says, “Five beers, please.”

• Q: Why do mathematicians confuse Halloween and Christmas?
A: Because 31 Oct = 25 Dec.

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Data Representation CC-BY-NC-ND September 5, 2024 94 / 285

Computers are machines that can do calculations (or computations) with numbers much faster than
humans. However, things can also go badly wrong if numbers are represented in different formats or
limits of precision are reached. Even seemingly simple calculations (for humans used to the decimal
number system) can sometimes not be carried out by computers accurately (and this is independent of
how expensive the computer is).

Hence it is of crucial importance to understand how computers represent numbers and which errors
can appear in computations performed by them.

Further online information:

• http://ta.twi.tudelft.nl/users/vuik/wi211/disasters.html
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Number Systems in Mathematics

• Numbers can be classified into sets, called number systems, such as the natural
numbers, the integer numbers, or the real numbers.

Symbol Name Description

N Natural 0, 1, 2, 3, 4, . . .
Z Integer . . . , -4, -3, -2, -1, 0, 1, 2, 3, 4, . . .
Q Rational a

b
were a ∈ Z and b ∈ Z and b ̸= 0

R Real Limits of a convergent sequences of rational numbers
C Complex a + bi where a ∈ R and b ∈ R and i =

√
−1

• Numbers should be distinguished from numerals, the symbols used to represent
numbers. A single number can have many different representations.
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Note the difference between a number and its representations. The number forty-two can be repre-
sented as:

(a) 42 (decimal number)

(b) 2a (hexadecimal number)

(c) 101010 (binary number)

(d) XLII (roman number)

(e) - . . . - . . - - - (morse code)

(f) (qr code)
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Section 9: Natural Numbers

9 Natural Numbers

10 Integer Numbers

11 Rational and Real Numbers

12 Floating Point Numbers

13 International System of Units

14 Characters and Strings

15 Date and Time
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Numeral Systems for Natural Numbers

• Natural numbers can be represented using different bases. We commonly use
decimal (base 10) number representations in everyday life.

• In computer science, we also frequently use binary (base 2), octal (base 8), and
hexadecimal (base 16) number representations.

• In general, natural numbers represented in the base b system are of the form:

(anan−1 · · · a1a0)b =
n∑

k=0

akb
k

hex 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12

dec 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

oct 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 21 22

bin 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 10001 10010
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Algorithm 1 Conversion of a decimal natural number n into a bit string representing a binary number
1: function DEC2BIN(n)
2: s← ”” ▷ s holds a bit string
3: repeat
4: b← n mod 2 ▷ the remainder gives us the next bit
5: prepend bit b to the bit string s
6: n← n div 2 ▷ the number still left to convert
7: until n = 0
8: return s
9: end function

Algorithm 2 Conversion of a bit string s representing a binary number into a decimal number
1: function BIN2DEC(s)
2: n← 0 ▷ n holds a natural number
3: while bit string s is not empty do
4: b← leftmost bit of the bit string s ▷ removes the bit from the bit string
5: n← 2 · n+ b
6: od
7: return n
8: end function

To convert binary numbers to octal or hexadecimal numbers or vice versa, group triples or quadrupels
of binary digits into recognizable chunks (add leading zeros as needed):

1100011010111002 = 01102︸ ︷︷ ︸
616

00112︸ ︷︷ ︸
316

01012︸ ︷︷ ︸
516

11002︸ ︷︷ ︸
c16

= 635c16

1100011010111002 = 1102︸︷︷︸
68

0012︸︷︷︸
18

1012︸︷︷︸
58

0112︸︷︷︸
38

1002︸︷︷︸
48

= 615348

This trick also works in the other direction: Convert every octal or hexadecimal digit individually into a
binary chunk:

deadbeaf16 = d16︸︷︷︸
11012

e16︸︷︷︸
11102

a16︸︷︷︸
10102

d16︸︷︷︸
11012

b16︸︷︷︸
10112

e16︸︷︷︸
11102

a16︸︷︷︸
10102

f16︸︷︷︸
11112

= 110111101010110110111110111011112
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Natural Numbers Literals

• Prefix conventions are used to indicate the base of number literals:

prefix example meaning description

42 4210 decimal number
0x 0x42 4216 = 6610 hexadecimal number
0o 0o42 428 = 3410 octal number
0b 0b1000010 10000102 = 4210 binary number

0 042 428 = 3410 octal number (old)

• The old octal number prefix 0 is gradually replaced by the more sensible prefix 0o
but this transition will take time.

• Until then, beware that 42 and 042 may not represent the same number!
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Conversion of the decimal number 123 into binary using the algorithm dec2bin:

123 mod 2 = 1 12

61 mod 2 = 1 112

30 mod 2 = 0 0112

15 mod 2 = 1 10112

7 mod 2 = 1 110112

3 mod 2 = 1 1110112

1 mod 2 = 1 11110112

Conversion of the binary number 11110112 into a decimal number using the algorithm bin2dec:

11110112 0 · 2 + 1 = 1

1110112 1 · 2 + 1 = 3

110112 3 · 2 + 1 = 7

10112 7 · 2 + 1 = 15

0112 15 · 2 + 0 = 30

112 30 · 2 + 1 = 61

12 61 · 2 + 1 = 123
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Natural Numbers with Fixed Precision

• Computer systems often work internally with finite subsets of natural numbers.

• The number of bits used for the binary representation defines the size of the subset.

bits name range (decimal) range (hexadecimal)

4 nibble 0-15 0x0-0xf
8 byte, octet, uint8 0-255 0x0-0xff
16 uint16 0-65 535 0x0-0xffff
32 uint32 0-4 294 967 295 0x0-0xffffffff
64 uint64 0-18 446 744 073 709 551 615 0x0-0xffffffffffffffff

• Using (almost) arbitrary precision numbers is possible but usually slower.
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Fixed point natural numbers typically silently wrap around, as demonstrated by the following program:

1 -- Surprises with fixed precision unsigned integers (not only in Haskell)

2

3 import Data.Word

4 import Text.Printf

5

6 w8max = maxBound :: Word8

7 w8min = minBound :: Word8

8

9 main = do

10 printf "%3u + 1 = %3u\n" w8max (w8max + 1)

11 printf "%3u - 1 = %3u\n" w8min (w8min - 1)

12 printf " 42 + %3u + 1 = %3u\n" w8max (42 + w8max + 1)

13 printf " 42 - %3u - 1 = %3u\n" w8max (42 - w8max - 1)

This program produces the following output:

255 + 1 = 0

0 - 1 = 255

42 + 255 + 1 = 42

42 - 255 - 1 = 42

Careless choice of fixed precision number ranges can lead to serious disasters. Things are even more
subtle in programming languages that allow automatic type conversions.
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Section 10: Integer Numbers

9 Natural Numbers

10 Integer Numbers

11 Rational and Real Numbers

12 Floating Point Numbers

13 International System of Units

14 Characters and Strings

15 Date and Time
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Integer Numbers

• Integer numbers can be negative but surprisingly there are not “more” integer
numbers than natural numbers (even though integer numbers range from −∞ to
+∞ while natural numbers only range from 0 to +∞).

• This can be seen by writing integer numbers in the order 0, 1, -1, 2, -2, . . . , i.e., by
defining a bijective function f : Z→ N (and the inverse function f −1 : N→ Z):

f (x) =

{
2x if x ≥ 0

−2x − 1 if x < 0
f −1(x) =

{
x
2

if x is even

− x+1
2

if x is odd

• We could (in principle) represent integer numbers by implementing this bijection to
natural numbers. But there are more efficient ways to implement integer numbers
if we assume that we use a fixed precision anyway.
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Note how the mathematical definitions of f and f−1 directly translate into Haskell code:

1 f :: Integer -> Integer

2 f x

3 | x >= 0 = 2 * x

4 | x < 0 = -2 * x -1

5

6 g :: Integer -> Integer

7 g x

8 | even x = x `div` 2

9 | odd x = -1 * (x+1) `div` 2

10

11 main = print $ map (g . f) [-10..10]

Note that Haskell does not really have a type for natural numbers. One reason is that subtraction on
natural numbers may lead to results that do not exist in the set of natural numbers.

90



One’s Complement Fixed Integer Numbers (b-1 complement)

• We have a fixed number space with n digits and base b to represent integer
numbers, that is, we can distinguish at most bn different integers.

• Lets represent positive numbers in the usual way.

• To represent negative numbers, we invert the absolute value (anan−1 · · · a1a0)b by
calculating (a′na

′
n−1 · · · a′1a′0)b with a′i = (b − 1)− ai .

• Example: b = 2, n = 4 : 510 = 01012,−510 = 10102

bin: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

dec: 0 1 2 3 4 5 6 7 -7 -6 -5 -4 -3 -2 -1 -0

• Note that this gives us +0 and -0, i.e., we only represent bn − 1 different integers.

• Negative binary numbers always have the most significant bit set to 1.
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Having both +0 and -0 can be avoided by shifting all negative numbers one position to the right. This
removes the -0 and creates space to represent an additional negative number. This idea leads us to the
b complement discussed next.
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Two’s Complement Fixed Integer Numbers (b complement)

• Like before, we assume a fixed number space with n digits and a base b to
represent integer numbers, that is, we can distinguish at most bn different integers.

• Lets again represent positive numbers in the usual way.

• To represent negative numbers, we invert the absolute value (anan−1 · · · a1a0)b by
calculating (a′na

′
n−1 · · · a′1a′0)b with a′i = (b − 1)− ai and adding 1 to it.

• Example: b = 2, n = 4 : 510 = 01012,−510 = 10112

bin: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

dec: 0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

• This representation simplifies the implementation of arithmetic operations.

• Negative binary numbers always have the most significant bit set to 1.
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Benefits of the two’s complement for binary numbers:

• Positive numbers and 0 have the most significant bit set to 0.

• Negative numbers have the most significant bit set to 1.

• There is only a single representation for 0.

• For positive numbers, the two’s complement representation corresponds to the normal binary
representation.

Example: Calculate 210 − 610 = 210 + (−610) using binary numbers using two’s complement represen-
tation for negative numbers with 4 digits.

Conversion into binary numbers yields 210 = 00102 and −610 = 10012 +0001s = 10102. With
this, we can simply add the two numbers: 00102 + 10102 = 11002. The result 11002 is a
negative number. Inverting the bits and adding one gives us 01002 = 410. Hence, the result
is −4.
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Two’s Complement Fixed Integer Number Ranges

• Most computers these days use the two’s complement internally.

• The number of bits available defines the ranges we can use.

bits name range (decimal)

8 int8 −128 to 127
16 int16 −32 768 to 32 767
32 int32 −2 147 483 648 to 2 147 483 647
64 int64 −9 223 372 036 854 775 808 to 9 223 372 036 854 775 807

• Be careful if your arithmetic expressions overflows/underflows the range!
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Note that computer hardware usually does not warn you about integer overflows or underflows. Instead,
numbers simply wrap around.

1 -- Surprises with fixed precision integers (not only in Haskell)

2

3 import Data.Int

4 import Text.Printf

5

6 i8max = maxBound :: Int8

7 i8min = minBound :: Int8

8

9 main = do

10 printf "%3d + 1 = %3d\n" i8max (i8max + 1)

11 printf "%3d - 1 = %3d\n" i8min (i8min - 1)

This program produces the following output:

127 + 1 = -128

-128 - 1 = 127
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Jürgen Schönwälder (Constructor University) Mathematical Foundations: Data Representation CC-BY-NC-ND September 5, 2024 105 / 285

94



Rational Numbers

• Computer systems usually do not natively represent rational numbers, i.e., they
cannot compute with rational numbers at the hardware level.

• Software can, of course, implement rational number data types by representing the
numerator and the denominator as integer numbers internally and keeping them in
the reduced form.

• Example using Haskell (execution prints 5 % 6):

import Data.Ratio

main = print $ 1%2 + 1%3
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The following code examples are illustrative.

The equivalent Python code would look like this:

1 from fractions import Fraction

2 a = Fraction("1/2")

3 b = Fraction("1/3")

4 print(a + b)

C++ has support for rational numbers in the standard library:

1 #include <iostream>

2 #include <ratio>

3

4 int main()

5 {

6 typedef std::ratio<1, 2> a;

7 typedef std::ratio<1, 3> b;

8 typedef std::ratio_add<a, b> sum;

9 std::cout << sum::num << '/' << sum::den << '\n';

10 return 0;

11 }

C programmers can use the GNU multiple precision arithmetic library:

1 #include <gmp.h>

2

3 int main()

4 {

5 mpq_t a, b, c;

6 mpq_inits(a, b, c, NULL);

7 mpq_set_str(a, "1/2", 10);

8 mpq_set_str(b, "1/3", 10);

9 mpq_add(c, a, b);

10 gmp_printf("%Qd\n", c);

11 mpq_clears(a, b, c, NULL);

12 return 0;

13 }
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Real Numbers

• Computer systems usually do not natively represent real numbers, i.e., they cannot
compute with real numbers at the hardware level.

• The primary reason is that real numbers like the result of 1
7
or numbers like π have

by definition not a finite representation.

• So the best we can do is to have a finite approximation. . .

• Since all we have are approximations of real numbers, we always make rounding
errors when we use these approximations. If we are not extremely cautious, these
rounding errors can accumulate badly.

• Numeric algorithms can be analyzed according to how good or bad they propagate
rounding errors, leading to the notion of numeric stability.
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Numeric stability is an important criterion for numeric algorithms. Numeric algorithms must be designed
with numeric stability in mind. While it may seem easy to translate certain mathematical formulae into
code, naive translations can produce pretty surprising results. If in doubt, use an algorithm for which it
has been shown that it has numeric stability and implement the algorithm as defined; resist the idea to
create a variation, unless you do an analysis of the numeric stability of your variation.
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Floating Point Numbers

• Floating point numbers are useful in situations where a large range of numbers
must be represented with fixed size storage for the numbers.

• The general notation of a (normalized) base b floating point number with precision
p is

s · d0.d1d2 . . . dp−1 · be = s ·
(

p−1∑

k=0

dkb
−k

)
· be

where b is the base, e is the exponent, d0, d1, . . . , dp−1 are digits of the mantissa
with di ∈ {0, . . . , b − 1} for i ∈ {0, . . . , p − 1}, s ∈ {1,−1} is the sign, and p is
the precision.
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As humans, we are used to base b = 10 numbers and the so called scientific notation of large (or
small) numbers. For example, we write the speed of light as 2.997 924 58×108 ms−1 and the elementary
positive charge as 1.602 176 634× 10−19 C.

Computers prefer to use the base b = 2 for efficiency reasons. Even if you input and output the number
in a decimal scientific notation (b = 10), internally the number is most likely stored with base b = 2.
This means that there is a conversion whenever you input or output floating point numbers in decimal
notation.

Algorithm 3 Conversion of a decimal fraction f into a bit string representing a binary fraction
1: function DECF2BINF(f )
2: s← ”” ▷ s holds a bit string
3: repeat
4: f ← f · 2
5: b← int(f) ▷ int() yields the integer part
6: append b to the bit string s
7: f ← frac(f) ▷ frac() yields the fractional part
8: until f = 0 ▷ may not always be reached
9: return s

10: end function

Algorithm 4 Conversion of a bit string s representing a binary fraction into a decimal fraction
1: function BINF2DECF(s)
2: f ← 0.0 ▷ n holds a decimal fraction
3: while bit string s is not empty do
4: b← rightmost bit of the bit string s ▷ removes the bit from the bit string
5: f ← (f + b)/2
6: od
7: return f
8: end function
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Floating Point Number Normalization

• Floating point numbers are usually normalized such that d0 is in the range
{1, . . . , b − 1}, except when the number is zero.

• Normalization must be checked and restored after each arithmetic operation since
the operation may denormalize the number.

• When using the base b = 2, normalization implies that the first digit d0 is always 1
(unless the number is 0). Hence, it is not necessary to store d0 and instead the
mantissa can be extended by one additional bit.

• Floating point numbers are at best an approximation of a real number due to their
limited precision.

• Calculations involving floating point numbers usually do not lead to precise results
since rounding must be used to match the result into the floating point format.
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It is important for you to remember that floating point arithmetic is generally not exact. This applies to
almost all digital calculators, regardless whether it is a school calculator, an app in your mobile phone,
a calculator program in your computer. Many of these programs try to hide the fact that the results
produced are imprecise by internally using more bits than what is shown to the user. While this helps a
bit, it does not cure the problem, as will be demonstrated on subsequent pages.

While there are programs to do better than average when it comes to floating point numbers, many
programs that are used widely may suffer from floating point imprecision. The most important thing is
that you are aware of the simple fact that floating point numbers produced by a computer may simply
be incorrect.

Further online information:

• Wikipedia: Numeric Precision in Microsoft Excel
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IEEE 754 Floating Point Formats

precision single (float) double quad

sign 1 bit 1 bit 1 bit
exponent 8 bit 11 bit 15 bit
exponent range [-126,. . . ,127] [-1022,. . . ,1023] [-16382,. . . ,16383]
exponent bias 127 1023 16383
mantissa 23 bit 52 bit 112 bit
total size 32 bit 64 bit 128 bit

decimal digits ≈ 7.2 ≈ 15.9 ≈ 34.0

• IEEE 754 is a widely implemented standard for floating point numbers.

• IEEE 754 floating point numbers use the base b = 2 and as a consequence decimal
numbers such as 1 · 10−1 cannot be represented precisely.
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The exponent range allows for positive and negative values. In order to avoid having to encode negative
exponents, the exponent is biased by adding the exponent bias. For example, the exponent −17 of a
single precision floating point number will be represented by the biased exponent value−17+127 = 110.
(The exponent bias shifts the exponent range from [−126, . . . , 127] to [1, . . . , 254] for single precision
floating point numbers.)

Single precision format:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|S| exponent | mantissa (23 bits) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Double precision format:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|S| exponent (11 bits) | :

+-+-+-+-+-+-+-+-+-+-+-+-+ mantissa (52 bits) :

: |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Quadruple precision format:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|S| exponent (15 bits) | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

: mantissa (112 bits) |

: |

: |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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IEEE 754 Exceptions and Special Values

• The standard defines five exceptions, some of them lead to special values:

1. Invalid operation: returns not a number (nan)
2. Division by zero: returns ±infinity (inf)
3. Overflow: returns ±infinity (inf)
4. Underflow: depends on the operating mode
5. Inexact: returns rounded result by default

• Computations may continue if they did produce a special value like nan or inf.

• Hence, it is important to check whether a calculation resulted in a value at all.

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Data Representation CC-BY-NC-ND September 5, 2024 112 / 285

We have seen that integer numbers usually just silently overflow (or underflow) by “wrapping” around.
IEEE 754 floating point numbers behave differently when it comes to overflows, this is in a way perhaps
an improvement.

The special values use special encoding rules:

• Infinity is indicated by setting all bits of the exponent field to one and all bits of the mantissa to
zero. The sign bit indicate positive or negative infinity.

• NaN is encoded by setting all bits of the exponent and the mantissa fields to one and by clearning
the sign bit.
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Floating Point Surprises

• Any floating point computation should be treated with the utmost suspicion unless
you can argue how accurate it is. [Alan Mycroft, Cambridge]

• Floating point arithmetic almost always involves rounding errors and these errors
can badly aggregate.

• It is possible to “loose” the reasonably precise digits and to continue calculation
with the remaining rather imprecise digits.

• Comparisons to floating point constants may not be “exact” and as a consequence
loops may not end where they are expected to end.
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1 -- Surprises with double floating point numbers (not only in Haskell)

2

3 import Text.Printf

4

5 main = do

6 printf "2.0 / 0.0 = %g\n" (2.0 / 0.0 :: Double)

7 printf "2.0 / 0.0 + 1.0 = %g\n" (2.0 / 0.0 + 1.0 :: Double)

8 printf "2.0 / 0.0 - 2.0 / 0.0 = %g\n" (2.0 / 0.0 - 2.0 / 0.0 :: Double)

9 printf "(1.0 + 1e20) - 1e20 = %g\n" ((1.0 + 1e20) - 1e20 :: Double)

10 printf "1.0 + (1e20 - 1e20) = %g\n" (1.0 + (1e20 - 1e20) :: Double)

11 printf "0.1 + 0.2 = %g\n" (0.1 + 0.2 :: Double)

12 printf "counting from 0.0 up in steps of 0.1 = %s\n"

13 $ show $ take 11 $ iterate (+0.1) 0.0

Further online information:

• https://www.cl.cam.ac.uk/teaching/1011/FPComp/fpcomp10slides.pdf
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Importance of Units and Unit Prefixes

• Most numbers we encounter in practice have associated units. It is important to be
very explicit about the units used.
• NASA lost a Mars climate orbiter (worth $125 million) in 1999 due to a unit

conversion error.
• An Air Canada plane ran out of fuel in the middle of a flight in 1983 due to a fuel

calculation error while switching to the metric system.

• There is an International System of Units (SI Units) to help you. . .

� Always be explicit about units.

