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Jürgen Schönwälder (Constructor University) Mathematical Foundations of Computer Science CC-BY-NC-ND September 5, 2024 1 / 285

https://cnds.constructor.university/courses/mfcs-2024/


Intended Learning Outcomes

• explain basic concepts and properties of algorithms

• understand the concept of termination and complexity metrics

• illustrate basic concepts of discrete math (sets, relations, functions)

• use basic proof techniques and apply them to prove properties of algorithms

• summarize basic principles of Boolean algebra and propositional logic

• use predicate logic and outline concepts such as validity and satisfiability

• distinguish abstract algebraic structures such as groups, rings and fields

• classify different structure preserving maps (homomorphisms)

• understand calculations in finite fields and their applicability to computer science

• explain elementary concepts of graph theory. use different graph representations

• outline basic graph algorithms (e.g., traversal, search, spanning trees)
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Topics and Timeline

Part Topic Time

I Algorithms, Complexity, Correctness 2 weeks
II Proofs, Sets, Relations, Functions 2 weeks
III Data Representation 2 weeks
IV Boolean Algebra 2 weeks
V Propositional and Predicate Logic 1 week
VI Abstract Algebra 2 weeks
VII Graphs and Graph Algorithms 1 week
VIII Software Correctness 2 weeks
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Assessment

• Module achievement (during the semester):
• 50% of 10 (weekly) assignments correctly solved
• 2 additional (weekly) assignments can be used to makeup points
• Students without module achievement are not allowed to sit for the exam
• Submit homework solutions regularly from the beginning

• Written examination (December 2024 and/or January 2025):
• Duration: 120 min (closed book)
• Scope: All intended learning outcomes of the module
• Pen and paper (human proctoring)

• You can audit the module. To earn an audit, you have to pass a short oral
interview about key concepts introduced in this module at the end of the semester.
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Assignments

• We will post weekly homework assignments

• Assignments reinforce what has been discussed in class

• Assignments will be small individual assignments (but may take time to solve)

• Solving assignments will prepare you for the written examination

• Solutions must be submitted individually via Moodle

• Teaching assistants will review your solutions
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Study Groups

• I strongly suggest to form study groups.

• It helps to discuss questions and course materials in study your group, in particular
when you are getting stuck.

• Discussions in a study group can help you understand what is demanded by a
problem.

• Study group members may try different approaches to solve a problem and you can
benefit from that.

• However, submissions must be individual solutions.

• It is acceptable to sketch a possible solution in a study group, then you work out
the details of the solution yourself.
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Code of Academic Integrity

• The University has a “Code of Academic Integrity”
• a document approved by the entire community
• you have signed it during enrollment
• it is a “law of the university”, we take it serious

• It mandates good behaviours from faculty and students and it penalizes bad ones:
• honest academic behavior (e.g., no cheating)
• respect and protect intellectual property of others (e.g., no plagiarism)
• treat all university members equally (e.g., no favoritism)

• It protects you and it builds an atmosphere of mutual respect
• we treat each other as reasonable persons
• the other’s requests and needs are reasonable until proven otherwise
• if others violate our trust, we are deeply disappointed (may be leading to severe and

uncompromising consequences)
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Academic Integrity Committee (AIC)

• The Academic Integrity Committee is a joint committee by students and faculty.

• Mandate: to hear and decide on any major or contested allegations
• the AIC decides based on evidence in a timely manner
• the AIC makes recommendations that are executed by academic affairs
• the AIC tries to keep allegations against faculty anonymous for the student

• Every member of our university (faculty, student, . . . ) can appeal any academic
integrity allegations to the AIC.
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Cheating

• There is no need to cheat, cheating prevents you from learning

• Useful collaboration versus cheating:
• You will be required to hand in your own original code/text/math for all assignments
• You may discuss your homework assignments with others, but if doing so impairs

your ability to write truly original code/text/math, you will be cheating
• Copying from peers, books or the Internet is plagiarism unless properly attributed

• What happens if we catch you cheating?
• We will confront you with the allegation (you can explain yourself)
• If you admit or are silent, we impose a grade sanction and we notify the student

records office
• Repeated infractions are reported to the AIC for deliberation

• Note: Both active cheating (copying from others) and passive cheating (allowing
others to copy) are penalized equally
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Deadlines

• Deadlines will be strict (don’t bother to ask for extensions)

• Make sure you submit the right document. We grade what was submitted, not
what could have been submitted.

• Submit early, avoid last minute changes or software/hardware problems.

• Official excuses by the student records office will extend the deadlines, but not
more than the time covered by the excuse.

• A word on medical excuses: Use them when you are ill. Do not use them as a tool
to gain more time.

• You want to be taken serious if you are seriously ill. Misuse of excuses can lead to a
situation where you are not taken too serious when you deserve to be taken serious.
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Culture of Questions, Answers, and Explanations

• Answers to questions require an explanation even if this is not stated explicitly
• A question like ’Does this algorithm always terminate?’ can in principle be answered

with ’yes’ or ’no’.
• We expect, however, that an explanation is given why the answer is ’yes’ or ’no’,

even if this is not explicitly stated.

• Answers should be written in your own words
• Sometimes it is possible to find perfect answers on Wikipedia, Stack Exchange,

ChatGPT or in good old textbooks.
• Simply copying the answer of someone else is plagiarism.
• Copying the answer and providing the reference solves the plagiarism issue but

usually does not show that you understood the answer.
• Hence, we want you to write the answer in your own words.
• Learning how to write concise and precise answers is an important academic skill.
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Culture of Interaction

• I am here to help you learn the material.

• If things are unclear, ask questions.

• If I am going too fast, tell me.

• If I am going too slow, tell me.