� And always be clear about the unit prefixes.
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Further online information:

• Wikipedia: Mars Climate Orbiter

• Wikipedia: Gimli Glider
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SI Base Units

Unit Symbol Description

metre m The distance travelled by light in a vacuum in a certain fraction
of a second.

kilogram kg The mass of the international prototype kilogram.
second s The duration of a number of periods of the radiation of the

caesium-133 atom.
ampere A The constant electric current which would produce a certain

force between two conductors.
kelvin K A fraction of the thermodynamic temperature of the triple

point of water.
mole mol The amount of substance of a system which contains atoms

corresponding to a certain mass of carbon-12.
candela cd The luminous intensity of a source that emits monochromatic

radiation.
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Further online information:

• BIPM: “SI Brochure: The International System of Units”, 8th edition, updated 2014

• Wikipedia: SI Base Unit
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SI Derived Units

• Many important units can be derived from the base units. Some have special
names, others are simply defined by a formula over their base units. Some
examples:

Name Symbol Definition Description

herz Hz s−1 frequency
newton N kgm s−1 force
watt W kgm2 s−3 power
volt V kgm2 s−3 A−1 voltage
ohm Ω kgm2 s−3 A−2 resistance

velocity m s−1 speed

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Data Representation CC-BY-NC-ND September 5, 2024 117 / 285

Further online information:

• BIPM: “SI Brochure: The International System of Units”, 8th edition, updated 2014

• Wikipedia: SI Derived Unit
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Metric Prefixes (International System of Units)

Name Symbol Base 10 Base 1000 Value

kilo k 103 10001 1000
mega M 106 10002 1 000 000
giga G 109 10003 1 000 000 000
tera T 1012 10004 1 000 000 000 000
peta P 1015 10005 1 000 000 000 000 000
exa E 1018 10006 1 000 000 000 000 000 000
zetta ζ 1021 10007 1 000 000 000 000 000 000 000
yotta Y 1024 10008 1 000 000 000 000 000 000 000 000
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Metric Prefixes (International System of Units)

Name Symbol Base 10 Base 1000 Value

milli m 10−3 1000−1 0.001
micro µ 10−6 1000−2 0.000 001
nano n 10−9 1000−3 0.000 000 001
pico p 10−12 1000−4 0.000 000 000 001
femto f 10−15 1000−5 0.000 000 000 000 001
atto a 10−18 1000−6 0.000 000 000 000 000 001
zepto z 10−21 1000−7 0.000 000 000 000 000 000 001
yocto y 10−24 1000−8 0.000 000 000 000 000 000 000 001
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Binary Prefixes

Name Symbol Base 2 Base 1024 Value

kibi Ki 210 10241 1024
mebi Mi 220 10242 1 048 576
gibi Gi 230 10243 1 073 741 824
tebi Ti 240 10244 1 099 511 627 776
pebi Pi 250 10245 1 125 899 906 842 624
exbi Ei 260 10246 1 152 921 504 606 846 976
zebi Zi 270 10247 1 180 591 620 717 411 303 424
yobi Yi 280 10248 1 208 925 819 614 629 174 706 176
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There is often confusion about metric and binary prefixes since metric prefixes are sometimes incor-
rectly used to refer to binary prefixes. Storage devices are a good example where this has led to serious
confusion.

Computers generally access storage using addresses with an address range that is a power of two.
Hence, with 30 bits, we can address 230 B = 1073 741 824B, or 1GiB. The industry, however, preferred
to use the metric prefix system (well, to be fair, there was no binary prefix system initially), hence they
used 1GB, which is 109 B = 1000 000 000B. The difference is 73 741 824B (almost 7% of 1GiB).

The binary prefixes, proposed in 2000, help to avoid any confusion. However, the adoption is rather
slow and hence we will likely have to live with the confusion for many years to come. But of course, you
can make a difference by always using the correct prefixes.
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Characters and Character Encoding

• A character is a unit of information that roughly corresponds to a grapheme,
grapheme-like unit, or symbol, such as in an alphabet or syllabary in the written
form of a natural language.

• Examples of characters include letters, numerical digits, common punctuation
marks, and whitespace.

• Characters also includes control characters, which do not correspond to symbols in
a particular natural language, but instead encode bits of information used to
control information flow or presentation.

• A character encoding is used to represent a set of characters by some kind of
encoding system. A single character can be encoded in different ways.
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Please note again the distinction between a character and the representation or encoding of a character.
There can be many different representations or encodings for the same character.

Characters are often read by humans and not just machines. This adds another problem since some
characters (or character sequences) may look similar for a human reader while they are different from a
program’s perspective. This can lead to confusion on both sides, the human and the machine process-
ing human input.

Further online information:

• YouTube: Plain Text - Dylan Beattie - NDC Copenhagen 2022
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ASCII Characters and Encoding

• The American Standard Code for Information Interchange (ASCII) is a still widely
used character encoding standard.

• Traditionally, ASCII encodes 128 specified characters into seven-bit natural
numbers. Extended ASCII encodes the 128 specified characters into eight-bit
natural numbers. This makes code points available for additional characters.

• ISO 8859 is a family of extended ASCII codes that support different language
requirements, for example:
• ISO 8859-1 adds characters for the most common Western European languages
• ISO 8859-2 adds characters for the most common Eastern European languages
• ISO 8859-5 adds characters for Cyrillic languages

• Unfortunately, ISO 8859 code points overlap, making it difficult to represent texts
requiring several different character sets.
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Using the ISO 8859 character code sets has been difficult since the information how the extended
ASCII code points have to be interpreted was depending on the context. Hence, a text copied from one
computer to another could become almost unreadable.
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ASCII Characters and Code Points (decimal)

0 nul 1 soh 2 stx 3 etx 4 eot 5 enq 6 ack 7 bel

8 bs 9 ht 10 nl 11 vt 12 np 13 cr 14 so 15 si

16 dle 17 dc1 18 dc2 19 dc3 20 dc4 21 nak 22 syn 23 etb

24 can 25 em 26 sub 27 esc 28 fs 29 gs 30 rs 31 us

32 sp 33 ! 34 " 35 # 36 $ 37 % 38 & 39 ’

40 ( 41 ) 42 * 43 + 44 , 45 - 46 . 47 /

48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7

56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?

64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G

72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O

80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W

88 X 89 Y 90 Z 91 [ 92 \ 93 ] 94 ^ 95 _

96 ‘ 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o

112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w

120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 del
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ASCII control characters:

dec hex name description

0 00 NUL null character
1 01 SOH start of heading
2 02 STX start of text
3 03 ETX end of text
4 04 EOT end of transmission
5 05 ENQ enquiry
6 06 ACK acknowledge
7 07 BEL bell
8 08 BS backspace
9 09 HT horizontal tab

10 0A LF new line
11 0B VT vertical tab
12 0C FF form feed
13 0D CR carriage ret
14 0E SO shift out
15 0F SI shift in
16 10 DLE data link escape
17 11 DC1 device control 1
18 12 DC2 device control 2
19 13 DC3 device control 3
20 14 DC4 device control 4
21 15 NAK negative acknowledgment
22 16 SYN synchronous idle
23 17 ETB end of transmission blk
24 18 CAN cancel
25 19 EM end of medium
26 1A SUB substitute
27 1B ESC escape
28 1C FS file separator
29 1D GS group separator
30 1E RS record separator
31 1F US unit separator
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Universal Coded Character Set and Unicode

• The Universal Coded Character Set (UCS) is a standard set of characters defined
and maintained by the International Organization of Standardization (ISO).

• The Unicode Consortium produces industry standards based on the UCS for the
encoding. Unicode 15.0 (published Sep. 2022) defines 149 186 characters, each
identified by an unambiguous name and an integer number called its code point.

• The overall code point space is divided into 17 planes where each plane has
216 = 65536 code points. The Basic Multilingual Plane (plane 0) contains
characters of almost all modern languages, and a large number of symbols.

• Unicode can be implemented using different character encodings. The UTF-32
encoding encodes character code points directly into 32-bit numbers (fixed length
encoding). While simple, an ASCII text of size n becomes a UTF-32 text of size 4n.
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Some programming languages natively support unicode while others require the use of unicode li-
braries. In general, unicode is not trivial to program with.

• Unicode characters are categorized and they have properties that go beyond a simple classifica-
tion into numbers, letters, etc.

• Unicode characters and strings require normalization since some symbols may be represented in
several different ways. Hence, in order to compare unicode characters, it is important to choose a
suitable normalization form.

• Unicode characters can be encoded in several different formats and this requires character and
string conversion functionality.

• Case mappings are not trivial since certain characters do not have a matching lowercase and
uppercase representation. Some case conversions are also language specific and not character
specific.

The GNU libunistring library is an example of a Unicode string library for C programmers.

In Haskell, characters are Unicode characters. The Unicode code point for a given character can be
obtained from the ord :: Char -> Int function and the Unicode character of a given code point can be
obtained from the chr :: Int -> Char function defined in Data.Char. The Data.Char module defines
many useful functions to classify characters or to change the case of characters.
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Unicode Transformation Format UTF-8

bytes cp bits first cp last cp byte 1 byte 2 bytes 3 byte 4

1 7 U+0000 U+007F 0xxxxxxx
2 11 U+0080 U+07FF 110xxxxx 10xxxxxx
3 16 U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx
4 21 U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

• A variable-length encoding of Unicode code points (cp) that turns seven-bit ASCII
code points into valid UTF-8 code points.

• The € symbol with the code point U+20AC (0010 0000 1010 1100 in binary
notation) encodes as 0xE282AC (11100010 10000010 10101100 in binary notation).

• Note that this makes the € more expensive than the $. ,
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The UTF-8 format is widely used when texts are exchanged between programs or over the Internet. It
is defined in RFC 3629 [3], which was published in January 1998.
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Strings

• Let Σ be a non-empty finite set of symbols (or characters), called the alphabet.

• A string (or word) over Σ is any finite sequence of symbols from Σ, including (of
course) the empty sequence.

• Typical operations on strings are length(), concatenation(), reverse(), . . .

• There are different ways to store strings internally. Two common approaches are:
• The sequence is null-terminated, i.e., the characters of the string are followed by a

special NUL character.
• The sequence is length-prefixed, i.e., a natural number indicating the length of the

string is stored in front of the characters.

• In some programming languages, you need to know how strings are stored, in other
languages you happily leave the details to the language implementation.
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In C and C++, a simple (usually ASCII) string is a null-terminated sequence of characters. C program-
mers have to make sure that always sufficient memory is allocated to store the terminating byte.

In Haskell, a string is a list of characters. This is neither a time nor a space efficient representation.
Hence, when processing larger pieces of text in Haskell, it is advisable to use Data.Text.
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System Time and Clocks

• Computer systems usually maintain a notion of system time. The term system time
indicates that two different systems usually have a different notion of system time.

• System time is measured by a system clock, which is typically implemented as a
simple count of the number of ticks (periodic timer interrupts) that have transpired
since some arbitrary starting date, called the epoch.

• Since internal counting mechanisms are not very precise, systems often exchange
time information with other systems that have “better” clocks or sources of time in
order to converge their notions of time.

• Time is sometimes used to order events, due to its monotonic nature.

• In distributed systems, this has its limitations and therefore the notion of logical
clocks has been invented. (Logical clocks do not measure time, they only help to
order events.)
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Most computer systems have relatively poor clocks and hence the notion of a computer’s time drifts
quickly. Time synchronization protocols are commonly used to synchronize a computer’s notion of time
with a more robust time source over a network. A widely deployed time synchronization protocol is the
Network Time Protocol (NTP). An alternative solution is the Precision Time Protocol (PTP). A common
problem of these protocols is that the exchange of synchronization messages itself introduces errors
that must be compensated for.

Another commonly available source of time is the Global Positioning System (GPS).

Unix systems represent time as the number of seconds that have passed since the 1st of January
1970 00:00:00 UTC, a meanwhile pretty large number of type time t. Traditionally, a 32-bit signed
number has been used to represent a time t. The maximum positive 32-bit signed integer number
will be reached on Tuesday, 19 January 2038 at 03:14:07 UTC and then the number will warp, leading
to dates starting sometime on 13 December 1901. This is known as the “year 2038 problem”. Many
operating systems running on 64-bit hardware moved to 64-bit signed integers for time t, which solves
the problem. However, embedded systems often still use 32-bit signed integers as time t and they will
be vulnerable when we hit the year 2038 (less than 20 years left).

Further online information:

• Wikipedia: Network Time Protocol

• Wikipedia: Precision Time Protocol

• Wikipedia: Year 2038 Problem
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Calendar Time

• System time can be converted into calendar time, a reference to a particular time
represented within a calendar system.

• A popular calendar is the Gregorian calendar, which maps a time reference into a
year, a month within the year, and a day within a month.

• The Gregorian calendar was introduced by Pope Gregory XIII in October 1582.

• The Coordinated Universal Time (UTC) is the primary time standard by which the
world regulates clocks and time.

• Due to the rotation of the earth, days start and end at different moments. This is
reflected by the notion of a time zone, which is essentially an offset to UTC.

• The number of time zones is not static and time zones change occasionally.
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Computer systems often indicate time zones using time zone names. Associated to a time zone name
are usually complicated rules that indicate for example transitions to daylight saving times or simply
changes to the time zones. IANA is maintaining a time zone database that is commonly used by
software systems to interpret time zone names in order to derive the correct time zone offset from UTC.

Further online information:

• Wikipedia: Time Zone

• https://www.iana.org/time-zones

• YouTube: The Problem with Time & Timezones - Computerphile
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ISO 8601 Date and Time Formats

• Different parts of the world use different formats to write down a calendar time,
which can easily cause confusion.

• The ISO 8601 standard defines an unambiguous notation for calendar time.

• ISO 8601 in addition defines formats for durations and time intervals.

name format example

date yyyy-mm-dd 2017-06-13
time hh:mm:ss 15:22:36
date and time yyyy-mm-ddThh:mm:ss[±hh:mm] 2017-06-13T15:22:36+02:00
date and time yyyy-mm-ddThh:mm:ss[±hh:mm] 2017-06-13T13:22:36+00:00
date and time yyyy-mm-ddThh:mm:ssZ 2017-06-13T13:22:36Z
date and week yyyy-Www 2017-W24
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The special letter Z indicates that the date and time is in UTC time. The ISO 8601 standard deals with
timezone offsets by specifying the positive or negative offset from UTC time in hours and minutes. This
in principle allows us to define +00:00 and -00:00 but the ISO 8601 disallows a negative zero offset.
RFC 3339 [8], a profile of ISO 8601, however, defines that -00:00 indicates that the time is in UTC and
that the local timezone offset is unknown.

Further online information:

• Wikipedia: ISO 8601

• xkcd: ISO 8601
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Part IV

Boolean Algebra

Boolean algebra is the mathematical framework for describing anything that is binary, that is, anything
which can have only two values.

Boolean algebra is the foundation for understanding digitial circuits, the foundation of today’s computers.
The central processing unit (CPU) of a computer is essentially a very large collection of digital circuits
consisting of logic gates. The mathematical foundation of a CPU is Boolean algebra, it helps us to
understand how digital circuits can be composed and where necessary verified.

By the end of this part, students should be able to

• understand the concept of Boolean variables and their interpretation;

• familar with basic boolean functions such as ∧, ∨, ¬,→,↔, ∨ , ∧ , ∨ ;

• illustrate how Boolean functions relate to Boolean expressions;

• differentiate between the syntax and the semantics of Boolean expressions;

• apply Boolean equivalence laws;

• describe the notion of tautologies and contradictions;

• convert Boolean expressions into conjunctive and disjunctive normal forms;

• obtain Boolean expressions in normal form from truth tables;

• apply the Quine McCluskey algorithm to minimize Boolean expressions.
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Boolean Variables

• Boolean algebra describes objects that can take only one of two values.

• The values may be different voltage levels {0,V+} or special symbols {F ,T} or
simply the digits {0, 1}.
• In the following, we use the notation B = {0, 1}.
• In artificial intelligence, such objects are often called propositions and they are
either true or false.

• In mathematics, the objects are called Boolean variables and we use the symbols
x1, x2, x3, . . . for them (sometimes also a, b, c , . . .).

• The main purpose of Boolean logic is to describe (or design) interdependencies
between Boolean variables.
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Interpretation of Boolean Variables

Definition (Boolean variables)

A Boolean variable xi with i ≥ 1 is an object that can take on one of the two values 0
or 1. The set of all Boolean variables is X = { x1, x2, x3, . . . }.

Definition (Interpretation)

Let D be a subset of X . An interpretation I of D is a function I : D → B.

• The set X is very large. It is often sufficient to work with a suitable subset D of X .
• An interpretation assigns to every Boolean variable a value.

• An interpretation is also called a truth value assignment.
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Boolean ∧ Function (and)

x y x ∧ y

0 0 0
0 1 0
1 0 0
1 1 1

• The logical and (∧) can be viewed as a function
mapping two Boolean values to a Boolean value:

∧ : B× B→ B

• A truth table defines a Boolean operation (or function)
by listing the result for all possible arguments.

• Many programming languages like C or C++ (or Rust or Haskell) use the operator
&& to represent the ∧ function. (Python uses the and keyword.)
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Digital systems represent the ∧ function using AND gates, which can be built using transistors or diodes.
Below is a symbol for a logical AND gate taking the two inputs A and B and producing the output Q.

A
B

Q

An interesting difference of a logical gate to a boolean function is that a gate has a time delay; changes
of the inputs lead to changes of the output with a certain gate delay. Hence, digital circuits need to be
designed with the gate delays in mind to reduce overall delays and to avoid undesirable instabilities.
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Boolean ∨ Function (or)

x y x ∨ y

0 0 0
0 1 1
1 0 1
1 1 1

• The logical or (∨) can be viewed as a function mapping
two Boolean values to a Boolean value:

∨ : B× B→ B

• Each row in the truth table corresponds to one
interpretation.

• A truth table simply lists all possible interpretations.

• Many programming languages like C or C++ (or Rust or Haskell) use the operator
|| to represent the ∨ function. (Python uses the or keyword.)
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Digital systems represent the ∨ function using OR gates, which can be built using transistors or diodes.
Below is a symbol for a logical OR gate taking the two inputs A and B and producing the output Q.

A
B

Q
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Boolean ¬ Function (not)

x ¬x
0 1
1 0

• The logical not (¬) can be viewed as a unary function
mapping a Boolean value to a Boolean value:

¬ : B→ B

• The ¬ function applied to x is also written as x .

• Many programming languages like C or C++ (or Rust) use the operator ! to
represent the ¬ function. (Python uses the not keyword while Haskell uses the
function not :: Bool -> Bool).
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Digital systems represent the ¬ function using NOT gates, which can be built using transistors or diodes.
Below is a symbol for a logical NOT gate taking the two input A and producing the output Q.

A Q
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Boolean → Function (implies)

x y x → y

0 0 1
0 1 1
1 0 0
1 1 1

• The logical implication (→) can be viewed as a function
mapping two Boolean values to a Boolean value:

→: B× B→ B

• The implication represents statements of the form “if x
then y” (where x is called the precondition and y the
consequence).

• The logical implication is often confusing to ordinary mortals. A logical implication
is false only if the precondition is true, but the consequence it asserts is false.

• The claim “if cats eat dogs, then the sun shines” is logically true.
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Boolean ↔ Function (equivalence)

x y x ↔ y

0 0 1
0 1 0
1 0 0
1 1 1

• The logical equivalence ↔ can be viewed as a function
mapping two Boolean values to a Boolean value:

↔: B× B→ B

• Many programming languages like C or C++ (or Rust or Haskell) use the operator
== to represent the equivalence function.
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Boolean ∨ Function (exclusive or)

x y x ∨ y
0 0 0
0 1 1
1 0 1
1 1 0

• The logical exclusive or ∨ can be viewed as a function
mapping two Boolean values to a Boolean value:

∨ : B× B→ B

• Another commonly used symbol for the exclusive or is ⊕.

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Boolean Algebra CC-BY-NC-ND September 5, 2024 141 / 285

Digital systems represent the ∨ function using XOR gates, which can be built using transistors or
diodes. Below is a symbol for a logical XOR gate taking the two inputs A and B and producing the
output Q.

A
B

Q

The exclusive or function has an interesting property. Lets consider the following example where we
apply the exclusive or function bitwise to two longer bit strings:

123416 ∨ cafe16 = 0001 0010 0011 01002 ∨ 1100 1010 1111 11102 = 1101 1000 1100 10102 = d8ca16

If we perform an exclusive or on the result with the same second operand, we get the following:

d8ca16 ∨ cafe16 = 1101 1000 1100 10102 ∨ 1100 1010 1111 11102 = 0001 0010 0011 01002 = 123416

Apparently, it seems that (x∨ y)∨ y = x. To prove this property, we can construct a truth table for all
possible combinations:

x y x∨ y (x∨ y)∨ y
0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1
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Boolean ∧ Function (not-and)

x y x ∧ y
0 0 1
0 1 1
1 0 1
1 1 0

• The logical not-and (nand) or ∧ can be viewed as a
function mapping two Boolean values to a Boolean
value:

∧ : B× B→ B
• The ∧ function is also written using the Sheffer stroke
symbol ↑.

• While we use the functions ∧, ∨, and ¬ to define more complex Boolean functions,
the ∧ is sufficient to derive all elementary Boolean functions from it.

• This is important for digital circuits since all you need are not-and gates.
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Digital systems represent the ∧ function using NAND gates, which can be built using transistors or
diodes. Below is a symbol for a logical NAND gate taking the two inputs A and B and producing the
output Q.

A
B

Q

The not-and is a universal function since it can be used to derive all elementary Boolean functions.

• x ∧ y = (x∧ y)∧ (x∧ y)
x y x ∧ y x∧ y (x∧ y)∧ (x∧ y)
0 0 0 1 0
0 1 0 1 0
1 0 0 1 0
1 1 1 0 1

• x ∨ y = (x∧x)∧ (y ∧ y)
x y x ∨ y x∧x y ∧ y (x∧x)∧ (y ∧ y)
0 0 0 1 1 0
0 1 1 1 0 1
1 0 1 0 1 1
1 1 1 0 0 1

• ¬x = x∧x
x ¬x x∧x
0 1 1
1 0 0
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Boolean ∨ Function (not-or)

x y x ∨ y
0 0 1
0 1 0
1 0 0
1 1 0

• The logical not-or (nor) ∨ can be viewed as a function
mapping two Boolean values to a Boolean value:

∨ : B× B→ B

• The ∨ function is also written using the Quine arrow ↓.

• The ∨ is like ∧ sufficient to derive all elementary Boolean functions.
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Digital systems represent the ∨ function using NOR gates, which can be built using transistors or
diodes. Below is a symbol for a logical NOR gate taking the two inputs A and B and producing the
output Q.

A
B

Q

The not-or is a universal function since it can be used to derive all elementary Boolean functions.