• Discussions in class are most welcome – don’t be shy.

• Discussions in tutorials are even more welcome – don’t be shy.

• If you do not understand something, chances are pretty high your neighbor does
not understand either.

• Don’t be afraid of asking teaching assistants or myself for help and additional
explanations.
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Study Material and Forums

• There is no required textbook.

• The slides and lecture notes are available on the course web page.
https://cnds.constructor.university/courses/mfcs-2024

• We will use the Moodle system for assignments etc.
https://elearning.constructor.university/

• General questions should be asked on the Moodle forums:
• Faster responses since many people can answer
• Better responses since people can collaborate on the answer

• For individual questions, send me email or come to see me at my office (or talk to
me after class or wherever you find me).
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Hardware, Software, and Brainware

• You will need a computer to follow this course (any modern notebook will do)

• Get used to standard software tools:
• Good and powerful editors such as emacs or vim (or VS Code)
• Unix-like operating systems such as Linux (e.g., Ubuntu)
• Learn how to use a command interpreter (shell) like bash or zsh
• Learn to write structured documents using LATEX (great for typesetting math)
• Learn how to maintain an agenda and TODO items (managing your time)
• Get familiar with version control systems (e.g., git)

• Learn how to touch-type (typing without having to look at the keyboard)

• Learn how to maintain a healthy work life balance
• Getting enough sleep is important for your brain to be effective
• A workout may spark an idea if you are stuck on a problem
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Further Useful Information

• The handbooks defining all details of the Computer Science program can be found
on the registrar’s web page:

https://constructor.university/student-life/registrar-services/

study-program-handbooks

• The underlying academic university policies can be found on this web page:

https://constructor.university/student-life/student-services/

university-policies/academic-policies
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Part 1: Algorithms, Complexity, Correctness

1 Computer Science and Algorithms

2 Maze Generation Algorithms

3 String Search Algorithms

4 Complexity and Correctness
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Section 1: Computer Science and Algorithms

1 Computer Science and Algorithms

2 Maze Generation Algorithms

3 String Search Algorithms

4 Complexity and Correctness
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Computer Science

• Computer science is the study of computers and algorithmic processes, including
their principles, their hardware and software designs, their applications, and their
impact on society.
[ACM 2003]

• Computer science is the study of computation, information, and automation.
[Wikipedia, 2024-09-05]

• Computer Science is a field of study that deals with the theory, design,
development, and application of computers and computational systems.
[ChatGPT 3.5, 2023-07-28]

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Algorithms, Complexity, Correctness CC-BY-NC-ND September 5, 2024 18 / 285



Algorithm

Definition (algorithm)

In computer science, an algorithm is a self-contained sequence of actions to be
performed in order to achieve a certain task.

• If you are confronted with a problem, do the following steps:
• first think about the problem to make sure you fully understand it
• afterwards try to find an algorithm to solve the problem
• try to assess the properties of the algorithm (will it handle corner cases correctly?

how long will it run? will it always terminate?, . . . )
• consider possible alternatives that may have “better” properties
• finally, write a program to implement the most suitable algorithm you have selected

• Is the above an algorithm to find algorithms to solve a problem?
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Algorithmic Thinking

Algorithmic thinking is a collection of abilities that are essential for constructing and
understanding algorithms:

• the ability to analyze given problems

• the ability to specify a problem precisely

• the ability to determine basic actions adequate to solve a given problem

• the ability to construct a correct algorithm using the basic actions

• the ability to think about all possible special and normal cases of a problem

• the ability to assess and improve the efficiency of an algorithm
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Section 2: Maze Generation Algorithms

1 Computer Science and Algorithms

2 Maze Generation Algorithms

3 String Search Algorithms

4 Complexity and Correctness
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Maze (33 x 11)

[] [][][][][][][][][][][][][][][][][][][][][][][][][][][][][][][]

[] [] [] [] [] []
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[][][][][][][] [] [] [] [] [][][][][] [] [] [][][][][] []

[] [] [] [] [] [] [] [] [] [] [] []

[] [] [] [][][] [][][][][] [] [] [] [][][] [] [] [][][]

[] [] [] [] [] [] [] [] [] []
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[] [] []
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Problem Statement

Problem:

• Write a program to generate mazes.

• Every maze should be solvable, i.e., it should have a
path from the entrance to the exit.

• We want maze solutions to be unique.

• We want every “room” to be reachable.

Questions:

• How do we approach this problem?

• Are there other properties that make a maze a “good”
or a “challenging” maze?
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Hacking. . .
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Problem Formalization (1/3)

• Think of a maze as a (two-dimensional) grid of rooms
separated by walls.

• Each room can be given a name.

• Initially, every room is surrounded by four walls

• General idea:
• Randomly knock out walls until we get a good maze.
• How do we ensure there is a solution?
• How do we ensure there is a unique solution?
• How do we ensure every room is reachable?

h

a b c d

m

i

e

n

j

f

o

k

g

p

l
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Problem Formalization (2/3)

Lets try to formalize the problem in mathematical terms:

• We have a set V of rooms.

• We have a set E of pairs {x , y} with x ∈ V and y ∈ V
of adjacent rooms that have an open wall between them.

In the example, we have

• V = {a, b, c , d , e, f , g , h, i , j , k , l ,m, n, o, p}
• {a, b} ∈ E and {g , k} ∈ E and {a, c} /∈ E and
{e, f } /∈ E

Abstractly speaking, this is a mathematical structure called a
graph consisting of a set of vertices (also called nodes) and a
set of edges (also called links).

h

a b c d

m

i

e

n

j

f

o

k

g

p

l
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Why use a mathematical formalization?

• Data structures are typically defined as mathematical structures

• Mathematics can be used to reason about the correctness and efficiency of data
structures and algorithms

• Mathematical structures make it easier to think — to abstract away from
unnecessary details and to avoid “hacking”
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Problem Formalization (3/3)

Definition:

• A maze M = (G , S ,X ) consists of a graph
G = (V ,E ), the start node S , and and the
exit node X .

Interpretation:

• Each graph node x ∈ V represents a room

• An edge {x , y} ∈ E indicates that rooms x and y are
adjacent and there is no wall in between them

• The first special node S is the start of the maze

• The second special node X is the exit of the maze
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Mazes as Graphs (Visualization via Diagrams)

• Graphs are very abstract objects, we need a good,
intuitive way of thinking about them.

• We use diagrams, where the nodes are visualized as
circles and the edges as lines between them.

• Note that the diagram is a visualization of the graph,
and not the graph itself.

• A visualization is a representation of a structure intended
for humans to process visually.
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Mazes as Graphs (Good Mazes)

Recall, what is a good maze?

• We want maze solutions to be unique.

• We want every room to be reachable.

Solution:

• The graph must be a tree (a graph with a unique root
node and every node except the root node having a
unique parent).

• The tree should cover all nodes (we call such a tree a
spanning tree).

Since trees have no cycles, we have a unique solution.
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Kruskal’s Algorithm (1/2)

General approach:

• Randomly add a branch to the tree if it won’t create a cycle (i.e., tear down a wall).

• Repeat until a spanning tree has been created (all nodes are connected).

Questions:

• When adding a branch (edge) (x , y) to the tree, how do we detect that the branch
won’t create a cycle?

• When adding an edge (x , y), we want to know if there is already a path from x to
y in the tree (if there is one, do not add the edge (x , y).

• How can we quickly determine whether there is already a path from x to y?
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Kruskal’s Algorithm (2/2)

The Union Find Algorithm successively puts nodes into an equivalence class if there is a
path connecting them. With this idea, we get the following algorithm to construct a
spanning tree:

1. Initially, every node is in its own equivalence class and the set of edges is empty.

2. Randomly select a possible edge (x , y) such that x and y are not in the same
equivalence class.

3. Add the edge (x , y) to the tree and join the equivalence classes of x and y .

4. Repeat the last two steps if there are still multiple equivalence classes.
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Randomized Depth-first Search

Are there other algorithms? Of course there are. Here is a different approach to build a
tree rooted at the start node.

1. Make the start node the current node and mark it as visited.

2. While there are unvisited nodes:
2.1 If the current node has any neighbours which have not been visited:

2.1.1 Choose randomly one of the unvisited neighbours
2.1.2 Push the current node to the stack (of nodes)
2.1.3 Remove the wall between the current node and the chosen node
2.1.4 Make the chosen node the current node and mark it as visited

2.2 Else if the stack is not empty:

2.2.1 Pop a node from the stack (of nodes)
2.2.2 Make it the current node

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Algorithms, Complexity, Correctness CC-BY-NC-ND September 5, 2024 33 / 285



Section 3: String Search Algorithms

1 Computer Science and Algorithms

2 Maze Generation Algorithms

3 String Search Algorithms

4 Complexity and Correctness
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Problem Statement

Problem:

• Write a program to find a (relatively short) string in a (possibly long) text.

• This is sometimes called finding a needle in a haystack.

Questions:

• How can we do this efficiently?

• What do we mean with long?

• What exactly is a string and what is text?
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Problem Formalization

• Let Σ be a finite set, called an alphabet.

• Let k denote the number of elements in Σ.

• Let Σ∗ be the set of all words that can be created out of Σ (Kleene closure of Σ):

Σ0 = {ϵ}
Σ1 = Σ

Σi = {wv : w ∈ Σi−1, v ∈ Σ} for i > 1

Σ∗ = ∪i≥0Σ
i

• Let t ∈ Σ∗ be a (possibly long) text and p ∈ Σ∗ be a (typically short) pattern.

• Let n denote the length of t and m denote the length of p with n≫ m.

• Find the first occurance of p in t.
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Naive String Search

• Check at each text position whether the pattern matches (going left to right).

• Lowercase characters indicate comparisons that were skipped.

• Example: t = FINDANEEDLEINAHAYSTACK, p = NEEDLE

F I N D A N E E D L E I N A H A Y S T A C K

N e e d l e

N e e d l e

N E e d l e

N e e d l e

N e e d l e

N E E D L E
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Naive String Search Performance

• How “fast” is naive string search?

• Idea: Lets count the number of comparisons.

• Problem: The number of comparisons depends on the strings.

• Idea: Consider the worst case possible.

• What is the worst case possible?
• Consider a haystack of length n using only a single symbol of the alphabet (e.g.,

“aaaaaaaaaa” with n = 10).
• Consider a needle of length m which consists of m − 1 times the same symbol

followed by a single symbol that is different (e.g., “aax” with m = 3).
• With n≫ m, the number of comparisons needed will be roughly n ·m.
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Boyer-Moore: Bad character rule (1/2)

• Idea: Lets compare the pattern right to left instead left to right. If there is a
mismatch, try to move the pattern as much as possible to the right.

• Bad character rule: Upon mismatch, move the pattern to the right until there is a
match at the current position or until the pattern has moved past the current
position.

• Example: t = FINDANEEDLEINAHAYSTACK, p = NEED

F I N D A N E E D L E I N A H A Y S T A C K skip

n e E D 1

n e e D 2

N E E D
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Boyer-Moore: Bad character rule (2/2)

• Example: t = FINDANEEDLEINAHAYSTACK, p = HAY

F I N D A N E E D L E I N A H A Y S T A C K skip

h a Y 2

h a Y 2

h a Y 2

h a Y 2

h a Y 1

H A Y

• How do we decide efficiently how far we can move the pattern to the right?
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Boyer-Moore: Good suffix rule (1/3)

• Idea: If we already matched a suffix and the suffix appears again in the pattern,
skip the alignment such that we keep the good suffix.