• x ∧ y = (x∨x)∨ (y ∨ y)
• x ∨ y = (x∨ y)∨ (x∨ y)
• ¬x = x∨x
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Alternative Notations

function mnemonic mathematics engineering C / C++ C / C++ (bits)

and x and y x ∧ y x · y x && y &

or x or y x ∨ y x + y x || y |

not not x ¬x x , x ′ ! x ~

implication x impl y x → y
equivalence x equiv y x ↔ y x == y

exclusive-or x xor y x ∨ y x ⊕ y ^

not-and x nand y x ∧ y , x∧y x · y
not-or x nor y x ∨ y , x∨y x + y
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Different symbols are used in different contexts to denote basic boolean functions. Note that authors
sometimes mix symbols; there is no standard notation as there are multiple quasi standards to choose
from.
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Boolean Functions

• Elementary Boolean functions (¬,∧,∨) can be composed to define more complex
functions.

• An example of a composed function is f : B× B→ B with (x , y) 7→ ¬(x ∧ y).
The meaning is “first compute the logical and of x and y , then apply ¬ on the
result obtained.”

• Boolean functions can take a large number of arguments. Here is a function
f : B× B× B→ B taking three arguments.

• We may define the function f using a shorthand notation:

f (x , y , z) = (¬(x ∧ y) ∨ (z ∧ y))

The left hand side of the notation above defines the function name and its
arguments, the right hand side defines the function itself by means of a formula.
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Below is the definition of all elementary Boolean functions we have introduced so far using just the
Boolean functions ∧, ∨, and ¬:

→ (x, y) = ¬x ∨ y implication
↔ (x, y) = (x ∧ y) ∨ (¬x ∧ ¬y) equivalence
∨ (x, y) = (x ∧ ¬y) ∨ (¬x ∧ y) exclusive-or
∧ (x, y) = ¬(x ∧ y) not-and
∨ (x, y) = ¬(x ∨ y) not-or
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Boolean Functions

Definition (Boolean function)

A Boolean function f is any function of the type f : Bk → B, where k ≥ 0. The
number of arguments k is called the arity of the function.

Theorem
The truth table of a Boolean function with arity k has 2k rows.

• A Boolean function with arity k = 0 assigns truth values to nothing. There are two
such functions, one always returning 0 and the other always returning 1. We simply
identify these two functions of arity 0 with the truth value constants 0 and 1.

• For functions with a large arity, truth tables become unmanageable.
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Boolean functions are interesting, since they can be used as computational devices. In particular, we
can consider the CPU of a computer as a collection of Boolean functions (e.g., an arithmetic instruction
of a modern 64-bit CPU can be viewed as a collection of 64 Boolean functions of arity 128: one function
per output bit and each function taking two times 64 bits as input).

Another way to define a Boolean function is by writing down its truth table. We can define f(x, y, z) =
(¬(x ∧ y) ∨ (z ∧ y)) by filling out the following table:

x y z (¬(x ∧ y) ∨ (z ∧ y))

0 0 0 1
0 0 1 . . .
0 1 0 . . .
0 1 1 . . .
1 0 0 . . .
1 0 1 . . .
1 1 0 . . .
1 1 1 . . .

To fill in the first row (the first interpretation), one computes:

f(0, 0, 0) = (¬(0 ∧ 0) ∨ (0 ∧ 0))

= (¬0 ∨ 0)

= (1 ∨ 0)

= 1

Note that boolean formulas can be considered boolean polynomials. This becomes perhaps more
obvious if one uses the alternate “engineering” writing style where x ·y is used instead of x∧y and x+y
is used instead of x ∨ y and x is used instead of ¬x:

f(x, y, z) = (x · y) + (z · y)
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Syntax of Boolean formulas (aka Boolean expressions)

Definition (Syntax of Boolean formulas)

Basis of inductive definition:

1a Every Boolean variable xi is a Boolean formula.

1b The two Boolean constants 0 and 1 are Boolean formulas.

Induction step:

2a If f and g are Boolean formulas, then (f ∧ g) is a Boolean formula.

2b If f and g are Boolean formulas, then (f ∨ g) is a Boolean formula.

2c If f is a Boolean formula, then ¬f is a Boolean formula.
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Strictly speaking, only xi qualify for step 1a but in practice we may also use x, y, . . ..

The definition provides all we need to verify whether a particular sequence of symbols qualifies as a
Boolean formula. Obviously, (¬(x ∧ y) ∨ (z ∧ y)) is a well-formed Boolean formula while ¬(x∧) is not.

In practice, we often use conventions that allow us to save parenthesis. For example, we may simply
write (x ∧ y ∧ z) instead of ((x ∧ y) ∧ z) or (x ∧ (y ∧ z)). Furthermore, we may write:

• (x→ y) as a shorthand notation for (¬x ∨ y)

• (x↔ y) as a shorthand notation for ((x ∧ y) ∨ (¬x ∧ ¬y))
Note that the definition for Boolean formulas defines the syntax of Boolean formulas. It provides a
grammar that allows us to construct valid formulas and it allows us to decide whether a given formula
is valid. However, the definition does not define what the formula means, that is, the semantics. We
intuitively assume a certain semantic that does “make sense” but we have not yet defined the semantics
formally.
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Semantics of Boolean formulas

Definition (Semantics of Boolean formulas)

Let D be a set of Boolean variables and I : D → B an interpretation. Let Φ(D) be the
set of all Boolean formulas which contain only Boolean variables that are in D. We
define a generalized version of an interpretation I∗ : Φ(D)→ B.
Basis of the inductive definition:

1a For every Boolean variable x ∈ D, I∗(x) = I(x).
1b For the two Boolean constants 0 and 1, we set I∗(0) = 0 and I∗(1) = 1.
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Because this generalized interpretation I∗ is the same as I for Boolean variables x ∈ D, we say that
I∗ extends I from the domain D to the domain Φ(D). Following common practice, we will use I for the
generalized interpretation too. Furthermore, since the set D is often clear from the context, we will often
not specify it explicitly.
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Semantics of Boolean formulas

Definition (Semantics of Boolean formulas (cont.))

Induction step, with f and g in Φ(D):
2a

I∗((f ∧ g)) =

{
1 if I∗(f ) = 1 and I∗(g) = 1

0 otherwise

2b

I∗((f ∨ g)) =

{
1 if I∗(f ) = 1 or I∗(g) = 1

0 otherwise

2c

I∗(¬f ) =
{
1 if I∗(f ) = 0

0 if I∗(f ) = 1
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Note that a boolean expression defines a boolean function and that multiple boolean expressions can
define the same boolean function. This leads to questions such as:

• Are two boolean expressions defining the same boolean function?

• Given a boolean expression, can we find a “simpler” boolean expression defining the same
boolean function?
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Tautology and contradiction

Definition (adapted interpretation)

An interpretation I : D → B is adapted to a Boolean formula f if all Boolean variables
that occur in f are contained in D.

Definition (tautologies and contradictions)

A Boolean formula f is a tautology if for all interpretations I, which are adapted to f ,
I(f ) = 1 holds. A Boolean formula f is a contradiction if for all interpretations I,
which are adapted to f , I(f ) = 0 holds.
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A tautology is a Boolean formula which is always true, and a contradiction is never true. The classical
example of a tautology is

(x ∨ ¬x)

and the classical example of a contradiction is

(x ∧ ¬x).

Two elementary facts relating to tautologies and contradictions:

• For any Boolean formula f , (f ∨ ¬f) is a tautology and (f ∧ ¬f) is a contradiction.

• If f is a tautology, then ¬f is a contradiction and vice versa.

For a complex Boolean formula f with many Boolean variables, it is not easy to find out whether it
is a tautology or a contradiction. One way to find out would be to compute the complete truth table.
Recall that each row in a truth table corresponds to one possible interpretation of the variables in f .
Recall furthermore that if f has k Boolean variables, the truth table has 2k rows. This becomes quickly
impractical if k grows large. Unfortunately, there is no known general procedure to find out whether a
given f is a tautology or a contradiction, which is less costly than computing the entire truth table. In
fact, logicians have reason to believe that no faster method exists (but this is an unproven conjecture!).
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Satisfying a Boolean formula

Definition (satisfying a Boolean formula)

An interpretation I, which is adapted to a Boolean formula f , is said to satisfy the
formula f if I(f ) = 1. A formula f is called satisfiable if there exists an interpretation
which satisfies f .

The following two statements are equivalent characterizations of satisfiability:

• A Boolean formula is satisfiable if and only if its truth table contains at least one
row that results in 1.

• A Boolean formula is satisfiable if and only if it is not a contradiction.
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Note that the syntactic definition of Boolean formulas defines merely a set of legal sequences of sym-
bols. Via the definition of the semantics of Boolean formulas, we obtain a Boolean function for every
Boolean formula. In other words, there is a distinction between a Boolean formula and the Boolean
function induced by the formula. In practice, this distinction is often not made and we often treat formu-
lars as synomyms for the functions induced by the formula and we may use a function name to refer to
the formula that was used to define the function.
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Equivalence of Boolean formulas

Definition (equivalence of Boolean formulas)

Let f , g be two Boolean formulas. The formula f is equivalent to the formula g , written
f ≡ g , if for all interpretations I, which are adapted to both f and g , it holds that
I(f ) = I(g).

• There are numerous “laws” of Boolean logic which are stated as equivalences.
Each of these laws can be proven by writing down the corresponding truth table.

• Boolean equivalence “laws” can be used to “calculate” with logics, executing
stepwise transformations from a starting formula to some target formula, where
each step applies one equivalence law.
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A simple example is the following equivalence:

(x ∨ y) ≡ (y ∨ x)

Note that equivalent formulas are not required to have the same set of variables. The following equiva-
lence surely holds:

(x ∨ y) ≡ ((x ∨ y) ∧ (z ∨ ¬z))
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Boolean Equivalence laws

Proposition (equivalence laws)

For any Boolean formulas f , g , h, the following equivalences hold:

1. f ∧ 1 ≡ f , f ∨ 0 ≡ f (identity)

2. f ∨ 1 ≡ 1, f ∧ 0 ≡ 0 (domination)

3. (f ∧ f ) ≡ f , (f ∨ f ) ≡ f ) (idempotency)

4. (f ∧ g) ≡ (g ∧ f ), (f ∨ g) ≡ (g ∨ f ) (commutativity)

5. ((f ∧ g) ∧ h) ≡ (f ∧ (g ∧ h)), ((f ∨ g) ∨ h) ≡ (f ∨ (g ∨ h)) (associativity)

6. f ∧ (g ∨ h) ≡ (f ∧ g) ∨ (f ∧ h), f ∨ (g ∧ h) ≡ (f ∨ g) ∧ (f ∨ h) (distributivity)

7. ¬¬f ≡ f , f ∧ ¬f ≡ 0, f ∨ ¬f ≡ 1 (double negation, complementation)

8. ¬(f ∧ g) ≡ (¬f ∨ ¬g), ¬(f ∨ g) ≡ (¬f ∧ ¬g) (de Morgan’s laws)

9. f ∧ (f ∨ g) ≡ f , f ∨ (f ∧ g) ≡ f (absorption laws)
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Each of these equivalence laws can be proven by writing down the corresponding truth table. To illus-
trate this, here is the truth table for the first of the two de Morgan’s laws:

f g ¬f ¬g (f ∧ g) ¬(f ∧ g) (¬f ∨ ¬g)
0 0 1 1 0 1 1
0 1 1 0 0 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 0

Designing algorithms to transform starting formulas into target formulas is a practically important topic
of artificial intelligence applications, more specifically “automated reasoning”.

Try to simplify the following formula:

f(x, y, z) = (((x ∨ y) ∧ (¬y ∧ z)) ∧ z)

= . . .

= ((x ∧ ¬y) ∧ z)
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Section 19: Conjunctive and Disjunctive Normal Forms
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19 Conjunctive and Disjunctive Normal Forms

20 Complexity of Boolean Formulas
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Literals, Monomials, Clauses

Definition (literals)

A literal Li is a Boolean formula that has one of the forms xi , ¬xi , 0, 1, ¬0, ¬1, i.e., a
literal is either a Boolean variable or a constant or a negation of a Boolean variable or a
constant. The literals xi , 0, 1 are called positive literals and the literals ¬xi , ¬0, ¬1 are
called negative literals.

Definition (monomial)

A monomial (or product term) is a literal or the conjunction (product) of literals.

Definition (clause)

A clause (or sum term) is a literal or the disjunction (sum) of literals.
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Conjunctive Normal Form

Definition (conjunctive normal form)

A Boolean formula is said to be in conjunctive normal form (CNF) if it is a conjunction
of disjunctions of literals.

• Examples of formulas in CNF:
• x1 short form of ((1 ∨ 1) ∧ (x1 ∨ 0))
• x1 ∧ x2 short form of ((x1 ∨ x1) ∧ (x2 ∨ x2))
• x1 ∨ x2 short form of ((1 ∨ 1) ∧ (x1 ∨ x2))
• ¬x1 ∧ (x2 ∨ x3) short form of ((0 ∨ ¬x1) ∧ (x2 ∨ x3))
• (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2)

• We typically write the short form, leaving out trivial expansions into full CNF form.

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Boolean Algebra CC-BY-NC-ND September 5, 2024 158 / 285

The terms of a conjunctive normal form (CNF) are all clauses. In other words, a conjunctive normal
form is a product of sum terms.
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Disjunctive Normal Form

Definition (disjunctive normal form)

A Boolean formula is said to be in disjunctive normal form (DNF) if it is a disjunction of
conjunctions of literals.

• Examples of formulas in DNF:
• x1 short form of ((0 ∧ 0) ∨ (x1 ∧ 1))
• x1 ∧ x2 short form of ((0 ∧ 0) ∨ (x1 ∧ x2))
• x1 ∨ x2 short form of ((x1 ∧ x1) ∨ (x2 ∧ x2))
• (¬x1 ∧ x2) ∨ (¬x1 ∧ x3)
• (¬x1 ∧ ¬x2) ∨ (x1 ∧ x2)

• We typically write the short form, leaving out trivial expansions into full DNF form.
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The terms of a disjunctive normal form (DNF) are all monomials. In other words, a disjunctive normal
form is a sum of product terms.
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Equivalence of Normal Forms

Proposition (CNF equivalence)

Every Boolean formula f is equivalent to a Boolean formula g in conjunctive normal
form.

Proposition (DNF equivalence)

Every Boolean formula f is equivalent to a Boolean formula g in disjunctive normal
form.

• These two results are important since we can represent any Boolean formula in a
“shallow” format that does not need any “deeply nested” bracketing levels.
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Minterms and Maxterms

Definition (minterm)

A minterm of a Boolean function f (xn, . . . , x1, x0) is a monomial (x̂n ∧ . . . ∧ x̂1 ∧ x̂0)
where x̂i is either xi or ¬xi . A shorthand notation is md where d is the decimal
representation of the binary number obtained by replacing all negative literals with 0
and all positive literals with 1 and by dropping the operator.

Definition (maxterm)

A maxterm of a Boolean function f (xn, . . . , x1, x0) is a clause (x̂n ∨ . . . ∨ x̂1 ∨ x̂0) where
x̂i is either xi or ¬xi . A shorthand notation is Md where d is the decimal representation
of the binary number obtained by replacing all negative literals with 1 and all positive
literals with 0 and by dropping the operator.
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For example, the Boolean function

f(x, y, z) = (¬x ∧ ¬y ∧ z) ∨ (¬x ∧ y ∧ ¬z) ∨ (x ∧ ¬y ∧ ¬z) ∨ (x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ ¬z)

can be written as

f(x, y, z) = m1 ∨m2 ∨m4 ∨m5 ∨m6

or with the alternative notation as

f(x, y, z) = m1 +m2 +m4 +m5 +m6.

If we have the DNF, we easily get the CNF as well by selecting the maxterms for which there is no
corresponding minterm. Continuing the example, we get

f(x, y, z) = M0 ∧M3 ∧M7

or the alternative notation

f(x, y, z) = M0 ·M3 ·M7.

The CNF is therefore given by:

f(x, y, z) = (x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬z ∨ ¬y ∨ ¬z)
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Obtaining a DNF from a Truth Table

• Given a truth table, a DNF can be obtained by writing down a conjunction of the
input values for every row where the result is 1 and connecting all obtained
conjunctions together with a disjunction.

x y x ∨ y
0 0 0
0 1 1
1 0 1
1 1 0

• 2nd row: ¬x ∧ y

• 3rd row: x ∧ ¬y
• x ∨ y = (¬x ∧ y) ∨ (x ∧ ¬y) = m1 +m2
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Every boolean function defined by a boolean expression can be represented as a truth table. Since it is
possible to obtain the DNF directly from the truth table, every boolean expression can be represented
in DNF.

We already know from the definition of ∨ that x∨ y = (¬x ∧ y) ∨ (x ∧ ¬y).
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Obtaining a CNF from a Truth Table

• Given a truth table, a CNF can be obtained by writing down a disjunction of the
negated input values for every row where the result is 0 and connecting all obtained
disjunctions together with a conjunction.

x y x ∨ y
0 0 0
0 1 1
1 0 1
1 1 0

• 1st row: x ∨ y

• 4th row: ¬x ∨ ¬y
• x ∨ y = (x ∨ y) ∧ (¬x ∨ ¬y) = M0 ·M3
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Every boolean function defined by a boolean expression can be represented as a truth table. Since it is
possible to obtain the CNF directly from the truth table, every boolean expression can be represented
in CNF.

We show that (x ∨ y) ∧ (¬x ∨ ¬y) is indeed the same as x∨ y:

(x ∨ y) ∧ (¬x ∨ ¬y) = ((x ∨ y) ∧ ¬x) ∨ ((x ∨ y) ∧ ¬y) (distributivity)
= (x ∧ ¬x) ∨ (y ∧ ¬x) ∨ (x ∧ ¬y) ∨ (y ∧ ¬y) (distributivity)
= 0 ∨ (y ∧ ¬x) ∨ (x ∧ ¬y) ∨ 0 (complementation)
= (¬x ∧ y) ∨ (x ∧ ¬y) (identity)
= x∨ y
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Cost of Boolean Formulas and Functions

Definition (cost of boolean formula)

The cost C (f ) of a boolean formula f is the number of operators in f .

Definition (cost of boolean function)

The cost C (f ) of a boolean function f is the minimum cost of boolean formulas
defining f :

C (f ) = min
g defines f

C (g)

• We can find formulas of arbitrary high cost for a given boolean function.

• How do we find a formula with minimal cost for a given boolean function?
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When talking about the cost of Boolean formulas, we often restrict us to a certain set of operations,
e.g., the classic set {∧,∨,¬}. In some contexts, ¬ is not counted and only the number of ∧ and ∨
operations is counted. (The reasoning is that negation is cheap compared to the other operations and
hence negation can be applied to any input or output easily.) We will follow this approach and restrict
us to the classic {∧,∨,¬} operations and only count the number of ∧ and ∨ operations unless stated
otherwise.

With this, the cost of the Boolean formula ((x ∨ y) ∧ (¬y ∧ z)) ∧ z is C(((x ∨ y) ∧ (¬y ∧ z)) ∧ z) = 4 and
the cost of the Boolean formula x ∧ ¬y ∧ z is C(x ∧ ¬y ∧ z) = 2. Since

f(x, y, z) = ((x ∨ y) ∧ (¬y ∧ z)) ∧ z

= x ∧ ¬y ∧ z

and there is no way to further minimize x ∧ ¬y ∧ z, the cost of the Boolean function f is C(f) = 2.
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Implicants and Prime Implicants

Definition (implicant)

A product term of a Boolean function f of n variables is called an implicant of the
function f if and only if for every combination of values of the n variables for which the
product term is true, the function f is also true.

Definition (prime implicant)

An implicant of a function f is called a prime implicant of the function f if it is no
longer an implicant if any literal is deleted from it.

Definition (essential prime implicant)

A prime implicant of a function f is called an essential prime implicant of f if it covers a
true case of f that no combination of other prime implicants covers.
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Observations:

• If an expression defining f is in DNF, then every minterm of the DNF is an implicant of f .

• Any term formed by combining two or more minterms of a DNF is an implicant.

• Each prime implicant of a function has a minimum number of literals; no more literals can be
eliminated from it.

Example:

f(x, y, z) = (¬x ∧ ¬y ∧ ¬z) ∨ (x ∧ ¬y ∧ ¬z) ∨ (x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ z)

= (¬y ∧ ¬z) ∨ (x ∧ z)

• Implicant (¬x ∧ ¬y ∧ ¬z) is not a prime implicant. The first two product terms can be combined
since they only differ in one variable:

(¬x ∧ ¬y ∧ ¬z) ∨ (x ∧ ¬y ∧ ¬z) = (¬x ∧ x) ∨ (¬y ∧ ¬z)
= 0 ∨ (¬y ∧ ¬z)
= (¬y ∧ ¬z)

The resulting product term ¬y ∧ ¬z is still an implicant of f . In a similar way, y can be eliminated
from the last two product terms.

• (¬y ∧ ¬z) and (x ∧ z) are prime implicants (it is not possible to further eliminate a variable).
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Quine McCluskey Algorithm

QM-0 Find all implicants of a given function (e.g., by determining the DNF from a truth
table or by converting a boolean expression into DNF).

QM-1 Repeatedly combine non-prime implicants until there are only prime implicants left.

QM-2 Determine a minimum disjunction (sum) of prime implicants that defines the
function. (This sum not necessarily includes all prime implicants.)

• We will further detail the steps QM-1 and QM-2 in the following slides.

• See also the complete example in the notes.
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• The time complexity of the algorithm grows exponentially with the number of variables.

• The problem is known to be NP-hard (non-deterministic polynomial time hard). There is little hope
that polynomial time algorithms exist for NP-hard problems.

• For large numbers of variables, it is necessary to use heuristics that run faster but which may not
always find a minimal solution.
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Finding Prime Implicants (QM-1)

PI-1 Classify and sort the minterms by the number of positive literals they contain.

PI-2 Iterate over the classes and compare each minterms of a class with all minterms of
the following class. For each pair that differs only in one bit position, mark the bit
position as a wildcard and write down the newly created shorter term combining
two terms. Mark the two terms as used.