• Good suffix rule: Let s be a non-empty suffix already matched in the inner loop. If
there is a mismatch, skip alignments until (i) there is another match of the suffix
(which may include the mismatching character), or (ii) a prefix of p matches a
suffix of s or (iii) skip until the end of the pattern if neither (i) or (ii) apply to the
non-empty suffix s.

• Example: t = FINDANEEDLEINAHAYSTACK, p = NEEDUNEED

F I N D A N E E D L E I N A H A Y S T A C K skip

n e e d U N E E D 4

n e e d u n e e D
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Boyer-Moore: Good suffix rule (2/3)

• Example: t = FINDANEEDLEINAHAYSTACK, p = EDISUNEED

F I N D A N E E D L E I N A H A Y S T A C K skip

e d i s U N E E D 6

e d i s u n e e D
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Boyer-Moore: Good suffix rule (3/3)

• Example: t = FINDANEEDLEINAHAYSTACK, p = FOODINEED

F I N D A N E E D L E I N A H A Y S T A C K skip

f o o d I N E E D 8

f o o d i n e e D

• How do we decide efficiently how far we can move the pattern to the right?
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Boyer-Moore Rules Combined

• The Boyer-Moore algorithm combines the bad character rule and the good suffix
rule. (Note that both rules can also be used alone.)

• If a mismatch is found,
• calculate the skip sb by the bad character rule
• calculate the skip sg by the good suffix rule

and then skip by s = max(sb, sg ).

• The Boyer-Moore algorithm often does the substring search in sub-linear time.

• However, it does not perform better than naive search in the worst case if the
pattern does occur in the text.

• An optimization by Gali results in linear runtime across all cases.
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Section 4: Complexity and Correctness

1 Computer Science and Algorithms

2 Maze Generation Algorithms

3 String Search Algorithms

4 Complexity and Correctness
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Complexity of Algorithms

• Maze algorithm questions:
• Which maze generation algorithm is faster?
• What happens if we consider mazes of different sizes or dimensions?

• String search algorithm questions:
• Which string algorithm is faster (worst, average, best case)?
• Is there a fastest string search algorithm?

• Instead of measuring execution time (which depends on the speed of the hardware
and implementation details), we like to use a more neutral notion of “fast”.

• Complexity is an abstract measure of computational effort (time complexity) and
memory usage (space complexity) as a function of the problem size.

• Computer science is about analyzing the time and space complexity of algorithms.
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Performance and Scaling

size n t(n) = 100n µs t(n) = 7n2 µs t(n) = 2n µs

1 100 µs 7 µs 2 µs
5 500 µs 175 µs 32 µs
10 1ms 700 µs 1024 µs
50 5ms 17.5ms 13 031.25 d
100 10ms 70ms
1000 100ms 7 s

10 000 1 s 700 s
100 000 10 s 70 000 s

• Suppose we have three algorithms to choose from (linear, quadratic, exponential).

• With n = 50, the exponential algorithm runs for more than 35 years.

• For n ≥ 1000, the exponential algorithm runs longer than the age of the universe!
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Big O Notation (Landau Notation)

Definition (asymptotically bounded)

Let f , g : N→ N be two functions. We say that f is asymptotically bounded by g ,
written as f ≤a g , if and only if there is an n0 ∈ N , such that f (n) ≤ g(n) for all
n > n0.

Definition (Landau Sets)

The three Landau Sets O(g),Ω(g),Θ(g) are defined as follows:

• O(g) = { f | ∃k ∈ N.f ≤a k · g }
• Ω(g) = { f | ∃k ∈ N.k · g ≤a f }
• Θ(g) = O(g) ∩ Ω(g)
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Commonly Used Landau Sets

Landau Set class name rank

O(1) constant 1
O(log2(n)) logarithmic 2
O(n) linear 3
O(n log2(n)) linear logarithmic 4

Landau Set class name rank

O(n2) quadratic 5
O(nk) polynomial 6
O(kn) exponential 7

Theorem (Landau Set Ranking)

The commonly used Landau Sets establish a ranking such that

O(1) ⊂ O(log2(n)) ⊂ O(n) ⊂ O(n log2(n)) ⊂ O(n2) ⊂ O(nk) ⊂ O(ln)

for k > 2 and l > 1.
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Landau Set Rules

Theorem (Landau Set Computation Rules)

We have the following computation rules for Landau sets:

• If k ̸= 0 and f ∈ O(g), then (kf ) ∈ O(g).

• If f1 ∈ O(g1) and f2 ∈ O(g2), then (f1 + f2) ∈ O(max{g1, g2}).
• If f1 ∈ O(g1) and f2 ∈ O(g2), then (f1f2) ∈ O(g1g2).

Examples:

• f (n) = 42 =⇒ f ∈ O(1)

• f (n) = 26n + 72 =⇒ f ∈ O(n)

• f (n) = 856n10 + 123n3 + 75 =⇒ f ∈ O(n10)

• f (n) = 3 · 2n + 42 =⇒ f ∈ O(2n)
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Correctness of Algorithms and Programs

• Questions:
• Is our algorithm correct?
• Is our algorithm a total function or a partial function?
• Is our implementation of the algorithm (our program) correct?
• What do we mean by “correct”?
• Will our algorithm or program terminate?

• Computer science is about techniques for proving correctness of programs.

• In situations where correctness proofs are not feasible, computer science is about
engineering practices that help to avoid or detect errors.
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Partial Correctness and Total Correctness

Definition (partial correctness)

An algorithm starting in a state that satisfies a precondition P is partially correct with
respect to P and Q if results produced by the algorithm satisfy the postcondition Q.
Partial correctness does not require that a result is always produced, i.e., the algorithm
may not always terminate.

Definition (total correctness)

An algorithm is totally correct with respect to P and Q if it is partially correct with
respect to P and Q and it always terminates.
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Deterministic Algorithms

Definition (deterministic algorithm)

A deterministic algorithm is an algorithm which, given a particular input, will always
produce the same output, with the execution always passing through the same sequence
of states.

• Some factors making algorithms non-deterministic:
• external state
• user input
• timers
• random values
• hardware errors
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Randomized Algorithms

Definition (randomized algorithm)

A randomized algorithm is an algorithm that employs a degree of randomness as part of
its logic.

• A randomized algorithm uses randomness in order to produce its result; it uses
randomness as part of the logic of the algorithm.

• A perfect source of randomness is not trivial to obtain on digital computers.

• Random number generators often use algorithms to produce so called pseudo
random numbers, sequences of numbers that “look” random but that are not really
random (since they are calculated using a deterministic algorithm).
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Engineering of Software

• Questions:
• Can we identify building blocks (data structures, generic algorithms, design pattern)

that we can reuse?
• Can we implement algorithms in such a way that the program code is easy to read

and understand?
• Can we implement algorithms in such a way that we can easily adapt them to

different requirements?

• Computer science is about modular designs that are both easier to get right and
easier to understand. Finding good software designs often takes time and effort.

• Software engineering is about applying structured approaches to the design,
development, maintenance, testing, and evaluation of software.

• The main goal is the production of software with predictable quality and costs.
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Propositions

Definition (proposition)

A proposition is a statement that is either true or false.

Examples:

• 1 + 1 = 1 (false proposition)

• The sum of the integer numbers 1, . . . , n is equal to 1
2
n(n + 1). (true proposition)

• “In three years I will have obtained a CS degree.” (not a proposition)

• “This sentence is false.” (a paradox)
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Axioms

Definition (axiom)

An axiom is a proposition that is taken to be true.

Definition (Peano axioms for natural numbers)

P1 0 is a natural number.

P2 Every natural number has a successor.

P3 0 is not the successor of any natural number.

P4 If the successor of x equals the successor of y , then x equals y .

P5 If a statement is true for the natural number 0, and if the truth of that statement
for a natural number implies its truth for the successor of that number, then the
statement is true for every natural number.
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Theorems, Lemmata, Corollaries

Definition (theorem, lemma, corollary)

An important true proposition is called a theorem. A lemma is a preliminary true
proposition useful for proving other propositions (usually theorems) and a corollary is a
true proposition that follows in just a few logical steps from a theorem.

Definition (conjecture)

A proposition for which no proof has been found yet and which is believed to be true is
called a conjecture.

• There is no clear boundary between what is a theorem, a lemma, or a corollary.
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Predicates

• A predicate is a statement that may be true or false depending on the values of its
variables. It can be thought of as a function that returns a value that is either true
or false.

• Variables appearing in a predicate are often quantified:
• A predicate is true for all values of a given set of values.
• A predicate is true for at least one value of a given set of values.

(There exists a value such that the predicate is true.)

• There may be multiple quantifiers and they may be combined (but note that the
order of the quantifiers matters).

• Example: (Goldbach’s conjecture) For every even integer n greater than 2, there
exists primes p and q such that n = p + q.
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Mathematical Notation

Notation Explanation

P ∧ Q logical and of propositions P and Q
P ∨ Q logical or of propositions P and Q
¬P negation of proposition P

∀x ∈ S .P the predicate P holds for all x in the set S
∃x ∈ S .P there exists an x in the set S such that the predicate P holds
P → Q the statement P implies statement Q
P ↔ Q the statement P holds if and only if (iff) Q holds
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Greek Letters

α Α alpha β Β beta γ Γ gamma
δ Δ delta ε Ε epsilon ζ Ζ zeta
η Η eta θ Θ theta ι Ι iota
κ Κ kappa λ Λ lambda µ Μ mu
ν Ν nu ξ Ξ xi ο Ο omikron
π Π pi ρ Ρ rho σ Σ sigma
τ Τ tau υ Υ upsilon φ Φ phi
χ Χ chi ψ Ψ psi ω Ω omega
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Mathematical Proof

Definition (mathematical proof)

A mathematical proof of a proposition is a chain of logical deductions from a base set
of axioms (or other previously proven propositions) that concludes with the proposition
in question.

• Informally, a proof is a method of establishing truth. There are very different ways
to establish truth. In computer science, we usually adopt the mathematical notion
of a proof.

• There are a certain number of templates for constructing proofs. It is good style to
indicate at the beginning of the proof which template is used.
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Hints for Writing Proofs

• Proofs often start with notes that can be disorganized, have strange diagrams,
obscene words, whatever. But the final proof should be clear and concise.

• Proofs usually begin with the word “Proof” and they end with a delimiter such as
.

• Make it easy to understand your proof. A good proof has a clear structure and it is
concise. Turning an initial proof into a concise proof takes time and patience.

• Introduce notation carefully. Good notation can make a proof easy to follow (and
bad notation can achieve the opposite effect).

• Revise your proof and simplify it. A good proof has been written multiple times.
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Prove an Implication by Derivation

• An implication is a proposition of the form “If P , then Q”, or P → Q.

• One way to prove such an implication is by a derivation where you start with P and
stepwise derive Q from it.