PI-3 Repeat the last step if new combined terms were created.

PI-4 The set of minterms or combined terms not marked as used are the prime
implicants.

• Note: You can only combine minterms that have the wildcard at the same position.
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Example: Minimize f(a, b, c, d) = m4 +m8 +m9 +m10 +m11 +m12 +m14 +m15

• Classify and sort minterms

minterm pattern used
m4 0100

m8 1000

m9 1001

m10 1010

m12 1100

m11 1011

m14 1110

m15 1111

• Combination steps

minterm pattern used minterms pattern used minterms pattern used
m4 0100 ✓ m4,12 -100

m8 1000 ✓ m8,9 100- ✓ m8,9,10,11 10--

m8,10 10-0 ✓ m8,10,12,14 1--0

m8,12 1-00 ✓
m9 1001 ✓ m9,11 10-1 ✓
m10 1010 ✓ m10,11 101- ✓ m10,11,14,15 1-1-

m10,14 1-10 ✓
m12 1100 ✓ m12,14 11-0 ✓
m11 1011 ✓ m11,15 1-11 ✓
m14 1110 ✓ m14,15 111- ✓
m15 1111 ✓

• This gives us four prime implicants:

– m4,12 = (b ∧ ¬c ∧ ¬d)
– m8,9,10,11 = (a ∧ ¬b)
– m8,10,12,14 = (a ∧ ¬d)
– m10,11,14,15 = (a ∧ c)
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Finding Minimal Sets of Prime Implicants (QM-2)

MS-1 Identify essential prime implicants (essential prime implicants cover an implicant
that is not covered by any of the other prime implicants)

MS-2 Find a minimum coverage of the remaining implicants by the remaining prime
implicants

• Note that multiple minimal coverages may exist. The algorithm above does not
define which solution is returned in this case.

• There are ways to cut the search space by eliminating rows or columns that are
“dominated” by other rows or columns.
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We continue the example from the previous page. To find prime implicant sets, we construct a prime
implicant table. The colummns are the original minterms and the rows represent the prime implicants.
The marked cells in the table indicate whether a prime implicant covers a minterm. (• = essential, ∗ =
covered, ◦ = uncovered)

m4 m8 m9 m10 m11 m12 m14 m15

m4,12 • ∗
m8,9,10,11 ∗ • ∗ ∗
m8,10,12,14 ∗ ∗ ∗ ∗
m10,11,14,15 ∗ ∗ ∗ •

Columns that only have a single marked cell indicate essential prime implicants. In this case, m4 is
only marked by m4,12 and hence m4,12 is an essential prime implicant. Similarly, m9 is only marked by
m8,9,10,11, hence m8,9,10,11 is an essential prime implicant. Finally, m15 is only marked by m10,11,14,15,
hence m10,11,14,15 is an essential prime implicant as well.

The remaining prime implicant m8,10,12,14 has marks only in columns that are covered already by prime
implicants that we have already selected and hence m8,10,12,14 is not needed in a minimal set of prime
implicants.

The resulting minimal expression is f ′(a, b, c, d) = (b ∧ ¬c ∧ ¬d) ∨ (a ∧ ¬b) ∨ (a ∧ c). The minimal
expression f ′ uses 6 operations (out of {∧,∨}). The original expression used 8 · 3 + 7 = 31 operations
(out of {∧,∨}).
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Part V

Propositional and Predicate Logic

This part provides an introduction to propositional and predicate logic with a focus on the formalization
of logical statements.

By the end of this part, students should be able to

• summarize the difference between propositional logic, predicate logic and higher-order logic;

• outline how implications in propositional logic can be represented in conjunctive normal form;

• recall the satisfiability problem and its importance;

• explain the difference between the syntax and the semantics of expressions in predicate logic;

• recall the definition of free variables in expressions of predicate logic;

• translate English language statements into expressions of predicate logic;

• illustrate the domain of discourse of predicate logic;

• rephrase the definition of an interpretation of an expressions in predicate logic;

• summarize the notion of entailment and validity;

• outline concepts such as soundness and completeness.
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Propositional Logic (zeroth-order logic, ZOL)

• Propositional logic (zeroth-order logic) is a basic logic dealing with simple
propositions, which are either true or false, and the relations between propositions.

• Propositional logic can be formalized by introducing propositional variables
(representing propositions) and logical connectives (∧, ∨, ¬, →, ↔) that can be
used to construct more complex logical statements.

• Statements of propositional logic can be formalized using Boolean algebra and
hence propositional logic is also known as Boolean logic.
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Propositional logic can be used to solve simple logic puzzles. Here is an example:

I like Pat or I like Joe.
If I like Pat, then I like Joe.
Do I like Joe?

A common challenge is to translate English language (or a computer program, as we will see later), into
a formal logic statement. The statement above has two propositions:

P = ”I like Pat”
J = ”I like Joe”

We know from the first sentence that P or J is true. We write this formally as P ∨ J . We also know that
the truth of J implies the truth of P . We write this formally as P → J . Hence, we obtain the following
formalization: (P ∨ J) ∧ (P → J). Since this is a formula in Boolean algebra, we can simplify it as
follows:

(P ∨ J) ∧ (P → J) = (P ∨ J) ∧ (¬P ∨ J)

= (P ∧ ¬P ) ∨ J

= 0 ∨ J

= J

The first sentence is not entirely clear, it could also mean that I like either Pat or Joe. In this case, the
formalization would be: (P ∨ J) ∧ (P → J). Simplifying this formula yields:

(P ∨ J) ∧ (P → J) = ((P ∧ ¬J) ∨ (¬P ∧ J)) ∧ (¬P ∨ J)

= ((P ∧ ¬J) ∧ (¬P ∨ J)) ∨ ((¬P ∧ J) ∧ (¬P ∨ J))

= ((P ∧ ¬J) ∧ ¬(P ∧ ¬J)) ∨ (((¬P ∧ J) ∧ ¬P ) ∨ ((¬P ∧ J) ∧ J)))

= ((P ∧ ¬J) ∧ ¬(P ∧ ¬J)) ∨ ((¬P ∧ J) ∨ (¬P ∧ J))

= 0 ∨ (¬P ∧ J)

= ¬P ∧ J

A common source of confusion are implications. We already know from Boolean algebra that if the
condition of an implication is false, then it does not matter what is implied, the implication is always true.
Hence, a statement like “If cats are dogs, then the sun shines.” is simply true.

The limitation of propositional logic is that it is limited to propositions that are either true or false, i.e., it
does not allow us to capture statements at a more fine-grained level of detail.
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Predicate Logic (first-order logic, FOL)

• Predicate logic (first-order logic) considers a world of objects and their properties.
More specifically:

- Variables denote invidual objects or constants.
- Predicates express properties of objects and how they relate to other objects.
- Functions can map values, e.g., to form simple mathematical expressions.
- Quantifiers ranging over variables can be used to express that (i) some statement
holds for all elements of a set or that (ii) at least one element of a set must exist for
which a statement holds.

• Predicate logic can be fully formalized as well.

• For a formula in predicate logic, in which all variables are bound by quantifiers, we
can derive whether it is true or false (once we agree on the semantics of the
predicates and functions).
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We can translate the previous example in predicate logic by introducing the predicate like/2 and intro-
ducing constants (names) referring to specific objects (persons):

(likemePat ∨ likemeJoe) ∧ (likemePat→ likemeJoe)

To understand the power and limits of first-order logic, lets look at the Peano axioms defining natural
numbers. Here are the first four of the five axioms (the predicate elem/2 is true if the first argument is
an element of the set given by the second argument):

elem 0N
∀n elemnN→ elems(n)N ∧ ¬(n = s(n))

¬∃n elemnN ∧ 0 = s(n)

∀n ∀m (elemnN ∧ elemmN ∧ s(n) = s(m))→ n = m

Note that we cannot express the fifth Peano axiom in first-order logic since it quantifies over predicates.
This is one of the rare cases where first-order logic is not expressive enough. (While there are work
arounds, they do come with some subtle side effects.)

While first-order logic formulas are a bit more complex than zeroth-order logic formulas, they feel simple
enough to work with. However, while it is relatively easy to read out a first-order logic formula in English,
turning an English sentence into an equivalent first-order logic formula often is not that easy and a
common source of errors. And if such a formalization error occurs, then the entire effort to formally
prove a statement in first-order logic may be wasted.
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Second-order Logic (SOL)

• Second-order logic extends predicate logic by allowing quantifiers to range over
predicates, which is impossible in first-order logic.

• Second-order logic provides additional expressiveness but this expressiveness is only
needed in rare cases.

• Most theorems in mathematics can be formalized using first-order logic.
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We will not touch on second-order logic. We leave this to specialized courses on higher-order and
alternate logics.
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Non-standard Logics

• Temporal logics capture the notion of time. They can be used to reason about the
temporal relationship of events, e.g. that a person is hungry until she eats
something.

• Many-valued logics overcome the notion that a statement is either true or false by
allowing additional truth values. For example, a three-valued logic could distinguish
true, false, and unknown.

• Fuzzy logics represent the truth of a statement by a real number between 0 and 1.
Fuzzy logic is based on the notion of fuzzy sets where set membership is described
by a membership function returning a fuzzy value between 0 and 1.

• . . .
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Logic Statements

• A common task is to decide whether statements of the following form are true:
if premises P1 and ... and Pm hold, then conclusion C holds

• The premises Pi and the conclusion C are expressed in some logic formalism, the
simplest is Boolean logic (also called propositional logic).

• Restricting us to Boolean logic here, the statement above can be seen as a Boolean
formula of the following structure

(φ1 ∧ . . . ∧ φm)→ ψ

and we are interested to find out whether such a formula is true, i.e., whether it is
a tautology.
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Tautology and Satisfiability

• Recall that a Boolean formula τ is a tautology if and only if τ ′ = ¬τ is a
contradiction. Furthermore, a Boolean formula is a contradiction if and only if it is
not satisfiable. Hence, in order to check whether

τ = (φ1 ∧ . . . ∧ φm)→ ψ

is a tautology, we may check whether

τ ′ = ¬((φ1 ∧ . . . ∧ φm)→ ψ)

is unsatisfiable.

• If we show that τ ′ is satisfiable, we have disproven τ .
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Tautology and Satisfiability

• Since φ→ ψ ≡ ¬(φ ∧ ¬ψ), we can rewrite the formulas as follows:

τ = (φ1 ∧ . . . ∧ φm)→ ψ = ¬(φ1 ∧ . . . ∧ φm ∧ ¬ψ)

τ ′ = ¬((φ1 ∧ . . . ∧ φm)→ ψ) = (φ1 ∧ . . . ∧ φm ∧ ¬ψ)
• To disprove τ , it is often easier to prove that τ ′ is satisfiable.

• Note that τ ′ has a homogenous structure. If we transform the elements
φ1, . . . , φm, ψ into CNF, then the entire formula is in CNF.

• If τ ′ is in CNF, all we need to do is to invoke an algorithm that searches for
interpretations I which satisfy a formula in CNF. If there is such an interpretation,
τ is disproven, otherwise, if there is no such interpretation, then τ is proven.
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Satisfiability Problem

Definition (satisfiability problem)

The satisfiability problem (SAT) is the following computational problem: Given as input
a Boolean formula in CNF, compute as output a “yes” or “no” response according to
whether the input formula is satisfiable or not.

• It is believed that there is no polynomial time solution for this problem.
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There is no known general algorithm that efficiently (means in polynomial time) solves the SAT problem,
and it is generally believed that no such algorithm exists. However, this belief has not been proven
mathematically.

Resolving the question whether SAT has a polynomial-time algorithm is equivalent to answering the P
versus NP problem, which is a famous open problem in the theory of computer science: The complexity
class P contains all problems that are solvable in polynomial time by a deterministic machine and the
complexity class NP contains all problems that are solvable in polynomial time by a non-deterministic
machine (i.e., a machine that guesses the next best step). Obviously, P is a subset of NP. The big ques-
tion is whether P is equivalent to NP. (Please remember that NP stands for non-deterministic polynomial
time, it does not stand for non-polynomial time.)

Note that it is rather trivial to check whether a Boolean formula in DNF is satisfiable since it is sufficient to
show that one of the conjunctions is satisfiable (since every conjunction is an implicant). A conjunction
is satisfiable if it does not contain x and ¬x for some variable x. Given an arbitrary Boolean formula, the
conversion into DNF may unfortunately require exponential time.

By solving the general SAT problem, you will become a famous mathematician and you can secure a
one million dollar price.

Further online information:

• Wikipedia: Boolean satisfiability problem

• Wikipedia: Millennium Prize Problems

• YouTube: P vs. NP – The Biggest Unsolved Problem in Computer Science
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Symbol Sets

Definition (symbol set)

The symbol set S of a predicate logic consists of generic symbols and domain-specific
symbols. The generic symbols are:

- variables x1, x2, x3, . . . (we may also use a, b, c , . . .)

- logical connectives ∧,∨,¬,→,↔
- the equality symbol =

- the brackets ( and )

The domain-specific symbols are:

- a set of constant symbols

- a set of n-ary predicate symbols, n ≥ 1

- a set of n-ary function symbols, n ≥ 1
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Due to the domain-specific symbols in the symbol set, predicate logic is always adapted to particular
domains. For proving theorems in mathematics, the constants are numbers such as 1, 2, . . ., the func-
tions are basic operators such as + and functions such as sin, and the predicates express relations
such as ≥. For proving theorems in robotics, the symbol set may capture concepts such as positions,
directions, landmarks etc.

The domain-specific symbol set is not necessarily finite. For example, there is an infinite set of constants
representing numbers or there may be an infinite number of positions a spaceship may have.
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Syntax of Terms

Definition (terms)

Given a symbol set S , terms over S (also called S-terms) are defined inductively as
follows:

1. Every variable from S is an S-term.

2. Every constant from S is an S-term.

3. If f is an n-ary function symbol from S and t0, . . . , tn−1 are S-terms, then
f t0 . . . tn−1 is an S-term.

• This definition requires functions to be written in prefix notation.

• Infix notation is often allowed for functions such as addition or multiplication.

• Brackets are often allowed and used to add clarity.
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According to the definition, function symbols are used in prefix notation. For example, we would write
+23 to apply the function + to the two constants 2 and 3. Also note that there are no parenthesis
involved and evaluation is right to left.

Example: Let S contain the constant symbol 0, the unary successor function σ, and the binary addition
function +. Here are some ways to denote natural numbers:

0 constant symbol denoting the number 0
σ 0 denotes the successor of 0, that is, 1
σ σ σ 0 denotes 3, applying σ three times to 0

+ σ 0σ σ σ 0 denotes 4, adding 1 and 3

+ σ 0 + σ σ σ 0σ 0 denotes 5, adding 1 to the sum of 3 and 1

Of course, writing natural numbers in this way is cumbersome. It is far more convenient if the symbol
set contains all natural numbers as constants. Note how the cardinality of the symbol set interacts with
practical usability.
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Syntax of Expressions

Definition (expressions)

Given a symbol set S , expressions over S (also called S-expressions) are defined
inductively as follows:

1. If t0 and t1 are S-terms, then t0 = t1 is an S-expression.

2. If t0, . . . , tn−1 are S-terms and P is an n-ary predicate symbol, then P t0 . . . tn−1 is
an S-expression.

3. If φ is an S-expression, then ¬φ is an S-expression.

4. If φ and ψ are S-expressions, then are (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), and (φ↔ ψ)
S-expressions.

5. If φ is an S-expressions and x is a variable, then are ∃ x φ and ∀ x φ S-expressions.
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S-expressions define the formal syntax of a predicate logic for a given domain with a specific symbol set
S. A formula is well-formed (a so-called well-formed formula), if it follows the rules for S-expressions. In
practice, we often allow variations to make it simpler for humans to read and write expressions, such as
the usage of infix operators and brackets in terms.

Examples:

+ 11 = 2

prime 5

∀ x prime x ∨ ¬prime x

∃ x even x ∧ prime x

∀ x ¬x = σ x

∀ x ¬∃ y x = σ y → x = 0
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Free Variables

Definition (free variables)

Let var(t) denote the variables that occur in a term t. The set free(φ) of variables that
occur free in the expression φ is defined inductively as follows:

free(t0 = t1) = var(t0) ∪ var(t1)

free(P t0 . . . tn−1) = var(t0) ∪ . . . ∪ var(tn−1)

free(¬φ) = free(φ)

free((φ ∧ ψ)) = free(φ) ∪ free(ψ) free((φ ∨ ψ)) = free(φ) ∪ free(ψ)

free((φ→ ψ)) = free(φ) ∪ free(ψ) free((φ↔ ψ)) = free(φ) ∪ free(ψ)

free(∃ x φ) = free(φ) \ x
free(∀ x φ) = free(φ) \ x
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Examples:

• The expression ≤ 1 2 has the set of free variables ∅.
• The expression +x 1 has the set of free variables {x}.
• The expression ∀x ≥ x z has the set of free variables {z}.
• The expression ∃ z ∀x ≥ x z has the set of free variables ∅.

176



Section 24: Formal Semantics of Predicate Logic

21 Propositional Logic

22 Satisfiability Problem

23 Formal Syntax of Predicate Logic

24 Formal Semantics of Predicate Logic
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Domain of Discourse

Definition (domain of discourse)

A domain of discourse D is a nonempty set of objects of some kind.

Definition (variable assignment)

A variable assignment µ associates an element of the domain of discourse D with each
variable xi of a symbol set S .

• A domain of discourse is often assumed to be a fixed set.

• If the domain of discourse varies over time, then things get complicated.

• A variable assignment may be restricted to all non-free variables of a formula.
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The truth of a formula in predicate logic apparently depends on the domain of discourse. For practical
reasons, the domain of discourse is often not explicitly stated. However, if we want to write computer
programs that can operate on statements in predicate logic, we will have to povide the domain of dis-
course.

In practice, we often use a element hood relation ∈ to denote to which sets a variable is bound, i.e.,
we write ∀x ∈ Nx ≥ 0. If we would have stated that our domain of discourse is N, we could have just
written ∀xx ≥ 0. Note that even in the first style, there is an implicit domain of discourse.
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Interpretation of Non-logical Symbols

Definition (interpretation of non-logical symbols)

An interpretation I of non-logical symbols of D is a mapping of symbols of constants,
predicates and functions of a symbol set to constants, predicates and functions in the
domain of discourse:

1. The interpretation of a constant symbol is an object in D.
2. The interpretation of an n-ary predicate symbol is a set of n-tuples over D for

which the predicate is true.

3. The interpretation of an n-ary function symbol f is a function Dn → D.

• An interpretation provides meaning to symbols of constants, predicates, and
functions.
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Note again the difference between a symbol such as 42 and the number fourty-two. We can have many
symbols, such as 42, 0x2a, or 0b101010 mapping to the number fourty-two.

The usual interpretation of the symbol 10 is that it maps to the number ten. But for computer scientists,
10 could also map to the number two. It is therefore essential to know the domain of discourse. The
same holds for functions and predicates. For some symbols, like ≤, we have a good chance to guess
the correct meaning. But in math, to be fully precise, we should not have to guess the meaning of
symbols.

While math is (so far) mostly read by humans that (hopefully) do a good job in filling in the missing
details, this usually does not work well in computer science since computers (so far) do not do a good
enough job in filling in the missing details. While computer science may make progress by further
developing AI systems to do better guesses, we also see a movement in modern math towards formally
specified proofs that can be understood without any ambiguity by computer programs, such as theorem
provers. At the end, checking math for correctness is as important as checking programs for correctness
and we are meanwhile able to build tools to help with that.

Further online information:

• Wikipedia: Lean (proof assistant)
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Interpretation of Logical Symbols

Definition (interpretation of logical symbols)

The interpretation I∗ of an expression using the domain D and the interpretation I of
non-logical symbols is defined inductively:

1. P t0 . . . tn−1 is true if and only if the tuple (v0, . . . , vn) is in the interpretation I of
P and v0, . . . , vn−1 are the interpretations of t0, . . . , tn−1.

2. t0 = t1 is true if and only if t0 and t1 evaluate to the same object in D.
3. ¬φ is true if and only if the interpretation of φ is false.

4. (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), and (φ↔ ψ) are true if and only if the interpretations
of φ and ψ satisfy the truth tables of the logical connectives.

5. ∃ x φ is true for a variable assignment µ if and only if there exists an interpretation
for a variable assignment µ′ that differs from µ at most regarding x .

6. ∀ x φ is true for a variable assignment µ if and only if it is true for all
interpretations for a variable assignment µ′ that differs from µ at most regarding x .Jürgen Schönwälder (Constructor University) Mathematical Foundations: Propositional and Predicate Logic CC-BY-NC-ND September 5, 2024 189 / 285

The interpretation I∗ is defined as an extension of the interpretation I. For convenience, we will write
just I to refer to both of them if the distinction between them is not relevant.
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Models and Relation to Expressions

Definition (model)

The combination or structure of an interpretation I and its domain D is called a model.

Definition (model relation between interpretations and expressions)

A model M satisfies the expression φ, denoted as M ⊨ φ, if there is a suitable
assignment of values in the domain of M to variables in φ such that the expression φ
evaluates to true according to interpretation of M .
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It follows that for a given expression φ, there can be models satisfying φ and models not satisfying φ.
Hence, the understanding and agreement on models is crucial for interpreting expressions in predicate
logic.
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Entailment, Tautology, Contradiction, Satisfiability

Definition (entailment)

Let Φ be a set of expressions and φ be an expression. Then Φ entails φ, written as
Φ ⊨ φ, if and only if every interpretation, which is a model of every ψ ∈ Φ, is also a
model of φ.

Definition (tautology, contradiction, satisfiability)
• An expression φ is valid or a tautology, if it always holds, that is, ∅ ⊨ φ. We also
write ⊨ φ.
• An expression φ is invalid or a contradiction, if it never holds, that is for all
interpretations I, I ⊨ φ never holds.