• In each step, you apply theorems (or lemmas or corollaries) that have already been
proven to be true.

• Template:

Assume P . Then, . . . Therefore . . . [. . . ] This finally leads to Q.
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Prove an Implication by its Contrapositive

• An implication is a proposition of the form “If P , then Q”, or P → Q.

• Such an implication is logically equivalent to its contrapositive, ¬Q → ¬P .
• Proving the contrapositive is sometimes easier than proving the original statement.

• Template:

Proof. We prove the contrapositive, if ¬Q, then ¬P . We assume ¬Q. Then,
. . . Therefore . . . [. . . ] This finally leads to ¬P .
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Prove an “if and only if” by two Implications

• A statement of the form “P if and only if Q”, P ↔ Q, is equivalent to the two
statements “P implies Q” and “Q implies P”.

• Split your proof into two parts, the first part proving P → Q and the second part
proving Q → P .

• Template:

Proof. We prove P implies Q and vice-versa.

First, we show P implies Q. Assume P . Then, . . . Therefore . . . [. . . ] This finally
leads to Q.

Now we show Q implies P . Assume Q. Then, . . . . Therefore . . . [. . . ] This finally
leads to P .
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Prove an “if and only if” by a Chain of “if and only if”s

• A statement of the form “P if and only if Q” can be shown to hold by constructing
a chain of “if and only if” equivalence implications.

• Constructing this kind of proof is often harder then proving two implications, but
the result can be short and elegant.

• Template:

Proof. We construct a proof by a chain of if-and-only-if implications.

P holds if and only if P ′ holds, which is equivalent to [. . . ], which is equivalent to
Q.
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Breaking a Proof into Cases

• It is sometimes useful to break a complicated statement P into several cases that
are proven separately.

• Different proof techniques may be used for the different cases.

• It is necessary to ensure that the cases cover the complete statement P .

• Template:

Proof. We prove P by considering the cases c1, . . . , cN .

Case 1: Suppose c1. Prove of P for c1.

. . .

Case N : Suppose cN . Prove of P for cN .

Since P holds for all cases c1, . . . cN , the statement P holds.
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Proof by Contradiction

• A proof by contradiction for a statement P shows that if the statement were false,
then some false fact would be true.

• Starting from ¬P , a series of derivations is used to arrive at a statement that
contradicts something that has already been shown to be true or which is an axiom.

• Template:

Proof. We prove P by contradiction.

Assume ¬P is true. Then . . . Therefore . . . [. . . ] This is a contradiction. Thus, P
must be true.
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Proof by Induction

• If we have to prove a statement P on nonnegative integers (or more generally an
inductively defined well-ordered infinite set), we can use the induction principle.

• We first prove that P is true for the “lowest” element in the set (the base case).

• Next we prove that if P holds for a nonnegative integer n, then the statement P
holds for n + 1 (induction step).

• Since we can apply the induction step m times, starting with the base, we have
shown that P is true for arbitrary nonnegative integers m.

• Template:

Proof. We prove P by induction.

Base case: We show that P(0) is true. [. . . ]

Induction step: Assume P(n) is true. Then, . . . This proves that P(n + 1) holds.
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Summary of Proof Techniques

Statement Techniques Description

A→ Z A→ B → C → . . .→ Z proof by derivation
¬Z → ¬A proof by contrapositive

A↔ Z A↔ B ↔ C ↔ . . .↔ Z chain of equivalences
A→ Z ∧ Z → A proof by two implications

A ¬A→ B → C → . . .→ ⊥ proof by contradiction

∀n ∈ N.A(n) A(0) ∧ (A(n)→ A(n + 1)) proof by induction
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Sets

• Informally, a set is a well-defined collection of distinct objects. The elements of the
collection can be anything we like the set to contain, including other sets.

• In modern mathematics, sets are defined using axiomatic set theory, but for us the
informal definition above is sufficient.

• Sets can be defined by
• listing all elements in curly braces, e.g., { a, b, c },
• describing all objects using a predicate P, e.g., { x | x ≥ 0 ∧ x < 28 },
• stating element-hood using some other statements.

• A set has no order of the elements and every element appears only once.

• The two notations { a, b, c } and { b, a, a, c } are different representations of the
same set.

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Proofs, Sets, Relations, Functions CC-BY-NC-ND September 5, 2024 75 / 285



Basic Relations between Sets

Definition (basic relations between sets)

Lets A and B be two sets. We define the following relations between sets:

1. (A ≡ B) :↔ (∀x .x ∈ A↔ x ∈ B) (set equality)

2. (A ⊆ B) :↔ (∀x .x ∈ A→ x ∈ B) (subset)

3. (A ⊂ B) :↔ (A ⊆ B) ∧ (A ̸≡ B) (proper subset)

4. (A ⊇ B) :↔ (∀x .x ∈ B → x ∈ A) (superset)

5. (A ⊃ B) :↔ (A ⊇ B) ∧ (A ̸≡ B) (proper superset)

• Obviously:
• (A ⊆ B) ∧ (B ⊆ A)→ (A ≡ B)
• (A ⊆ B)↔ (B ⊇ A)
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Operations on Sets 1/2

Definition (set union)

The union of two sets A and B is defined as A ∪ B = { x | x ∈ A ∨ x ∈ B }.

Definition (set intersection)

The intersection of two sets A and B is defined as A ∩ B = { x | x ∈ A ∧ x ∈ B }.

Definition (set difference)

The difference of two sets A and B is defined as A \ B = { x | x ∈ A ∧ x ̸∈ B }.
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Operations on Sets 2/2

Definition (power set)

The power set P(A) of a set A is the set of all subsets S of A, including the empty set
and A itself. Formally, P(A) = { S | S ⊆ A }.

Definition (cartesian product)

The cartesian product of the sets X1, . . . ,Xn is defined as
X1 × . . .× Xn = { (x1, . . . , xn) | ∀i ∈ {1, . . . , n}.xi ∈ Xi }.
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Cardinality of Sets

Definition (cardinality)

If A is a finite set, the cardinality of A, written as |A|, is the number of elements in A.

Definition (countably infinite)

A set A is countably infinite if and only if there is a bijective function f : A→ N.

Definition (countable)

A set A is countable if and only if it is finite or countably infinite.
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Relations

Definition (relation)

A relation R over the sets X1, . . . ,Xk is a subset of their Cartesian product, written
R ⊆ X1 × . . .× Xk .

• Relations are classified according to the number of sets in the defining Cartesian
product:
• A unary relation is defined over a single set X
• A binary relation is defined over X1 × X2

• A ternary relation is defined over X1 × X2 × X3

• A k-ary relation is defined over X1 × . . .× Xk
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Binary Relations

Definition (binary relation)

A binary relation R ⊆ A× B consists of a set A, called the domain of R , a set B , called
the codomain of R , and a subset of A× B called the graph of R .

Definition (inverse of a binary relation)

The inverse of a binary relation R ⊆ A× B is the relation R−1 ⊆ B × A defined by the
rule

b R−1 a↔ a R b.

• For a ∈ A and b ∈ B , we often write a R b to indicate that (a, b) ∈ R .

• The notation a R b is called infix notation while the notation R(a, b) is called the
prefix notation. For binary relations, we commonly use the infix notation.
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Image and Range of Binary Relations

Definition (image of a binary relation)

The image of a binary relation R ⊆ A× B , is the set of elements of the codomain B of
R that are related to some element in A.

Definition (range of a binary relation)

The range of a binary relation R ⊆ A× B is the set of elements of the domain A of R
that relate to at least one element in B .
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Properties of Binary Relations (Endorelations)

Definition
A relation R ⊆ A× A is called

• reflexive iff ∀a ∈ A.(a, a) ∈ R

• irreflexive iff ∀a ∈ A.(a, a) ̸∈ R

• symmetric iff ∀a, b ∈ A.(a, b) ∈ R → (b, a) ∈ R

• asymmetric iff ∀a, b ∈ A.(a, b) ∈ R → (b, a) ̸∈ R

• antisymmetric iff ∀a, b ∈ A.((a, b) ∈ R ∧ (b, a) ∈ R)→ a = b

• transitive iff ∀a, b, c ∈ A.((a, b) ∈ R ∧ (b, c) ∈ R)→ (a, c) ∈ R

• connected iff ∀a, b ∈ A.(a, b) ∈ R ∨ (b, a) ∈ R ∨ a = b

• serial iff ∀a ∈ A.∃b ∈ A.(a, b) ∈ R
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Equivalence, Partial Order, and Strict Partial Order

Definition (equivalence relation)

A relation R ⊆ A× A is called an equivalence relation on A if and only if R is reflexive,
symmetric, and transitive.

Definition (partial order and strict partial order)

A relation R ⊆ A× A is called a partial order on A if and only if R is reflexive,
antisymmetric, and transitive on A. The relation R is called a strict partial order on A if
and only if it is irreflexive, asymmetric and transitive on A.

Definition (linear order)

A partial order R is called a linear order on A if and only if all elements in A are
comparable, i.e., the partial order is total.
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Summary of Properties of Binary Relations

Let ∼ be a binary relation over A× A and let a, b, c ∈ A arbitrary.

property ≡ ⪯ ≺ definition = ≤ <

reflexive ✓ ✓ a ∼ a ✓ ✓
irreflexive ✓ a ̸∼ a ✓

symmetric ✓ a ∼ b → b ∼ a ✓
asymmetric ✓ a ∼ b → b ̸∼ a ✓
antisymmetric ✓ a ∼ b ∧ b ∼ a→ a = b ✓

transitive ✓ ✓ ✓ a ∼ b ∧ b ∼ c → a ∼ c ✓ ✓ ✓

≡ equivalence relation, ⪯ partial order, ≺ strict partial order
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Functions

Definition (partial function)

A relation f ⊆ X × Y is called a partial function if and only if for all x ∈ X there is at
most one y ∈ Y with (x , y) ∈ f . We call a partial function f undefined at x ∈ X if and
only if (x , y) ̸∈ f for all y ∈ Y .

Definition (total function)

A relation f ⊆ X × Y is called a total function if and only if for all x ∈ X there is
exactly one y ∈ Y with (x , y) ∈ f .
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Function Properties

Definition (injective function)

A function f : X → Y is called injective if every element of the codomain Y is mapped
to by at most one element of the domain X : ∀x , y ∈ X .f (x) = f (y)→ x = y

Definition (surjective function)

A function f : X → Y is called surjective if every element of the codomain Y is
mapped to by at least one element of the domain X : ∀y ∈ Y .∃x ∈ X .f (x) = y

Definition (bijective function)

A function f : X → Y is called bijective if every element of the codomain Y is mapped
to by exactly one element of the domain X . (That is, the function is both injective and
surjective.)
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Operations on Functions

Definition (function composition)

Given two functions f : A→ B and g : B → C , the composition of g with f is defined
as the function g ◦ f : A→ C with (g ◦ f )(x) = g(f (x)).

Definition (function restriction)

Let f be a function f : A→ B and C ⊆ A. Then we call the function
f |C = {(c , b) ∈ f |c ∈ C} the restriction of f to C .
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Lambda Notation of Functions

• It is sometimes not necessary to give a function a name.