• An expression φ is satisfiable if there exists and interpretation I such that I ⊨ φ
holds.
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The validity problem, namely determining whether an arbitrary expression φ is valid, is undecidable for
first-order logic.

The soundness of a calculus over first-order logic means that if we can carry out a mechanical proof
in the syntactical sense, then it is actually a sound proof in the semantic sense. The completeness of
a calculus over first-order logic that if an expression is entailed by some other expressions, it can also
be derived by carrying out a mechanical proof in the syntactical sense. In other words, a calculus over
first-order logic can have both soundness and completeness.
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Part VI

Abstract Algebra

This part introduces basic elements of abstract algebra, which is the study of algebraic structures, which
are sets with specific operations acting on their elements. Abstract algebra has a strong relation to
various areas of computer science, such as cryptography, the theory of automata and formal languages,
and complexity theory. Furthermore, the application of concepts of abstract algebra has led to the
discovery of more efficient algorithms.

By the end of this part, students should be able to

• explain the purpose and role of abstract algebra;

• define algebraic structures such as monoids, groups, rings, or fields;

• relate algebraic structures to each other;

• conclude whether a given algebraic structure is a group or not;

• illustrate the notion of subgroups and how their cosets partition a group;

• summarize Lagrange’s theorem and explain its practical value;

• decide whether an algebraic structure is a ring or a field;

• describe different kinds of homomorphisms;

• sketch properties of group homomorphisms;

• summarize Cayley’s theorem;

• recite the definition of lattices and distributive lattices.
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Algebraic Structures

Definition (algebraic structure)

An algebraic structure consists of a nonempty set S (called the underlying set, carrier set
or domain), a collection of operations on S (typically binary operations such as addition
and multiplication), and a finite set of axioms that these operations must satisfy.

• A branch of mathematics known as universal algebra studies algebraic structures.

• A set S is a degenerate algebraic structure having no operations.

• We are interested in algebraic structures with one or multiple defined operations.
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Abstract algebra enables us to prove theorems for several similar algebraic structures very efficiently.
As we will see, basic set theory and boolean logic have many similarities. By identifying an algebraic
structure underlying both basic set theory and boolean logic, we can define and prove theorems once
that apply to both basic set theory and boolean logic.
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Magma

Definition (magma)

A magma M = (S , ◦) is an algebraic structure consisting of a set S together with a
binary operation ◦ satisfying the following property:

∀a, b ∈ S : a ◦ b ∈ S closure

The operation ◦ is a function ◦ : S × S → S .

• A magma is a very general algebraic structure.

• By imposing additional constraints on the operation ◦, we can define more useful
classes of algebraic structures.
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Some examples for magmas:

1. The magma M = (N,+) represents addition over natural numbers.

2. The magma M = (N, ·) represents multiplication over natural numbers.

3. The magma M = (R3, ∗) with the operation ∗ defined as (a, b, c)∗(x, y, z) = (bz−cy, cx−az, ay−bx)
is an interesting magma since it is not any of the algebraic structures we define next.
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Semigroup

Definition (semigroup)

A semigroup G = (S , ◦) is an algebraic structure consisting of a set S together with a
binary operation ◦ : S × S → S satisfying the following property:

∀a, b, c ∈ S : (a ◦ b) ◦ c = a ◦ (b ◦ c) associativity

• A semigroup extends a magma by requiring that the operation is associative.

• The set of semigroups is a true subset of the set of all magmas.
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Some examples for semigroups:

1. (N,+) (addition over natural numbers)

2. (N, ·) (multiplication over natural numbers)

3. (Z,+) (addition over integer numbers)

4. (Z, ·) (multiplication over integer numbers)

5. (Q,+) (addition over rational numbers)

6. (Q, ·) (multiplication over rational numbers)

7. (R,+) (addition over real numbers)

8. (R, ·) (multiplication over real numbers)
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Monoid

Definition (monoid)

A monoid M = (S , ◦, e) is an algebraic structure consisting of a set S together with a
binary operation ◦ : S × S → S and an identity element e satisfying the following
properties:

∀a, b, c ∈ S : (a ◦ b) ◦ c = a ◦ (b ◦ c) associativity

∃e ∈ S ,∀a ∈ S : e ◦ a = a = a ◦ e identity element

The identity element e is also called the neutral element.

• A monoid extends a semigroup by requiring that there is an identity element.

• The set of monoids is a true subset of the set of all semigroups.

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Abstract Algebra CC-BY-NC-ND September 5, 2024 197 / 285

Some examples of monoids:

1. The monoid M = (N0,+, 0) represents addition over natural numbers with identity 0.

2. The monoid M = (R, ·, 1) represents multiplication over real numbers with identity 1.

3. The monoid M = (Z, ·, 1) represents multiplication over integer numbers with identity 1.

4. The monoid M = (Σ∗,+, ϵ) with a + b = ab for a, b ∈ Σ∗ and a finite alphabet Σ represents the
string concatenation.
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Group

Definition (group)

A group G = (S , ◦, e) is an algebraic structure consisting of a set S together with a
binary operation ◦ : S × S → S and an identity element e satisfying the following
properties:

∀a, b, c ∈ S : (a ◦ b) ◦ c = a ◦ (b ◦ c) associativity

∃e ∈ S ,∀a ∈ S : e ◦ a = a = a ◦ e identity element

∀a ∈ S , ∃b ∈ S : a ◦ b = e inverse element

The element b is called the inverse element of a; it is often denoted as a−1.

• A group extends a monoid by requiring that there is an inverse element.

• The set of groups is a true subset of the set of all monoids.
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Some examples of groups:

1. The group G = (Z,+, 0) represents addition over integer numbers with identity 0.

2. The group G = (Q\{0}, ·, 1) represents multiplication over rational numbers without zero and with
identity 1. Note that we exclude zero since zero has no inverse element.

3. The group G = (Zn,+, 0) represents addition modulo n over the integers Zn = {0, 1, . . . , n− 1}.
4. Dihedral groups capture the notion of symmetry of a regular polygon. A polygon with n sides has

2n different symmetries: n rotational symmetries (r0, r1, . . . , rn−1) and n reflection symmetries
(l0, l1, . . . , ln−1). The rotations and reflections make up the dihedral group Dn (we usually assume
n ≥ 3). The group operation is the composition of rotations and reflections.

Example D3: The three rotations of an equilateral triangle are the rotation by 0 degrees (r0), 120
degrees (r1), and 240 degrees (r2). The reflections are the reflection along the angle bisector
of the corner A (l0), the corner B (l1), and the corner C (l2). This gives us the dihedral group
D3 = ({r0, r1, r2, l0, l1, l2}, ◦, r0) with the composition ◦ defined by the following Cayley table:

◦ r0 r1 r2 l0 l1 l2
r0 r0 r1 r2 l0 l1 l2
r1 r1 r2 r0 l2 l0 l1
r2 r2 r0 r1 l1 l2 l0
l0 l0 l1 l2 r0 r1 r2
l1 l1 l2 l0 r2 r0 r1
l2 l2 l0 l1 r1 r2 r0

For a, b ∈ G, the value of a ◦ b is given by the cell where the row is determined by a and the
column by b. (This detail is important since Cayley tables are not necessarily symmetric along the
diagonal.)
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Abelian Group

Definition (abelian group)

An Abelian group (S , ◦, e) is an algebraic structure consisting of a set S together with a
binary operation ◦ : S × S → S and an identity element e satisfying the following
properties:

∀a, b, c ∈ S : (a ◦ b) ◦ c = a ◦ (b ◦ c) associativity

∃e ∈ S ,∀a ∈ S : e ◦ a = a = a ◦ e identity element

∀a ∈ S , ∃b ∈ S : a ◦ b = e inverse element

∀a, b ∈ S : a ◦ b = b ◦ a commutativity

• An Abelian group extends a group by requiring that the operation is commutativ.

• The set of Abelian groups is a true subset of the set of all groups.
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Some examples of Abelian groups:

1. The group G = (Z,+, 0) represents addition over integer numbers with identity 0.

2. The group G = (Q\{0}, ·, 1) represents multiplication over rational numbers without zero and with
identity 1.

The Dihedral group D3 is not an Abelian group since the composition operation is not commutative. For
example, r1 ◦ l1 = l0 while l1 ◦r1 = l2. Note that the Cayley table of an Abelian group is symmetric along
the diagonal (the Cayley table of D3 is not symmetric).
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Group Theorems

Theorem (single identity element)

Every group G has a single identity element.

Theorem (single inverse element)

Let G = (S , ◦, e) be a group. For every a ∈ G , there exists a single b ∈ G for which
a ◦ b = e holds.

Theorem
Let G = (S , ◦, e) be a group and a, b ∈ G . Then the equation a ◦ x = b has the
solution x = a−1 ◦ b and the equation y ◦ a = b has the solution y = b ◦ a−1.
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Proof. Let G be a group. Lets further assume that there are two identities e, e′ ∈ G. We show that they
must be the same.

By the definition of a group, we know that g ◦ e = g and g ◦ e′ = g for every g ∈ G. Since e, e′ ∈ G, we
also know that e′ ◦ e = e′ and e ◦ e′ = e. This implies that e = e′ and e′ = e.

Proof. Let G = (S, ◦, e) be a group and let b ∈ G and b′ ∈ G be both inverse to a ∈ G. Then the following
holds:

b = e ◦ b
= (b′ ◦ a) ◦ b
= b′ ◦ (a ◦ b)
= b′ ◦ e
= b′

Proof. We first show that x = a−1 ◦ b solves a ◦ x = b and that y = b ◦ a−1 solves y ◦ a = b.

a ◦ x = a ◦ (a−1 ◦ b) y ◦ a = (b ◦ a−1) ◦ a
= (a ◦ a−1) ◦ b = b ◦ (a−1 ◦ a)
= e ◦ b = b ◦ e
= b = b

Next, we show that there is only a single solution. Note that a group is not necessarily commutative.

a ◦ x = b y ◦ a = b

a−1 ◦ (a ◦ x) = a−1 ◦ b (y ◦ a) ◦ a−1 = b ◦ a−1

(a−1 ◦ a) ◦ x = a−1 ◦ b y ◦ (a ◦ a−1) = b ◦ a−1

e ◦ x = a−1 ◦ b y ◦ e = b ◦ a−1

x = a−1 ◦ b y = b ◦ a−1
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Subgroup

Definition (subgroup)

Let G = (S , ◦, e) be a group. The group H = (S ′, ◦, e) is called a subgroup of G if
S ′ ⊆ S , denoted as H ≤ G .

Definition (proper subgroup)

A subgroup H = (S ′, ◦, e) of a group G = (S , ◦, e) defined over a proper subset of
S ′ ⊂ S is called a proper subgroup of G , denoted as H < G .

• The trivial subgroup of any group G is the group H = ({e}, ◦, e).
• Note that subgroup and group use the same operation ◦ and have the same
identity element e.
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Some examples of subgroups:

1. Consider the group G = (Z,+, 0). Let E = { 2x |x ∈ Z } be the set of all even integers. Then
H = (E,+, 0) is a proper subgroup of G. (Note that the set of all odd integers do not form a
subgroup.)

2. The dihedral group D3 has the proper subgroup H1 = ({r0, r1, r2}, ◦, r0), as can be seen from the
Cayley table. Does D3 have more proper non-trivial subgroups?
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Subgroup Test Theorem

Theorem
A nonempty subset H of a group G = (S , ◦, e) is a subgroup of G if and only if the
following properties hold:

(1) If a, b ∈ H , then a ◦ b ∈ H .

(2) If a ∈ H , then a−1 ∈ H .

• To check whether a H is a subgroup of G , it is sufficient to show that H is
nonempty, closed under ◦, and closed under inverses.

• This is often simpler than showing all group properties.
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Proof. We prove the equivalence by proving both implications.

⇒ Let H be a subgroup of the group G. We show that it is closed under ◦ and under inverse.

Since H is a group, we know that H is closed under ◦ and we know that every element a ∈ H has
an inverse a−1 ∈ H.

⇐ Let H be a nonempty subset of the group G that is closed under ◦ and under inverse. We show
that H is a subgroup of G.

We have to check the requirements for a group. We already know that H is closed under ◦ and
that every element in H has an inverse. So we need to show associativity and the existence of an
identity element.

Let a, b, c ∈ H. Since H is a subset of G, a, b, c ∈ G as well. Since G is a group, we know that
(a ◦ b) ◦ c = a ◦ (b ◦ c) holds. (And since H is closed under ◦, we know that the result is an element
of H.)

We know that for every a ∈ H, a−1 ∈ H. Furthermore, we know that H is closed under ◦, hence
a ◦ a−1 = e ∈ H.

Example: Consider the group G = (Z4,+, 0) where + denotes addition modulo 4. We show that
H = ({0, 2},+, 0) is a proper subgroup of G using the subgroup test theorem.

(1) Obviously, the group H is non-empty.

(2) We show a, b ∈ H → a ◦ b ∈ H by simply considering all four possible cases:

0 + 0 = 0 ∈ H

0 + 2 = 2 ∈ H

2 + 0 = 2 ∈ H

2 + 2 = 0 ∈ H

(3) We show a ∈ H → a−1 ∈ H by considering the two possible cases. The inverse of 0 is 0 (since
0 + 0 = 0) and the inverse of 2 is 2 (since 2 + 2 = 0). Both inverses are an element of H.
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Cyclic Subgroup Theorem

Theorem
Let G = (S , ◦, e) be a group and a ∈ G . Then H = (S ′, ◦, e) with S ′ = { an | n ∈ Z } is
a subgroup of G .

• Recall that the notation an means applying the group operation circ n times to a.

• For an additive group, an equals na.

• For a group representing symmetries, an means applying a symmetry operation
(e.g., a certain rotation) n times.
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Proof. We need to show that S′ is closed under ◦ and under inverse.

Let x, y ∈ S′. This means that we can write x = an and y = am for some n,m ∈ Z. It follows that
x ◦ y = an ◦ am = an+m ∈ S′ since n+m ∈ Z. Hence S′ is closed under ◦.
Let x ∈ S′. We can assume x = an for some n ∈ Z. The inverse x−1 = (an)−1 = a−n. Since −n ∈ Z,
the inverse of x is an element of S′ and S′ is closed under inverse.

Since S′ is nonempty, we can apply the subgroup test theorem and hence H = (S′, ◦, e) is a subgroup
of G.
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Permutation Groups and Symmetric Groups

Definition (permutation group)

A permutation group G is a group whose elements are permutations of a given set M
and whose group operation is a composition of permutations of G .

Definition (symmetric group)

The group of all permutations of a given set M is called the symmetric group of M . If
M = {1, 2, . . . , n}, then the symmetric group of degree n is denoted by Sn.

• We usually consider only finite sets M .

• If the cardinality of M is n, then it is easy to see that |Sn| = n!.

• Permutation groups of M are subgroups of the symmetric group of M .
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Lets check why Sn is indeed a group. The elements of Sn are permutations fi : M → M and permuta-
tions are bijective.

• Closure: Since the permutations f and g are bijections, so is the composition f ◦ g.

• Associativity: Function composition is known to be associative, hence f ◦ (g ◦ h) = (f ◦ g) ◦ h.

• Identity: The permutation not changing any elements is the identity element.

• Inverses: Since a permutation f is bijective, an inverse permutation f−1 exists.

Example: The Dihedral group D3 is structurally the same as the symmetric group S3. Note that this
is not generally true. The Dihedral Groups D4 has eight elements while the symmetric group S4 has
4! = 24 elements.
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Left Cosets and Right Cosets

Definition (left cosets and right cosets)

Let G = (S , ◦, e) be a group and H be a subgroup of G . For a given fixed element
a ∈ G , we call the set aH = { a ◦ h | h ∈ H } the left coset of H for a ∈ G . Similarly, for
a given fixed element a ∈ G , we call the set Ha = { h ◦ a | h ∈ H } the right coset of H
for a ∈ G .

• For an Abelian group G , we know that aH = Ha for any a ∈ G .

• Since G is closed under the group operation, every coset of G is a subset of G .
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Lets consider the group G = (Z4,+, 0) where + denotes addition modulo 4. We already know that G
has the subgroup H = ({0, 2},+, 0). Lets consider all possible left cosets of H:

0H = {0 + 0, 0 + 2} = {0, 2}
1H = {1 + 0, 1 + 2} = {1, 3}
2H = {2 + 0, 2 + 2} = {2, 0}
3H = {3 + 0, 3 + 2} = {3, 1}

Obviously, 0H = 2H = H and 1H = 3H. Note that the cosets partition the set of the group into distinct
subsets. We will see that this is generally true.
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Coset Partition and Equivalence Relation

Theorem (coset partition and equivalence relation)

Let H be a subgroup of a group G = (S , ◦, e). Then the following statements hold and
are equivalent:

(1) The family of left cosets of H form a partition of the group G , that is, G is a
disjoint union of left cosets of H .

(2) The relation a ∼ b ⇔ a ∈ bH is an equivalence relation on G .

(3) For every g ∈ G , there is exactly one left coset of H in G containing g .

(4) If aH and bH are left cosets of H in G , then either aH = bH or aH ∩ bH = ∅.
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Proof. We have to show the equivalence of the four statements and we have to show that at least one
of them is true.

Lets first show the equivalence of the statements. It is obvious that the first two statements are equiva-
lent. Statement (1) follows from (2) by the definition of an equivalence relation. Conversely, statement
(2) follows from statement (1) since a partition induces an equivalence relation. Statement (4) follows
from (1) since two cosets of the partition are either the same or they are disjoint. Conversely, if all pairs
of cosets are either the same or disjoint, the cosets form a partition, hence (1) also follows from (4).
Finally, statement (1) implies statement (3) since every element of g ∈ G can only be in one coset if the
cosets form a partition. Conversely, if every element g ∈ G is in exactly one coset, then the cosets must
form a partition.

We show that statement (2) holds by showing that the relation a ∼ b ⇔ a ∈ bH is an equivalence
relation, that is, it is reflexive, symmetric, and transitive.

• Reflexivity: For any a ∈ G we have to show that a ∼ a holds.

Since H is a subgroup, we know that e ∈ H. Hence, for any a ∈ G, we know that a = a ◦ e holds
and hence a ∈ aH. Hence a ∼ a holds and the relation is reflexive.

• Symmetry: For any a, b ∈ G we have to show that a ∼ b implies b ∼ a.

If a ∼ b, then a = b ◦ h for some h ∈ H. Since h ∈ H, there is also an inverse h−1 ∈ H. By right
composing both sides of a = b ◦ h with h−1, we get b = a ◦ h−1, which means b ∼ a and hence the
relation is symmetric.

• Transitivity: For any a, b, c ∈ G, we have to show that if a ∼ b and b ∼ c implies a ∼ c.

a ∼ b means that a = b ◦ h1 for some h1 ∈ H. Similarly, b ∼ c means that b = c ◦ h2 for some
h2 ∈ H. By substitution and associativity, we obtain a = (c ◦ h2) ◦ h1 = c ◦ (h2 ◦ h1). Since
h1, h2 ∈ H, we know that (h2 ◦ h1) ∈ H. Hence, we have a ∼ c and the relation is transitive.
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Lagrange’s Theorem

Theorem (Lagrange’s theorem)

Let H be a subgroup of a finite group G . Then the order of H , denoted as |H |, is a
divisor of the order of G , denoted as |G |. This can also be stated as |G | = [G : H] · |H |.

• A corollary is that any group of prime order is cyclic and simple, that is, it only has
two subgroups, the trival subgroup of the identity element and the group itself.

• Lagrange’s theorem can be used to prove Fermat’s little theorem and it’s
generalization, Euler’s theorem.

• Note that it is not true that for all divisors d of |G | there is also a subgroup H with
that order, |H | = d .
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Proof. We already know that the left cosets of H form a partition of G. Hence, to prove Lagrange’s
theorem, we need to show that any coset aH of H has the same number of elements as H. This then
implies that all cosets of H in G have the same number of elements and hence |H| divides |G|.
To show that a coset aH has the same number of elements as H, we define function f : H → aH with
f(h) = a ◦ h mapping from H to aH and we show that this function is a bijection, i.e., it is injective and
surjective.

• Injective: We show that f(h1) = f(h2) implies h1 = h2.

f(h1) = f(h2)

a ◦ h1 = a ◦ h2 left compose with a−1

a−1 ◦ (a ◦ h1) = a−1 ◦ (a ◦ h2) associativity

(a−1 ◦ a) ◦ h1 = (a−1 ◦ a) ◦ h2

h1 = h2

• Surjective: We show that for any element of aH there is an element in H mapping to it.

Let b ∈ aH. This means that b = a ◦ h for some h ∈ H. Hence, we have found f(h) = a ◦ h.
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Ring

Definition
A ring R = (S ,+, ·, 0, 1) is an algebraic structure consisting of a set S together with two
binary operations + : S × S → S and · : S × S → S satisfying the following properties:

1. (S ,+, 0) is an Abelian group with the identity element 0.

2. (S , ·, 1) is a monoid with the identity element 1.

3. Multiplication is distributive with respect to addition:

∀a, b, c ∈ S : a · (b + c) = (a · b) + (a · c) left distributivity

∀a, b, c ∈ S : (b + c) · a = (b · a) + (c · a) right distributivity
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The operations are called + and · and the neutral elements 0 and 1 since this makes it easier to think
about rings. The names are, however, placeholders. The set S can have a complex structure and
hence the neutral elements will also have a complex structure. In other words, the number 0 and the
identity element 0 are two very separate concepts and the context tells you what is meant in a concrete
situation. The same holds for the number 1 and the identity element 1.

Note that some authors define a ring differently, i.e., they only require (S, ·) to be a semigroup.

Some examples of rings:

1. The algebraic structure (Z,+, ·, 0, 1) is a ring.

2. The finite sets of integer numbers Zn = {0, 1, . . . , n − 1} are rings for addition modulo n and
multiplication modulo n.

3. The set of all 2× 2 matrices is a ring for matrix addition and matrix multiplication operations. The
zero elements are:

0 =

(
0 0
0 0

)
1 =

(
1 0
0 1

)
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Field

Definition (field)

A field F = (S ,+, ·, 0, 1) is an algebraic structure consisting of a set S together with
two operations + : S × S → S and · : S × S → S satisfying the following properties:

1. (S ,+, 0) is a group with the identity element 0

2. (S \ {0}, ·, 1) is a group with the identity element 1

3. Multiplication distributes over addition

• A field is a commutative ring where 0 ̸= 1 and all nonzero elements are invertible
under multiplication.

• Well known fields are the field of rational numbers, the field of real numbers, or the
field of complex numbers.
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Like before, operations + and · are placeholders and the same is true for the identity elements 0 and 1.

Some examples of fields:

1. (Q,+, ·, 0, 1) (addition and multiplication over rational numbers)

2. (R,+, ·, 0, 1) (addition and multiplication over real numbers)

3. (Zp,+, ·, 0, 1) (addition and multiplication modulo p over Zp = {0, 1, . . . , p− 1} with p prime)
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Homomorphism, Monomorphism, Epimorphism, Isomorphism

Definition (homomorphism)

A homomorphism is a structure-preserving map between two algebraic structures of the
same type that preserves the operations of the structures.

Definition (monomorphism)

An injective homomorphism is called a monomorphism.

Definition (epimorphism)

A surjective homomorphism is called an epimorphism.

Definition (isomorphism)

A bijective homomorphism is called an isomorphism.
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Given two groups, G = (SG, ∗, eG) and H = (SH , ⋆, eH), a group homomorphism from G to H is a
function mapping h : G→ H such that for all u and v in G the following holds:

h(u ∗ v) = h(u) ⋆ h(v)

Note that the group operation on the left side of the equation is that of G and on the right side that of H.
The group homomorphism h maps the identity element eG of G to the identity element eH of H and it
also maps the inverses of G to inverses of H:

h(u−1) = (h(u))
−1

Example: Given the groups G = (R,+, 0) and H = (R, ·, 1), the map h : R → R with x 7→ 2x is a group
homomorphism.

h(u+ v) = 2(u+v)

= 2u · 2v
= h(u) · h(v)

Note that h maps the identity element 0 of G to the identity element 1 of H and that it also maps inverses:

h(u−1) = h(−u)
= 2−u

= (2u)
−1

= (h(u))
−1

Let G1 and G2 be groups. A bijective homomorphism f : G1 → G2 is called an isomorphism from G1

to G2. If such a homomorphism exist from G1 to G2, we call G1 isomorphic to G2. Isomorphic groups
essentially have the same form even though the sets of the groups may be very different.
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Endomorphism, Automorphism

Definition (endomorphism)

A homomorphism where the domain equals the codomain is called an endomorphism.

Definition (automorphism)

An endomorphism which is also an isomorphism is called an automorphism.
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Example: Lets show that G = (R,+, 0) is isomorphic to H = (R+, ·, 1). To show this, we need to find an
isomorphism mapping from G to H. Lets try with the function f : R→ R+ with x 7→ ex.

• f is injective: Let x, y ∈ R with f(x) = f(y). We show that this implies that x = y:

f(x) = f(y)

ex = ey

ln(ex) = ln(ey)

x = y

• f is surjective: Let y ∈ R+ be arbitrary. We show that there will be an x ∈ R such that y = f(x).
For an arbitrary y, lets take x = ln(y):

f(x) = f(ln(y))

= eln(y)

= y

• f is a homomorphism: Let x, y ∈ R. We have to show that f(x+ y) = f(x) · f(y):

f(x+ y) = ex+y

= ex · ey
= f(x) · f(y)

Note that there can be other isomorphisms. To show that that two groups are isomorphic, it is sufficient
to find one of possibly many isomorphisms.
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Properties of Group Homomorphisms

Theorem
Let G = (S , ◦, eG ) and H = (T , ⋆, eH) be groups and let f : G → H be a
homomorphism mapping G to H . Then the following holds:

f (eG ) = eH f maps the identity elements

∀a ∈ G : f (a−1) = (f (a))−1 f maps inverses
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Proof. We prove the two statements separately.

• We first prove f(eG) = eH . Lets pick an arbitrary a ∈ G. Since f is a homomorphims, the following
must hold:

f(a ◦ eG) = f(a) ⋆ f(eG)

In addition, we know that f(a ◦ eG) = f(a) since eG is the identity of G. Hence we get:

f(a) = f(a) ⋆ f(eG)

Since H is a group, we know that the inverse of f(a) exists. Hence, we can left multiply the above
with (f(a))−1:

(f(a))−1 ⋆ f(a) = (f(a))−1 ⋆ f(a) ⋆ f(eG)

Due to associativity, this can be reduced to the following:

eH = eH ⋆ f(eG) = f(eG)

• We now prove f(a−1) = (f(a))−1 for all a ∈ G. Lets pick an arbitrary a ∈ G. Since G is a group, a
has the inverse a−1. Since f is a homomorphism, we know that the following holds:

f(a) ⋆ f(a−1) = f(a · a−1) = f(eG) = eH

Since H is a group, we know that the inverse of f(a) exists. Hence, we can left multiply the above
with (f(a))−1:

(f(a))−1 ⋆ f(a) ⋆ f(a−1) = (f(a))−1 ⋆ eH

This reduces to

eH ⋆ f(a−1) = (f(a))−1 ⋆ eH

and finally we get:

f(a−1) = (f(a))−1
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Cayley’s Theorem

Theorem
Every group G is isomorphic to a subgroup of a symmetric group.

• If G is a finite group of order n, then G is isomorphic to a subgroup of the
standard symmetric group Sn.

• Recall that the symmetric group Sn is the group whose elements are all bijections
from a set with n elements to itself under composition.
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Proof.

206



Section 28: Lattices

25 Magmas, Semigroups, Monoids, Groups

26 Rings and Fields

27 Homomorphisms

28 Lattices
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Lattice

Definition (lattice)

A lattice L = (S ,⊔,⊓) is an algebraic structure consisting of a nonempty set S together
with two binary operations ⊔ : S × S → S (join) and ⊓ : S × S → S (meet) satisfying
the following properties for a, b, c ∈ S :

a ⊔ b = b ⊔ a a ⊓ b = b ⊓ a commutative laws

a ⊔ (b ⊔ c) = (a ⊔ b) ⊔ c a ⊓ (b ⊓ c) = (a ⊓ b) ⊓ c associative laws

a ⊔ a = a a ⊓ a = a idempotent laws

a ⊔ (a ⊓ b) = a a ⊓ (a ⊔ b) = a absorption laws
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Some examples of lattices:

1. L = (N,⊔,⊓) is a lattice over the natural numbers where ⊔ is the least common multiple of two
numbers and ⊓ is the greatest common divisor of two numbers.

2. L = (B,⊔,⊓) is a lattice we already know from propositional logic.
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Lattice and Partial Orders

Theorem
A nonempty partially ordered set S for which both the suprenum sup(a, b) and the
infimum inf(a, b) exist in S for every a, b ∈ S forms the lattice L = (S , sup, inf).

• Recall that a binary relation is a partial order if it is
• reflexive,
• antisymmetric, and
• transitive.

• The suprenum sup(a, b) of a, b ∈ S is the smallest upper bound of a and b.

• The infimum inf(a, b) of a, b ∈ S is the greatest lower bound of a and b.

• Some authors define lattices via partially ordered sets.
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Proof. Lets assume we have a partially ordered set S such that for all a, b ∈ S the suprenum sup(a, b)
and the infimum inf(a, b) exist in S. We show that this gives us the lattice L = (S, sup, inf) by verifying
the properties of a lattice:

• Commutative laws: Apparently inf(a, b) = inf(b, a) and sup(a, b) = sup(b, a) since the order of the
elements does not matter for the infimum and the suprenum.

• Associative laws: It is easy to see that inf(inf(a, b), c) = inf(a, inf(b, c)) and sup(sup(a, b), c) =
sup(a, sup(b, c)) hold.

• Idempotent laws: Apparently a = inf(a, a) and a = sup(a, a).

• Absorption laws: a = sup(a, inf(a, b)) is true since inf(a, b) is less than or equal to a. Similarly,
a = inf(a, sup(a, b)) is true since sup(a, b) is greater or equal to a.

Hasse diagrams are a way to visualize finite partially ordered sets. Let S be a set and ⪯ a partial order
on S. Construct a graph where all elements of S are represented as nodes. A link between a and b
denotes that a ≺ b and there is no c such that a ≺ c ≺ b. Furthermore, if a ≺ b, then b is placed above a.

5

2

4

60

30

15

10

20

3

6

12

1

The Hasse diagram above shows the partially ordered set {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60} with the
order relation divides by. This is actually a lattice since all pairs of elements have a suprenum (a join)
and an infimum (a meet).
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Distributive Lattice

Definition (distributive lattice)

A distributive lattice is a lattice L = (S ,⊔,⊓) which satisfies the distributive laws for
a, b, c ∈ S :

a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c)

a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ (a ⊔ c)

• It can be shown that one distributive law implies the other.
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With Hasse diagrams, it is relatively easy to check visually whether a resonably small finite partially
ordered set is a lattice or not: In a lattice, all pairs of “unrelated” nodes must have a suprenum and an
infimum, i.e., a unique node “above” the pair of nodes where edges join and a unique node “below” the
pair of nodes where edges meet.

i

a

b

c

d

e

a a a a a a

b

b

b

b b b

c

c

c

c

c

d

d

d

d

d

de

e e

e e

c

f

f

f

f

g g

hh

Some of the the Hasse diagrams above are lattices, some are not. Which ones are not lattices and
why?
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Part VII

Graphs and Graph Algorithms

This part introduces basic elements of graph theory. Many classic computer science problems, such
as finding shortest paths, creating spanning trees, calculating maximum flows, can be formulated as
problems on graphs. Trees are of special importance in computer science since trees enable efficient
algorithms for finding information.

By the end of this part, students should be able to

• distinguish simple graphs, multigraphs, directed graphs, and directed multigraphs;

• recognize walks, trails, paths, closed walks, and cycles;

• identify components and determine whether a graph is connected;

• split graphs into subgraphs and components;

• create graphs using disjoint unions;

• transform graphs simple graphs, directed graphs, and multigraphs into directed multigraphs

• represent graphs using adjacency list and adjacency matrices;

• recall and use basic properties of trees;

• outline and execute graph traversal algorithms;

• describe and solve maximum flow problems.
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Simple Graphs

Definition (simple graphs)

A simple graph is a pair G = (V ,E ), where V is a set of vertices, and E is a set of
unordered pairs {u, v} of edges with u, v ∈ V and u ̸= v . The vertices u and v of an
edge {u, v} are called the edge’s endpoints. When an edge {u, v} exists, then the
vertices u and v are called adjacent. The set of vertices adjacent to a give vertex v are
called the neighbors of v .

• A simple graph has no links connecting a vertex to itself (so called self-loops).

• There can only be a single edge connecting two vertices in a simple graph.

• Sometimes it is convenient to restrict V to finite sets.
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Lets consider the simple graph below. Mathematically, the graph is defined by G = (V,E) with V =
{a, b, c, d, e, f} and E = {{a, b}, {a, d}, {a, e}, {b, c}, {b, d}, {d, e}, {e, f}}.

a

b

e

d

c

f

A =




0 1 0 1 1 0
1 0 1 1 0 0
0 1 0 0 0 0
1 1 0 0 1 0
1 0 0 1 0 1
0 0 0 0 1 0




Computer programs use different techniques to represent graphs internally. Two common approaches
are adjacency lists and an adjacency matrices: In the first approach, a program stores for each vertex
the set of adjacent vertices, e.g. a 7→ {b, d, e}, b 7→ {a, c, d}, c 7→ {b}, d 7→ {a, b, e}, e 7→ {d, f}, f 7→ {e}.
The other approach is to create a matrix with a row and a column for each vertex. The value in a cell is
1 if there is an edge between to vertices and 0 otherwise. For a simple graph, the diagonal will always
be zero. For the graph G, we have the adjacency matrix A.

An graph without any edges, G = (V, ∅), is called an empty graph. Note that an empty graph still has
a set of vertices. A simple graph G = (V,E), where E includes all possible edges of V , is called a
complete graph. Complete graphs with n = |V | vertices are called Kn (since all complete graphs with
n vertices are isomorphic to each other).

a

b

c

d

e

A =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




a

b

c

d

e

A =




0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0
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Multigraphs

Definition (multigraphs)

A multigraph is a triple G = (V ,E , f ), where V is a set of vertices, E is a set of edges,
and f : E → (V × V ) is a function mapping edges to pairs (u, v).

• Multigraphs allow self-loops.

• Multigraphs allow multiple edges between a pair of vertices.

• Obviously, every simple graph is also a multigraph.

• Since multigraph are more complex, it makes sense to use simple graphs when
there is no need for multigraphs.
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The following graph is a multigraph since it contains a self-loop and two edges between a and e. Note
that the representation using adjacency matrices can be extended to represent multigraphs as well.

a

b

e0

de1

e

e2

e3

e5

ce4

e7

f
e8

e6

A =




0 1 0 1 2 0
1 0 1 1 0 0
0 1 1 0 0 0
1 1 0 0 1 0
2 0 0 1 0 1
0 0 0 0 1 0
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Degree of Vertices

Definition (degrees)

Let G = (V ,E ) be a graph and v ∈ V be a vertex of G . Then, the number of edges
e ∈ E that contain v is called the degree of v , denoted as deg v .

Theorem
Let G = (V ,E ) be a simple graph. Then, the sum of the degrees of all vertices of G
equals twice the number of edges of G :

∑

v∈V
deg v = 2 · |E |
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Proof. We can proof this via induction over the number of edges. Let G be a graph. If G is empty, then
the degree of all vertices is 0 and hence

∑
v∈V 0 = 2 · 0 holds. Lets assume that

∑
v∈V deg v = 2 · |E|

holds for |E| = n edges. If we add an additional edge to E, then the size of E increases to n+ 1. Since
the new edge has two endpoints, the degree of these two endpoints will increase by one each. Since
we add two on the left side of the equation and two to the right side of the equation, it still holds for
|E| = n+ 1.

In many natural large graphs, the degree distribution, that is the fraction of nodes in the network with a
degree K, follows certain pattern where a large majority of nodes have low degree but a small number
have high degree. This tends to make the connectivity of graphs robust against single independent
random failures. In some graphs, it was noted that their degree distribution follows a power law. These
graphs got known as scale-free networks. Scale-free networks have a number of interesting properties.

Further online information:

• Wikipedia: Scale-free network
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Walks, Trails, Paths

Definition (walk)

Let G = (V ,E ) be a graph. A finite sequence (v0, v1, . . . , vk) of vertices vi ∈ V is
called a walk of G if the pairs vi and vi+1, with i ∈ {0, . . . , k − 1}, are edges in E . The
number k is called the length of the walk.

Definition (trail)

Let G = (V ,E ) be a graph and w be a walk of G . The walk is called a trail if all edges
of the walk are distinct.

Definition (path)

Let G = (V ,E ) be a graph and w be a walk of G . The walk is called a path if all
verticies of the walk are distinct.
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A walk does not put any constraints on the vertices visited and the edges crossed. It is perfectly fine to
walk in circles. A trail requires that edges are only crossed once. Of course, it is not required to cross
all edges of a graph or to visit all vertices. A path requires that vertices are only crossed once. This
implies that also edges are only crossed once. Hence, a path is a special kind of a trail.

Lets consider the following simple graph:

a

b

e

d

c

f

The walk (a, b, d, a, b, c) is neither a trail nor a path. The walk (a, d, e, a, b, c) is a trail but not a path. The
walk (a, e, d, b, c) is a path and hence also a trail. The sequence (a, d, e, c) is not a walk.

We can define simple operations on walks:

• Two walks can be concatenated into a single walk if the first walk ends at a vertex that is the
beginning of the second walk.

• A walk can be split into two shorter walks.

• A walk can be reversed by reversing the vertices in the sequence.

• A walk can be reduced to a path by removing any loops from the sequence.
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Closed Walks and Cycles

Definition (closed walk)

Let w = (v0, v1, . . . , vk) be a walk of a graph G . The walk is called a closed walk of G
if the first and last vertex are the same, that is v0 = vk .

Definition (cycle)

Let w = (v0, v1, . . . , vk) be a closed walk of a graph G . The walk is called a cycle of G
if k ≥ 3 and the vertices v0, v1, . . . , vk−1 are distinct.

• Common algorithmic problems:

- Determine whether a given graph is cycle-free.
- Determine a shortest closed walk covering a given set of vertices.
- Determine a shortest path between two vertices.
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Lets consider the following simple graph:

a

b

e

d

c

f

The sequence (e, b, a, d, b, e) is a closed walk but not a cycle. The walks (a, b, d, a) and (a, d, e, a) and
(a, b, d, e, a) are all cycles.
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Connected Components

Definition (path-connectedness)

Let G = (V ,E ) be a simple graph. Two vertices u, v ∈ V are path-connected, denoted
as u ≃G v , if and only if there is a walk from u to v in G .

Theorem
Let G be a simple graph. Then ≃G is an equivalence relation.

Definition (connected components)

Let G be a simple graph. The equivalence classes of the equivalence relation ≃G are
called the connected components of G . A graph G is connected if G has exactly one
component.
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Proof. We need to show that ≃G is symmetric, reflexive, and transitive:

• Symmetry: If u ≃G v, the v ≃G u since we can reverse the walk from u to v.

• Reflexivity: Since the trivial walk (u) is a walk from u to u, we know that u ≃G u.

• Transitivity: If u ≃G v and v ≃G w, then u ≃G w since we can concatenate the walk from u to v
with the walk from v to w.
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Subgraphs, Induced Subgraphs, Triangles

Definition (subgraph)

Let G = (V ,E ) be a simple graph. A graph H = (W ,F ) is called a subgraph of G if
and only if W ⊆ V and F ⊆ E .

Definition (induced subgraph)

Let G = (V ,E ) be a simple graph. A graph H = (S ,F ) is called an induced subgraph
of G if there exists an S ⊆ V and F contains precisely those edges whose endpoints
belong to S .

Definition (triangle)

Let G = (V ,E ) be a simple graph and u, v , w be three distinct vertices of G . The
induced subgraph of G on {u, v ,w} is a triangle of G.
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Lets consider the following simple graph:

a

b

e

d

c

f

The subgraph H = ({a, b, d}, {{a, b}, {b, d}, {a, d}}) is an induced subgraph of G. It is also a triangle of
G. The subgraph I = ({a, b, c, d}, {{a, b}, {b, c}, {b, d}}) is not an induced subgraph of G since the edge
{a, d} is missing.
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Composition: Disjoint Union

Definition (disjoint union)

Let G1,G2, . . . ,Gk be simple graphs, where Gi = (Vi ,Ei) for each i ∈ {1, 2, . . . , k}. The
disjoint union of the graphs G1,G2, . . . ,Gk , denoted as G1 ⊔ G2 ⊔ . . . ⊔ Gk , is defined to
be the simple graph G = (V ,E ), where

V = {(i , v) | i ∈ {1, 2, . . . , k} ∧ v ∈ Vi} and

E = {{(i , v1), (i , v2)} | i ∈ {1, 2, . . . , k} ∧ {v1, v2} ∈ Ei}
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Decompositions: Subgraphs of Components

Theorem
Let G be a simple graph and C be a component of G . Then, the induced subgraph of
G on the set C is connected.

Theorem
Let G be a simple graph and let C1,C2, . . . ,Ck be all components of G . Then G is
isomorphic to the disjoint union of subgraphs induced by the components.
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Directed Graphs

Definition (simple directed graphs)

A simple directed graph (also called a digraph) is a pair G = (V ,E ), where V is a finite
set of vertices, and E is a subset of V × V of edges. An edge (u, v) ∈ E is also called
an arc of G and u is called the source of this arc and v the target of this arc.

• We draw edges of digraphs as arrows pointing from the source to the target.

• Note that this definition of simple digraphs allows loops.
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Lets consider the graph below. Mathematically, the graph is defined by G = (V,E) with V = {a, b, c, d, e, f}
and E = {(a, a), (a, b), (a, e), (b, c), (b, d), (d, a), (d, e), (e, f), (f, f)}.

a

b

e

c

d

f

A =




1 1 0 0 1 0
0 0 1 1 0 0
0 0 0 0 0 0
1 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1




Note that we can still represent simple directed graphs using an adjacency matrices. Compared to
simple graphs, the diagonal is not guaranteed anymore to be zero and the matrix is not necessarily
symmetric anymore.

Lets informally discuss how finite simple graphs relate to simple directed graphs. If we look at the
adjacency matrix of a simple graph, then this is also a valid adjacency matrix of a directed graph.
However, since edges are directed in directed graph, we double the number of edges.

a

b

e

d

c

f

A =




0 1 0 1 1 0
1 0 1 1 0 0
0 1 0 0 0 0
1 1 0 0 1 0
1 0 0 1 0 1
0 0 0 0 1 0




a

b

e

d

c

f

A =




0 1 0 1 1 0
1 0 1 1 0 0
0 1 0 0 0 0
1 1 0 0 1 0
1 0 0 1 0 1
0 0 0 0 1 0
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Directed Multigraphs

Definition (directed multigraphs)

A directed multigraph is a triple G = (V ,E , f ), where V is a finite set of vertices, E is
finite set of edges, and f : E → (V × V ) is a function mapping edges to arcs (u, v).

• Directed multigraphs allow multiple directed edges between a pair of vertices.

• Obviously, every simple directed graph is also a directed multigraph.

• Since directed multigraph are more complex, it makes sense to use simple directed
graphs when there is no need for directed multigraphs.
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Like we can map a finite simple graph into a directed graph by creating two directed edges for each
simple edge, we can map a finite multigraph into a directed multigraph. Hence, a directed multigraph is
the most general form of a graph. It is, however, also the most complex form of a graph and hence it is
desirable to use the graph type necessary to solve a problem and not the most generic graph to solve
a problem. Computer programs or libraries for processing graphs usually provide dedicated support for
the different types of graphs.
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Indegrees and Outdegrees

Definition (indegrees and outdegrees)

Let G = (V ,E ) be a simpe directed graph or a directed multigraph and v ∈ V be a
vertex of G . Then, the number of edges e ∈ E that contain v as a source is called the
outdegree of v , denoted as deg+ v . The number of edges e ∈ E that contain v as a
target is called the indegree of v , denoted as deg− v .

Theorem
Let G = (V ,E ) be a directed graph or directed multigraph. Then, the sum of all
indegree equals the sum of all outdegree and is given by the size of E .

∑

v∈V
deg+ v =

∑

v∈V
deg− v = |E |
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Proof. Since deg+v is the number of arcs leaving v and we sum over all verticies v ∈ V , this gives
us the number of all arcs in G, hence

∑
v∈V deg+v = |E|. With a similar argument, we obtain that∑

v∈V deg−v = |E| and hence the sums are equal.
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Walks, Trails, Paths, Cycles

Definition (cycle)

Let w = (v0, v1, . . . , vk) be a closed walk of a directed graph G . The walk is called a
cycle of G if k ≥ 1 and the vertices v0, v1, . . . , vk−1 are distinct.

• The definition of walks, trails, paths, closed paths, and cylces for graphs can be
easily extended to directed graphs, the only difference is that edges can only be
traversed in one direction in directed graphs.

• A new definition of a cycle is needed since
• directed graphs can have loops and
• directed arcs avoid problems caused by the possibility to pass edges in both

directions.
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Lets consider the following simple graph:

a

b

e

c

d

f

The sequence (a, b, d, a, e) is a walk and a trail but not a path. The sequence (a, b, d, a) is a closed walk
and a cycle. The sequence (a, b, c) is a path from a to c. Note that there is no reverse path from c to a.
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Strong Components

Definition (strong path-connectedness)

Let G = (V ,E ) be a directed graph or a directed multigraph. Two vertices u, v ∈ V are
strong path-connected, denoted as u ≃ v , if and only if there is a walk from u to v and
a walk from v to u in G .

Theorem
Let G be a directed graph or a directed multigraph. Then ≃G is an equivalence relation.

Definition (strong components)

Let G be a directed graph or a directed multigraph. The The equivalence classes of the
equivalence relation ≃G are called the strong components of G . A directed graph or
directed multigraph G is strongly connected if G has exactly one strong component.
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The notion of connectedness does not directly extend from graphs to directed graphs since walks and
paths are not necessarily reversible in directed graphs. Hence we introduce the notion of strong path
connectedness to restore the equivalence relation necessary to define strong components.

Note that the differences here are not just technical. For graphs, the connected components were
relatively easy to identify as subgraphs that are disconnected from other subgraphs. With directed
graphs, strong components are subgraphs that appear within a graph that visually looks connected and
in fact it is possible to have paths between vertices of different strong components.
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Forrests and Trees

Definition (forrest)

A forrest is a multigraph with no cycles.

Definition (tree)

A tree is a connected forrest.

Definition (backtrack-free walk)

Let G be a multigraph. A backtrack-free walk of G is a walk w where no two adjacent
edges of w are identical.

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Graphs and Graph Algorithms CC-BY-NC-ND September 5, 2024 238 / 285

Lets consider the following graph:

a

c

d

gb

e

f

h

This graph is a tree with 8 nodes and 7 edges. If we would any additional edge, the graph would have a
cycle and hence it is not a tree anymore. Note that G = ({a}, ∅) is a proper tree, while F = ({a, b, c}, ∅)
is a forrest.

Note that the mathematical notion of a tree does not require to identify a root node. In computer
science, trees usually have a defined root node. Furthermore, many applications in computer science
also impose a total order on the child nodes of a given vertex. In graph theory, additional structure is
only imposed if required for the sake of graph theory.
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Tree Equivalence Theorem

Theorem
Let G = (V ,E ) be a multigraph. Then the following statements are equivalent:

1. G is a tree.

2. G has no loops, and we have V ̸= ∅, and for each u, v ∈ V , there is a unique path
from u to v .

3. V ̸= ∅, and for each u, v ∈ V , there is a unique backtrack-free walk from u to v .

4. G is connected, and we have |E | = |V | − 1.

5. G is connected, and we have |E | < |V |.
6. G is a forrest with V ̸= ∅, but adding any new edge to G creates a cycle.

7. G is connected, but removing any edge from G yields a disconnected graph.

8. G is a forrest, and we have |E | ≥ |V | − 1 and V ̸= ∅.
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This theorem can be proven by showing many implications that together establish the equivalence of
the statements. Many of them are rather trivial to proof, perhaps a good exercise.
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Induction Principle for Trees

Definition (leaf)

Let T = (V ,E ) be a tree. A vertex v of T is called a leaf if its degree deg v = 1.

Theorem
Let T = (V ,E ) be a tree with at least two vertices. Let v be a leaf of T . Let T \ v be
the multigraph obtained from T by removing v and all edges that contain v . Then,
T \ v is a tree.
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The induction principle for trees says that we iterative can remove leafs from a tree until eventually a
tree with a single vertex and no edges is left. This essentially reduces any tree in a sequence of steps
to a degenerated tree of a single vertex. Note that we can turn this around: If we have a tree and we
attach a new vertex as a new leaf somewhere to the tree, the result is still a tree.
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Spanning Trees

Definition (spanning subgraph)

Let G = (V ,E , f ) be a multigraph. A spanning subgraph is a multigraph of the form
(V ,F , f |F ), where F is a subset of E .

Definition (spanning tree)

A spanning tree of a multigraph G is a spanning subgraph of G that is also a tree.

Theorem
Each connected multigraph G has at least one spanning tree.

• A spanning subgraph is created by removing edges.

• A spanning tree can be created by repeatedly removing edges until a tree is left.
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Spanning trees are an important building block. Many operations on multigraphs can be simplified by
first constructing a spanning tree and then executing the operation on the spanning tree.
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Graph Traversals

Definition (graph traversal)

Let G = (V ,E ) be a connected graph. A graph traversal is a systematic method for
visiting every vertex of G from a given start vertex s ∈ V .

Definition (queue)

A queue is a collection of elements maintained in sequence where elements can be
added (enqueued) at the end of the queue and be removed (dequeued) from the front
of the queue.

Definition (stack)

A stack is a collection of elements maintained in sequence where elements can be added
(pushed) on the top of the stack and be removed (popped) from the top of the stack.
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Graph traversal algorithms play an important role in computer science. They provide a building block
for many other interesting algorithms. To describe graph traversal algorithms, we need some data
structures to keep track where we are in a traversal. In addition to a simple sets, we need queues and
stacks.

A queue is a collection holding elements. New elements are added to the end of a queue and elements
leave the queue only at the front of the queue. Elements do not change their position in the queue.
A queue has first-in-first-out behaviour. You all know queues from the coffee bar (except that people
occasionally do not enqueue at the end, but lets ignore this behaviour for now).

A stack is another collection holding elements. New elements are added on the top of the stack and
elements are removed from the top of the stack. Elements do not change their position in the stack. A
stack has last-in-first-out behaviour. You all know stacks from your cupboards where you have a stack
of plates. When you need a plate, you take one of the top of the stack of plates. After clearning a plate,
you put it back on the top of the stack of plates.

Graph traversal algorithms use queues and stacks in order to remember that some portions of a graph
still need to be explored.
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Breath First Search Graph Traversal

1: procedure bfs(G , start, func)
2: visited ← ∅, queue ← ∅
3: queue.enqueue(start)
4: while queue ̸= ∅ do
5: current ← queue.dequeue()
6: if current ̸∈ visited then
7: visited ← visited ∪ {current}
8: func(current)
9: for node ∈ G .adjacencies(current) do
10: if node ̸∈ visited then
11: queue.enqueue(node)
12: end if
13: end for
14: end if
15: end while
16: end procedure
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Below is an implementation in Python traversing a graph in breadth-first order and returning the se-
quence of vertices. The code uses the networkx Python library for the representation of graphs.

1 import collections

2 import networkx as nx

3

4 def bfs(graph, start):

5 visited = set()

6 queue = collections.deque([start])

7 order = []

8

9 while queue:

10 current = queue.popleft();

11 if current not in visited:

12 order.append(current)

13 visited.add(current)

14 for node in graph[current]:

15 if node not in visited:

16 queue.append(node)

17

18 return order
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Depth First Search Graph Traversal

1: procedure bfs(G , start, func)
2: visited ← ∅, stack ← ∅
3: stack .push(start)
4: while stack ̸= ∅ do
5: current ← stack .pop()
6: if current ̸∈ visited then
7: visited ← visited ∪ {current}
8: func(current)
9: for node ∈ G .adjacencies(current) do
10: if node ̸∈ visited then
11: stack .push(node)
12: end if
13: end for
14: end if
15: end while
16: end procedure
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Below is an implementation in Python traversing a graph in depth-first order and returning the sequence
of vertices. The code uses the networkx Python library for the representation of graphs.

1 import collections

2 import networkx as nx

3

4 def dfs(graph, start):

5 visited = set()

6 queue = collections.deque([start])

7 order = []

8

9 while queue:

10 current = queue.popleft();

11 if current not in visited:

12 order.append(current)

13 visited.add(current)

14 for node in graph[current]:

15 if node not in visited:

16 queue.appendleft(node)

17

18 return order

A depth-first traversal can be implemented using a recursive function, which uses the call stack to keep
track of the nodes still to be explored.

237



Section 33: Maximum Flows

29 Graphs and Multigraphs

30 Directed Graphs and Directed Multigraphs

31 Trees

32 Graph Traversals

33 Maximum Flows
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Network

Definition (network)

A network N = (G , s, t, c) consists of a directed multigraph G = (V ,E , f ), a vertice
s ∈ V , called the source, a vertice t ∈ V distinct from s called the sink, and a function
c : E → N, called the capacity function.

• Network theory is a branch of mathematics studying graphs where vertices and
edges posses some attributes.

• Other attributes of interest are usually cost functions expressing the cost of using
an edge.
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Lets consider the following network with the source a and the sink f . The capacity is shown as labels
next to the edges.

a

b12

e
8

c
14

d
6

f
16

10

From the visualization, it is clear that a can at maximum inject 20 units into the network and it is also clear
that f can at maximum only receive 16 units. Given the capacity of the edges, a common question is
what is the maximum flow that the sink f can receive? For a small graph, we can easily find the solution:
There are two independent paths from a to f , namely (a, b, d, e, f) and (a, e, f). The first subpath to e is
limited to 6 units while the second subpath to e is limited to 8 units. This means e can at most receive
14 units and since this is below the capacity of the edge from e to f , the maximum flow that can be
received at the sink is 14 units.
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Flow

Definition (flow)

Let N = (G , s, t, c) be a network with G = (V ,E , g). A flow on the network N is a
function f : E → N with the following properties:

• f satisfies the capacity constraints 0 ≤ f (e) ≤ c(e) for each e ∈ E .

• f satisfies the conversation constraints f −(v) = f +(v) for each v ∈ V \ {s, t}.

Definition (inflow and outflow)

Let N = (G , s, t, c) be a network with G = (V ,E , g) and let f be a flow. The inflow of
f , denoted as f −(v), and the outflow of f , denoted as f +(v), are defined as follows:

f −(v) =
∑

e∈E ,v target of e

f (e) f +(v) =
∑

e∈E ,v source of e

f (e)
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We can indicate the flow by labeling edges with both the edge’s flow and capacity.

a

b6 / 12

e
8 / 8

c
0 / 14

d
6 / 6

f
14 / 16

6 / 10

The graph shows the maximum flow that is possible given the bottleneck edges (b, d) and (a, e).
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Part VIII

Software Correctness

We generally want our software to be correct. In this part, we define software correctness and we study
a classic technique, called the Floyd-Hoare logic, to prove the correctness of programs written in a
simple imperative programming language.

Once we have developed the necessary ideas to prove the correctness of programs, we will investigate
ways to automate some of the software verification process. The treatment of Floyd-Hoare triples and
Floyd-Hoare logic is largely based on Mike Gordon’s execellent “Background reading on Hoare Logic”.

By the end of this part, students should be able to

• recall the difference between partial and total correctness;

• articulate Floyd-Hoare triples and preconditions and postconditions;

• elaborate the role and importance of formal software specifications;

• describe the rules of the Hoare logic for program verification;

• illustrate precondition strengthening and postcondition weakening;

• explain the relevance of the weakest precondition and the strongest postcondition;

• sketch how annotations help to (partially) automate software verification;

• demonstrate how loop invariants are used for partial correctness proofs;

• outline how loop variants are used for total correctness proofs.
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Jürgen Schönwälder (Constructor University) Mathematical Foundations: Software Correctness CC-BY-NC-ND September 5, 2024 251 / 285

242



Formal Specification and Verification

Definition (formal specification)

A formal specification uses a formal (mathematical) notation to provide a precise
definition of what a program should do.

Definition (formal verification)

A formal verification uses logical rules to mathematically prove that a program satisfies
a formal specification.

• For many non-trivial problems, creating a formal, correct, and complete
specification is a problem by itself.

• A bug in a formal specification leads to programs with verified bugs.
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Processors (CPUs) are designed using hardware description languages and we commonly assume that
processors are correct. However, efficient designs introduce significant complexity and this increases
the likelihood of introducing bugs. Fixing design flaws after silicon has been produced and deployed
is very expensive. A classic example is the Intel Pentium FDIV bug discovered in 1994. Many more
processor design flaws have been discovered since then.

Modern compilers are also very complex software designs, but still they tend to be super reliable for
most users. One reason is that they are tested extensively and serious bugs can be fixed relatively
quickly. This is a fundamental difference to systems that are difficult to fix once deployed. Creating
certified correct compilers is still a very complex undertaking but required in some parts of the industry
where safety-critical code must be written.

Further online information:

• Wikipedia: Pentium FDIV bug
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Floyd-Hoare Triple

Definition (hoare triple)

Given a state that satisfies precondition P , executing a program C (and assuming it
terminates) results in a state that satisfies postcondition Q. This is also known as the
“Hoare triple”:

{P} C {Q }

• Invented by Charles Anthony (“Tony”) Richard Hoare with original ideas from
Robert Floyd (1969).

• Hoare triple can be used to specify what a program should do.

• Example:
{X = 1} X := X + 1 {X = 2 }
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The classic publication introducing Hoare logic is [7]. Tony Hoare has made several other notable
contributions to computer science: He invented the basis of the Quicksort algorithm (published in 1962)
and he has developed the formalism Communicating Sequential Processes (CSP) to describe patterns
of interaction in concurrent systems (published in 1978).

P and Q are logcial expressions on program variables. They are written using standard mathematical
notation and logical operators. The predicate P defines the subset of all possible states for which a
program C is defined. Similarly, the predicate Q defines the subset of all possible states for which the
program’s result is defined.

It is possible that different programs satisfy the same specification:

{X = 1 } Y := 2 {X = 1 ∧ Y = 2 }

{X = 1 } Y := 2 ∗X {X = 1 ∧ Y = 2 }
{X = 1 } Y := X +X {X = 1 ∧ Y = 2 }
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Partial Correctness and Total Correctness

Definition (partial correctness)

An algorithm starting in a state that satisfies a precondition P is partially correct with
respect to P and Q if results produced by the algorithm satisfy the postcondition Q.
Partial correctness does not require that a result is always produced, i.e., the algorithm
may not terminate for some inputs.

Definition (total correctness)

An algorithm is totally correct with respect to P and Q if it is partially correct with
respect to P and Q and it always terminates.
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The distinction between partial correctness and total correctness is of fundamental importance. Total
correctness requires termination, which is generally impossible to prove in an automated way as this
would require to solve the famous halting problem. Alan Turing proved in 1936 that a general algorithm
to solve the halting problem for all possible program-input pairs cannot exist.

A definition of the form {P} C {Q } usually provides a partial correctness specification. We use the
notation [ P ] C [ Q ] for a total correctness specification.

Further online information:

• YouTube: How This One Question Breaks Computers
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Hoare Notation Conventions

1. The symbols V , V1, . . . , Vn stand for arbitrary variables. Examples of particular
variables are X , Y , R etc.

2. The symbols E , E1, . . . , En stand for arbitrary expressions (or terms). These are
expressions like X + 1,

√
2 etc., which denote values (usually numbers).

3. The symbols S , S1, . . . , Sn stand for arbitrary statements. These are conditions
like X < Y , X 2 = 1 etc., which are either true or false.

4. The symbols C , C1 , . . . , Cn stand for arbitrary commands of our programming
language; these commands are described on the following slides.

• We will use lowercase letters such as x and y to denote auxiliary variables (e.g., to
denote values stored in variables).
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We are focusing in the following on a purely imperative programming model where a global set of
variables determines the current state of the computation. A subset of the variables are used to provide
the input to an algorithm and another subset of the variables provides the output of an algorithm.

Note that we talk about a programming language consisting of commands and we use the term state-
ments to refer to conditions. This may be a bit confusing since programming languages often call our
commands statements and they may call our statements conditions.
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Hoare Assignments

• Syntax: V := E

• Semantics: The state is changed by assigning the value of the expression E to the
variable V . All variables are assumed to have global scope.

• Example: X := X + 1
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Hoare Skip Command

• Syntax: SKIP

• Semantics: Do nothing. The state after executing the SKIP command is the same
as the state before executing the SKIP command.

• Example: SKIP
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The SKIP command does nothing. It is still useful since it allows us to construct a single conditional
command.
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Hoare Command Sequences

• Syntax: C1; . . . ;Cn

• Semantics: The commands C1, . . . ,Cn are executed in that order.

• Example: R := X ;X := Y ;Y := R

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Software Correctness CC-BY-NC-ND September 5, 2024 258 / 285

The example sequence shown above swaps the content of X and Y . Note that it has a side-effect since
it also assigns the initial value of X to R. A specification of the swap program as a Floyd-Hoare triple
would be the following:

{ X = x ∧ Y = y } R := X;X := Y ;Y := R { X = y ∧ Y = x }

Since the program does not involve any loops, we can easily specify total correctness as well:

[ X = x ∧ Y = y ] R := X;X := Y ;Y := R [ X = y ∧ Y = x ]
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Hoare Conditionals

• Syntax: IF S THEN C1 ELSE C2 FI

• Semantics: If the statement S is true in the current state, then C1 is executed. If S
is false, then C2 is executed.

• Example: IF X < Y THEN M := Y ELSE M := X FI
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Note that we can use SKIP to create conditional statements without a THEN or ELSE branch:

IF S THEN C ELSE SKIP FI

IF S THEN SKIP ELSE C FI
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Hoare While Loop

• Syntax: WHILE S DO C OD

• Semantics: If the statement S is true in the current state, then C is executed and
the WHILE-command is repeated. If S is false, then nothing is done. Thus C is
repeatedly executed until the value of S becomes false. If S never becomes false,
then the execution of the command never terminates.

• Example: WHILE ¬(X = 0) DO X := X − 2 OD
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Our notation uses a convention that was popular in the 1970s to denote the end of a programming
language construct by repeating a keyword with the letters reversed. An early programming language
using this notation was Algol 68. You find similar syntactic ideas in Bourne shells (if / fi, case / esac).
More modern languages tend to use curly braces instead or they require suitable indentation to find the
end of a command sequence.
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Termination can be Tricky

1: function collatz(X )
2: while X > 1 do
3: if (X%2) ̸= 0 then
4: X ← (3 · X ) + 1
5: else
6: X ← X/2
7: end if
8: end while
9: return X
10: end function

• Collatz conjecture: The program will eventually return the number 1, regardless of
which positive integer is chosen initially.
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This program calculates the so called Collatz sequence. The Collatz conjecture says that no matter
what value of n ∈ N you start with, the sequence will always reach 1. For example, starting with n = 12,
one gets the sequence 12, 6, 3, 10, 5, 16, 8, 4, 2, 1.

Further online information:

• Wikipedia: Collatz conjecture

• YouTube: The Simplest Math Problem No One Can Solve - Collatz Conjecture
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Specification can be Tricky

• Specification for the maximum of two variables:

{T} C { Y = max(X ,Y ) }
• C could be:

IF X > Y THEN Y := X ELSE SKIP FI

• But C could also be:

IF X > Y THEN X := Y ELSE SKIP FI

• And C could also be:

Y := X

• Use auxiliary variables x and y to associate Q with P :

{ X = x ∧ Y = y } C { Y = max(x , y) }
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Obviously, multiple programs can satisfy a given specification:

{ X = 1 } Y := 2 { X = 1 ∧ Y = 2 }

{ X = 1 } Y := X + 1 { X = 1 ∧ Y = 2 }
{ X = 1 } Y := 2 ∗X { X = 1 ∧ Y = 2 }

A slightly more complex example (factorial):

Precondition: {X > 0 ∧X = x}
1: F := 1
2: while X > 0 do
3: F := F ·X
4: X := X − 1
5: od

Postcondition: {F = x!}
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Floyd-Hoare Logic

• Floyd-Hoare Logic is a set of inference rules that enable us to formally proof partial
correctness of a program.

• If S is a statement, we write ⊢ S to mean that S has a proof.

• The axioms of Hoare logic will be specified with a notation of the following form:

⊢ S1, . . . ,⊢ Sn

⊢ S

• The conclusion S may be deduced from ⊢ S1, . . . ,⊢ Sn, which are the hypotheses
of the rule.

• The hypotheses can be theorems of Floyd-Hoare logic or they can be theorems of
mathematics.
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So far we have discussed the formal specification of software using preconditions and postconditions
and we have introduced a simple imperative programming language consisting essentially of variables,
expressions and variable assignments, a conditional command, a loop command, and command se-
quences. The next step is to define inference rules that allow us to make inferences over the commands
of this simple programming language. This will give us a formal framework to prove that a program pro-
cessing input satisfying the precondition will produce a result satisfying the postcondition.

Floyd-Hoare logic is a deductive proof system for Floyd-Hoare triples. It can be used to extract ver-
ification conditions (VCs), which are proof obligations or proof subgoals that must be proven so that
{ P } C { Q } is true.
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Precondition Strengthening

• If P implies P ′ and we have shown {P ′} C {Q}, then {P} C {Q} holds as well:

⊢ P → P ′, ⊢ {P ′} C {Q}
⊢ {P} C {Q}

• Example: Since ⊢ X = n→ X + 1 = n + 1, we can strengthen

⊢ { X + 1 = n + 1 } X := X + 1 { X = n + 1 }

to
⊢ { X = n } X := X + 1 { X = n + 1 }.
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The precondition P is stronger than P ′ (P → P ′) if the set of states {s|s ⊢ P} ⊆ {s|s ⊢ P ′}.
Precondition strengthening applied to the assignment axiom gives us a triple that feels more intuitive.
But keep in mind that ⊢ { X = n } X := X + 1 { X = n + 1 } has been derived by combining the
assignment axiom with precondition strengthening.
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Postcondition Weakening

• If Q ′ implies Q and we have shown {P} C {Q ′}, then {P} C {Q} holds as well:

⊢ {P} C {Q ′}, ⊢ Q ′ → Q

⊢ {P} C {Q}

• Example: Since X = n + 1→ X > n, we can weaken

⊢ { X = n } X := X + 1 { X = n + 1 }

to
⊢ { X = n } X := X + 1 { X > n }

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Software Correctness CC-BY-NC-ND September 5, 2024 266 / 285

The postcondition Q is weaker than Q′ (Q′ → Q) if the set of states {s|s ⊢ Q′} ⊆ {s|s ⊢ Q}.
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Weakest Precondition

Definition (weakest precondition)

Given a program C and a postcondition Q, the weakest precondition wp(C ,Q) denotes
the largest set of states for which C terminates and the resulting state satisfies Q.

Definition (weakest liberal precondition)

Given a program C and a postcondition Q, the weakest liberal precondition wlp(C ,Q)
denotes the largest set of states for which C leads to a resulting state satisfying Q.

• The “weakest” precondition P means that any other valid precondition implies P .

• The definition of wp(C ,Q) is due to Dijkstra (1976) and it requires termination
while wlp(C ,Q) does not require termination.
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In Hoare Logic, we can usually define many valid preconditions. For example, all of the following are
valid Hoare triples:

⊢ { X = 1 } X := X + 1 { X > 0 }

⊢ { X > 0 } X := X + 1 { X > 0 }
⊢ { X > −1 } X := X + 1 { X > 0 }

Obviously, the second preconditions is weaker than the first since X = 1 implies X > 0. With a similar
argument, the third precondition is weaker than the second since X > 0 implies X > −1. How does the
precondition X = 0 compare to the second and third alternative?

The weakest liberal precondition for X := X + 1 and the postcondition X > 0 is:

wlp(X := X + 1, X > 0) = (X > −1)

Since we can assume that the assignment always terminates in this specific case, we have:

wp(X := X + 1, X > 0) = wlp(X := X + 1, X > 0) = (X > −1)
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Strongest Postcondition

Definition (stronges postcondition)

Given a program C and a precondition P , the strongest postcondition sp(C ,P) has the
property that ⊢ { P } C { sp(C ,P) } and for any Q with ⊢ { P } C { Q }, we have
⊢ sp(C ,P)→ Q.

• The “strongest” postcondition Q means that any other valid postcondition is
implied by Q (via postcondition weakening).
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Our goal is to find the weakest precondition and the strongest postcondition. This translates into finding
the largest set of states that are valid inputs of the computation C and the smallest set of possible result
states. Finding P = wp(C,Q) makes it easy to cover any P ′ for which P ′ → P holds. Similarly, finding
Q = sp(C,P ) makes it easy to cover any Q′ for which Q→ Q′ holds.

Q −> Q’

P

{P} C {Q}

P’ −> P

Q

Q’
C

P’
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Assignment Axiom

• Let P[E/V ] (P with E for V ) denote the result of substituting the expression E for
all occurances of the variable V in the statement P .

• An assignment assigns a variable V an expression E :

⊢ { P[E/V ] } V := E { P }

• Example:
{ X + 1 = n + 1 } X := X + 1 { X = n + 1 }
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The assignment axiom kind of works backwards. In the example, we start with P , which is {X = n+1}.
In P , we substitute E, which is X + 1, for V , which is X. This gives us {X + 1 = n+ 1}.
Note that the term E is evaluated in a state where the assignment has not yet been carried out. Hence,
if a statement P is true after the assignment, then the statement obtained by substituting E for V in P
must be true before the assignment.

Two common erroneous intuitions:

1. ⊢ {P} V := E {P [V/E]}
This has the consequence ⊢ { X = 0 } X := 1 { X = 0 } since X = 0[X/1] is equal to X = 0
(since 1 does not occur in X = 0).

2. ⊢ {P} V := E {P [E/V ]}
This has the consequence ⊢ { X = 0 } X := 1 { 1 = 0 } since one would substitute X with 1 in
X = 0.

Warning: An important assumption here is that expressions have no side effects that modify the program
state. The assignment axiom depends on this property. (Many real-world programming languages,
however, do allow side effects.) To see why side effects cause problems, consider an expression (C;E)
that consists of a command C and an expression E, e.g. (Y := 1; 2). With this, we would get ⊢ { Y =
0 } X := (Y := 1; 2) { Y = 0 } (the substitution would not affect Y ).
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Specification Conjunction and Disjunction

• If we have shown { P1 } C { Q1 } and { P2 } C {Q2}, then
{ P1 ∧ P2 } C { Q1 ∧ Q2 } holds as well:

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∧ P2} C {Q1 ∧ Q2}

• We get a similar rule for disjunctions:

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∨ P2} C {Q1 ∨ Q2}

• These rules allows us to prove ⊢ { P } C { Q1 ∧ Q2 } by proving both
⊢ { P } C { Q1 } and ⊢ { P } C { Q2 }.
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The rules can be easily understood by looking at the sets of states satisfying the predicates. The
conjunction P1 ∧ P2 translates to the intersection of the corresponding sets of states and in the same
way the conjunction Q1 ∧Q2 translates to the intersection of the corresponding sets of states. The rule
then follows directly from the fact that { P1 ∧ P2 } C { Q1 ∧ Q2 } maps from the intersection to the
intersection.

P2

Q1

Q2

C

P1

The disjunction P1 ∨ P2 translates to the union of the sets of states associated with P1 and P2 and the
disjunction Q1 ∨ Q2 to the union of the sets of states associated with Q1 and Q2. In order to cover the
entire space, it is necessary that both { P1 } C { Q1 } and { P2 } C { Q2 } are true.

P2

Q1

Q2

C

C

P1
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Skip Command Rule

• Syntax: SKIP

• Semantics: Do nothing. The state after executing the SKIP command is the same
as the state before executing the command SKIP .

• Skip Command Rule:

⊢ {P} SKIP {P}
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Sequence Rule

• Syntax: C1; . . . ;Cn

• Semantics: The commands C1, . . . ,Cn are executed in that order.

• Sequence Rule:

⊢ {P} C1 {R}, ⊢ {R} C2 {Q}
⊢ {P} C1;C2 {Q}

The sequence rule can be easily generalized to n > 2 commands:

⊢ {P} C1 {R1}, ⊢ {R1} C2 {R2}, . . . , ⊢ {Rn−1} Cn {Q}
⊢ {P} C1;C2; . . . ;Cn {Q}
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Example (swapping two numbers):

Precondition: { X = x ∧ Y = y }
1: R := X
2: X := Y
3: Y := R

Postcondition: { X = y ∧ Y = x }

The proof of the correctness of the sequence of assignments is broken down into the following steps:

(i) ⊢ { X = x ∧ Y = y } R := X { R = x ∧ Y = y } (assignment axiom)

(ii) ⊢ { R = x ∧ Y = y } X := Y { R = x ∧X = y } (assignment axiom)

(iii) ⊢ { R = x ∧X = y } Y := R { Y = x ∧X = y } (assignment axiom)

(iv) ⊢ { X = x ∧ Y = y } R := X;X := Y { R = x ∧X = y } (sequence rule for (i) and (ii))

(v) ⊢ { X = x ∧ Y = y } R := X;X := Y ;Y := R { Y = x ∧X = y } (sequence rule for (iv) and (iii))
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Conditional Command Rule

• Syntax: IF S THEN C1 ELSE C2 FI

• Semantics: If the statement S is true in the current state, then C1 is executed. If S
is false, then C2 is executed.

• Conditional Rule:

⊢ {P ∧ S} C1 {Q}, ⊢ {P ∧ ¬S} C2 {Q}
⊢ {P} IF S THEN C1 ELSE C2 FI {Q}
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Consider the following specification and program (max):

Precondition: { X = x ∧ Y = y }
1: if X ≥ Y then
2: M := X
3: else
4: M := Y
5: fi

Postcondition: {M = max(x, y) }

In order to prove the partial correctness of this program, we have to prove the correctness of the two
assignments under the statement X ≥ Y being either true or false. The application of the assignment
axiom gives us the following two statements:

{ X = x ∧ Y = y ∧X ≥ Y }M := X {M = x ∧X = x ∧ Y = y ∧X ≥ Y }

{ X = x ∧ Y = y ∧X < Y }M := Y {M = y ∧X = x ∧ Y = y ∧X < Y }
The definition of max(x, y) we are going to use is the following:

max(x, y) =

{
x x ≥ y

y x < y

This gives us the following implications:

M = x ∧X = x ∧ Y = y ∧X ≥ Y →M = max(x, y)

M = y ∧X = x ∧ Y = y ∧X < Y →M = max(x, y)

Postcondition weakening gives us:

{ X = x ∧ Y = y ∧X ≥ Y }M := X {M = max(x, y) }

{ X = x ∧ Y = y ∧X < Y }M := Y {M = max(x, y) }
Applying the conditional rule, we get:

{ X = x ∧ Y = y } IF X ≥ Y THEN M := X ELSE M := Y FI {M = max(x, y) }
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While Command Rule

• Syntax: WHILE S DO C OD

• Semantics: If the statement S is true in the current state, then C is executed and
the WHILE-command is repeated. If S is false, then nothing is done. Thus C is
repeatedly executed until the value of S becomes false. If S never becomes false,
then the execution of the command never terminates.

• While Rule:

⊢ {P ∧ S} C {P}
⊢ {P} WHILE S DO C OD {P ∧ ¬S}

P is an invariant of C whenever S holds. Since executing C preserves the truth of
P , executing C any numbner of times also preserves the truth of P .
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Finding invariants is the key to prove the correctness of while loops. The invariant should

• say what has been done so far together with what remains to be done;

• hold at each iteration of the loop;

• give the desired result when the loop terminates.

Example (factorial):

Precondition: { Y = 1 ∧ Z = 0 ∧X = x ∧X ≥ 0 }
1: while Z ̸= X do
2: Z := Z + 1
3: Y := Y ∗ Z
4: od

Postcondition: { Y = x! }

We need to find an invariant P such that:

• { P ∧ Z ̸= X } Z := Z + 1; Y := Y ∗ Z { P } (while rule)

• Y = 1 ∧ Z = 0→ P (precondition strengthening)

• P ∧ ¬(Z ̸= X)→ Y = X! (postcondition weakening)

The invariant Y = Z! serves the purpose:

• Y = Z! ∧ Z ̸= X → Y · (Z + 1) = (Z + 1)!
{ Y · (Z + 1) = (Z + 1)! } Z := Z + 1 { Y · Z = Z! } (assignment axiom)
{ Y · Z = Z! } Y := Y ∗ Z { Y = Z! } (assignment axiom)
{ Y = Z! } Z := Z + 1; Y := Y ∗ Z { Y = Z! } (sequence rule)

• Y = 1 ∧ Z = 0→ Y = Z! since 0! = 1

• Y = Z! ∧ ¬(Z ̸= X)→ Y = X! since ¬(Z ̸= X) is equivalent to Z = X
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Section 36: Automation of Software Verification

34 Software Specification

35 Software Verification

36 Automation of Software Verification
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Proof Automation

• Proving even simple programs manually takes a lot of effort

• There is a high risk to make mistakes during the process

• General idea how to automate the proof:

(i) Let the human expert provide annotations of the specification (e.g., loop invariants)
that help with the generation of proof obligations

(ii) Generate proof obligations automatically (verification conditions)
(iii) Use automated theorem provers to verify some of the proof obligations
(iv) Let the human expert prove the remaining proof obligations (or let the human

expert provide additional annotations that help the automated theorem prover)

• Step (ii) essentially compiles an annotated program into a conventional
mathematical problem.
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Consider the following program:

Precondition: {⊤}
1: R := X
2: Q := 0
3: while Y ≤ R do
4: R := R− Y
5: Q := Q+ 1
6: od

Postcondition: {X = Y ·Q+R ∧R < Y }
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Annotations

• Annotations are required

(i) before each command Ci (with i > 1) in a sequence C1;C2; . . . ;Cn, where Ci is not
an assignment command and

(ii) after the keyword DO in a WHILE command (loop invariant)

• The inserted annotation is expected to be true whenever the execution reaches the
point of the annotation.

• For a properly annotated program, it is possible to generate a set of proof goals
(verification conditions).

• It can be shown that once all generated verification conditions have been proved,
then ⊢ {P} C {Q}.
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We add suitable annotations:

Precondition: {⊤}
1: R := X
2: Q := 0
3: {R = X ∧Q = 0}
4: while Y ≤ R do
5: {X = Y ·Q+R}
6: R := R− Y
7: Q := Q+ 1
8: od

Postcondition: {X = Y ·Q+R ∧R < Y }

This should (ideally automatically) lead to the following proof obligations (verification conditions):

1. ⊤ → (X = X ∧ 0 = 0)

2. (R = X ∧Q = 0)→ (X = Y ·Q+R)

3. (X = Y ·Q+R ∧ ¬(Y ≤ R))→ (X = Y ·Q+R ∧R < Y )

4. (X = Y ·Q+R ∧ Y ≤ R)→ (X = Y · (Q+ 1) + (R− Y )

268



Generation of Verification Conditions

• Assignment {P} V := E {Q}:
Add verification condition P → Q[E/V ].

• Conditions {P} IF S THEN C1 ELSE C2 FI {Q}
Add verification conditions generated by {P ∧ S} C1 {Q} and {P ∧ ¬S} C2 {Q}
• Sequences of the form {P} C1; . . . ;Cn−1; {R} Cn {Q}
Add verification conditions generated by {P} C1; . . . ;Cn−1 {R} and {R} Cn {Q}
• Sequences of the form {P} C1; . . . ;Cn−1; V := E {Q}
Add verification conditions generated by {P} C1; . . . ;Cn−1 {Q[E/V ]}
• While loops {P} WHILE S DO {R} C OD {Q}
Add verification conditions P → R and R ∧ ¬S → Q
Add verificiation conditions generated by {R ∧ S} C {R}
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Starting with the annotated example:

Precondition: {⊤}
1: R := X
2: Q := 0
3: {R = X ∧Q = 0}
4: while Y ≤ R do
5: {X = Y ·Q+R}
6: R := R− Y
7: Q := Q+ 1
8: od

Postcondition: {X = Y ·Q+R ∧R < Y }

According to the second sequence rule, we have to generate VCs for the while loop and the sequence
consisting of the initial assignments. The initial assignments reduce to ⊤ → (X = X ∧0 = 0) as follows:

{⊤} R := X; Q := 0 {R = X ∧Q = 0}
{⊤} R := X {R = X ∧ 0 = 0}
⊤ → (X = X ∧ 0 = 0)

The while loop rule gives us the following two VCs

(R = X ∧Q = 0)→ (X = Y ·Q+R)

(X = Y ·Q+R ∧ ¬(Y ≤ R))→ (X = Y ·Q+R ∧R < Y )

and the VC generated as follows:

{X = Y ·Q+R ∧ Y ≤ R} R := R− Y ; Q := Q+ 1 {X = Y ·Q+R}
{X = Y ·Q+R ∧ Y ≤ R} R := R− Y ; {X = Y · (Q+ 1) +R}
(X = Y ·Q+R ∧ Y ≤ R)→ (X = Y · (Q+ 1) + (R− Y ))
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Total Correctness

• We assume that the evaluation of expressions always terminates.

• With this simplifying assumption, only WHILE commands can cause loops that
potentially do not terminate.

• All rules for the other commands can simply be extended to cover total correctness.

• The assumption that expression evaluation always terminates is often not true.
(Consider recursive functions that can go into an endless recursion.)

• We have so far also silently assumed that the evaluation of expressions always
yields a proper value, which is not the case for a division by zero.

• Relaxing our assumptions for expressions is possible but complicates matters
significantly.
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If C does not contain any while commands, then we have the simple rule:

⊢ {P} C {Q}
⊢ [P ] C [Q]
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Rules for Total Correctness [1/4]

• Assignment axiom
⊢ [P[E/V ]] V := E [P]

• Precondition strengthening

⊢ P → P ′, ⊢ [P ′] C [Q]

⊢ [P] C [Q]

• Postcondition weakening

⊢ [P] C [Q ′], ⊢ Q ′ → Q

⊢ [P] C [Q]
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Rules for Total Correctness [2/4]

• Specification conjunction

⊢ [P1] C [Q1], ⊢ [P2] C [Q2]

⊢ [P1 ∧ P2] C [Q1 ∧ Q2]

• Specification disjunction

⊢ [P1] C [Q1], ⊢ [P2] C [Q2]

⊢ [P1 ∨ P2] C [Q1 ∨ Q2]

• Skip command rule

[P] SKIP [P]
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Rules for Total Correctness [3/4]

• Sequence rule

⊢ [P] C1 [R1], ⊢ [R1] C2 [R2], . . . , ⊢ [Rn−1] Cn [Q]

⊢ [P] C1;C2; . . . ;Cn [Q]

• Conditional rule
⊢ [P ∧ S ] C1 [Q], ⊢ [P ∧ ¬S ] C2 [Q]

⊢ [P] IF S THEN C1 ELSE C2 FI [Q]
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Rules for Total Correctness [4/4]

• While rule

⊢ [P ∧ S ∧ E = n] C [P ∧ (E < n)], ⊢ P ∧ S → E ≥ 0

⊢ [P] WHILE S DO C OD [P ∧ ¬S ]

E is an integer-valued expression
n is an auxiliary variable not occuring in P , C , S , or E

• A prove has to show that a non-negative integer, called a variant, decreases on
each iteration of the loop command C .
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We show that the while loop in the following program terminates.

Precondition: {⊤}
1: R := X
2: Q := 0
3: while Y ≤ R do
4: R := R− Y
5: Q := Q+ 1
6: od

Postcondition: {X = Y ·Q+R ∧R < Y }

We apply the while rule with

P = Y > 0

S = Y ≤ R

E = R

and we have to show the following to be true:

1. [P ∧ S ∧ E = n] R := R− Y ;Q := Q+ 1 [P ∧ (E < n)]

This follows from the following derivation:

[P ∧ S ∧ E = n] R := R− Y ;Q := Q+ 1 [P ∧ (E < n)]

[Y > 0 ∧ Y ≤ R ∧R = n] R := R− Y ;Q := Q+ 1 [Y > 0 ∧ (R < n)]

Y > 0 ∧ Y ≤ R ∧R = n→ Y > 0 ∧ (R < n)[Q+ 1/Q][R− Y/R]

Y > 0 ∧ Y ≤ R ∧R = n→ Y > 0 ∧ ((R− Y ) < n)

2. P ∧ S → E ≥ 0

This follows from:

P ∧ S → E ≥ 0

Y > 0 ∧ Y ≤ R→ R > 0

274



Generation of Termination Verification Conditions

• The rules for the generation of termination verificiation conditions follow directly
from the rules for the generation of partial correctness verificiation conditions,
except for the while command.

• To handle the while command, we need an additional annotation (in square
brackets) that provides the variant expression.

• For while loops of the form {P} WHILE S DO {R} [E ] C OD {Q} add the
verification conditions

P → R

R ∧ ¬S → Q

R ∧ S → E ≥ 0

and add verificiation conditions generated by {R ∧ S ∧ (E = n)} C {R ∧ (E < n)}
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Annotated example including the variant annotation for termination verification rule generation:

Precondition: {⊤}
1: R := X
2: Q := 0
3: {R = X ∧Q = 0}
4: while Y ≤ R do
5: {X = Y ·Q+R}
6: [R]
7: R := R− Y
8: Q := Q+ 1
9: od

Postcondition: {X = Y ·Q+R ∧R < Y }

The while loop rule gives use the following termination VCs

(R = X ∧Q = 0)→ (X = Y ·Q+R)

(X = Y ·Q+R ∧ ¬(Y ≤ R))→ (X = Y ·Q+R ∧R < Y )

(X = Y ·Q+R ∧ (Y ≤ R))→ R ≥ 0

and the VC generated as follows:

{X = Y ·Q+R ∧ Y ≤ R ∧R = n} R := R− Y ; Q := Q+ 1 {X = Y ·Q+R ∧R < n}
{X = Y ·Q+R ∧ Y ≤ R ∧R = n} R := R− Y ; {X = Y · (Q+ 1) +R ∧R < n}
(X = Y ·Q+R ∧ Y ≤ R ∧R = n)→ (X = Y · (Q+ 1) + (R− Y ) ∧ (R− Y ) < n)

The last VC is not true in general and hence the algorithm does not always terminate:

Y = 0 :

((X = R ∧ 0 ≤ R ∧R = n)→ (X = R ∧R < n))→ ⊥

Y < 0 :

((X = Y ·Q+R ∧ Y ≤ R ∧R = n)→ (X = Y · (Q+ 1) + (R− Y ) ∧ (R− Y ) < n))→ ⊥
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Termination and Correctness

• Partial correctness and termination implies total correctness:

⊢ {P} C {Q}, ⊢ [P] C [T]

⊢ [P] C [Q]

• Total correctness implies partial correctness and termination:

⊢ [P] C [Q]

⊢ {P} C {Q}, ⊢ [P] C [T]
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