• A function definition of the form { (x , y) ∈ X × Y | y = E }, where E is an
expression (usually involving x), can be written in a shorter lambda notation as
λx ∈ X .E .

• Examples:
• λn ∈ N.n (identity function for natural numbers)
• λx ∈ N.x2 (f (x) = x2)
• λ(x , y) ∈ N× N.x + y (addition of natural numbers)

• Lambda calculus is a formal system for expressing computation based on function
abstraction and application using variable bindings and substitutions.

• Lambda calculus is the foundation of functional programming languages like
Haskell.
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Currying

• Lambda calculus uses only functions that take a single argument. This is possible
since lambda calculus allows functions as arguments and results.

• A function that takes two arguments can be converted into a function that takes
the first argument as input and which returns a function that takes the second
argument as input.

• This method of converting functions with multiple arguments into a sequence of
functions with a single argument is called currying.

• The term currying is a reference to the mathematician Haskell Curry.
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Numbers can be confusing. . .

• There are only 10 kinds of people in the world: Those who understand binary and
those who don’t.

• Q: How easy is it to count in binary?
A: It’s as easy as 01 10 11.

• A Roman walks into the bar, holds up two fingers, and says, “Five beers, please.”

• Q: Why do mathematicians confuse Halloween and Christmas?
A: Because 31 Oct = 25 Dec.
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Number Systems in Mathematics

• Numbers can be classified into sets, called number systems, such as the natural
numbers, the integer numbers, or the real numbers.

Symbol Name Description

N Natural 0, 1, 2, 3, 4, . . .
Z Integer . . . , -4, -3, -2, -1, 0, 1, 2, 3, 4, . . .
Q Rational a

b
were a ∈ Z and b ∈ Z and b ̸= 0

R Real Limits of a convergent sequences of rational numbers
C Complex a + bi where a ∈ R and b ∈ R and i =

√
−1

• Numbers should be distinguished from numerals, the symbols used to represent
numbers. A single number can have many different representations.
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Numeral Systems for Natural Numbers

• Natural numbers can be represented using different bases. We commonly use
decimal (base 10) number representations in everyday life.

• In computer science, we also frequently use binary (base 2), octal (base 8), and
hexadecimal (base 16) number representations.

• In general, natural numbers represented in the base b system are of the form:

(anan−1 · · · a1a0)b =
n∑

k=0

akb
k

hex 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12

dec 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

oct 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 21 22

bin 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 10001 10010
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Natural Numbers Literals

• Prefix conventions are used to indicate the base of number literals:

prefix example meaning description

42 4210 decimal number
0x 0x42 4216 = 6610 hexadecimal number
0o 0o42 428 = 3410 octal number
0b 0b1000010 10000102 = 4210 binary number

0 042 428 = 3410 octal number (old)

• The old octal number prefix 0 is gradually replaced by the more sensible prefix 0o
but this transition will take time.

• Until then, beware that 42 and 042 may not represent the same number!
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Natural Numbers with Fixed Precision

• Computer systems often work internally with finite subsets of natural numbers.

• The number of bits used for the binary representation defines the size of the subset.

bits name range (decimal) range (hexadecimal)

4 nibble 0-15 0x0-0xf
8 byte, octet, uint8 0-255 0x0-0xff
16 uint16 0-65 535 0x0-0xffff
32 uint32 0-4 294 967 295 0x0-0xffffffff
64 uint64 0-18 446 744 073 709 551 615 0x0-0xffffffffffffffff

• Using (almost) arbitrary precision numbers is possible but usually slower.
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Integer Numbers

• Integer numbers can be negative but surprisingly there are not “more” integer
numbers than natural numbers (even though integer numbers range from −∞ to
+∞ while natural numbers only range from 0 to +∞).

• This can be seen by writing integer numbers in the order 0, 1, -1, 2, -2, . . . , i.e., by
defining a bijective function f : Z→ N (and the inverse function f −1 : N→ Z):

f (x) =

{
2x if x ≥ 0

−2x − 1 if x < 0
f −1(x) =

{
x
2

if x is even

− x+1
2

if x is odd

• We could (in principle) represent integer numbers by implementing this bijection to
natural numbers. But there are more efficient ways to implement integer numbers
if we assume that we use a fixed precision anyway.
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One’s Complement Fixed Integer Numbers (b-1 complement)

• We have a fixed number space with n digits and base b to represent integer
numbers, that is, we can distinguish at most bn different integers.

• Lets represent positive numbers in the usual way.

• To represent negative numbers, we invert the absolute value (anan−1 · · · a1a0)b by
calculating (a′na

′
n−1 · · · a′1a′0)b with a′i = (b − 1)− ai .

• Example: b = 2, n = 4 : 510 = 01012,−510 = 10102

bin: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

dec: 0 1 2 3 4 5 6 7 -7 -6 -5 -4 -3 -2 -1 -0

• Note that this gives us +0 and -0, i.e., we only represent bn − 1 different integers.

• Negative binary numbers always have the most significant bit set to 1.
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Two’s Complement Fixed Integer Numbers (b complement)

• Like before, we assume a fixed number space with n digits and a base b to
represent integer numbers, that is, we can distinguish at most bn different integers.

• Lets again represent positive numbers in the usual way.

• To represent negative numbers, we invert the absolute value (anan−1 · · · a1a0)b by
calculating (a′na

′
n−1 · · · a′1a′0)b with a′i = (b − 1)− ai and adding 1 to it.

• Example: b = 2, n = 4 : 510 = 01012,−510 = 10112

bin: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

dec: 0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

• This representation simplifies the implementation of arithmetic operations.

• Negative binary numbers always have the most significant bit set to 1.
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Two’s Complement Fixed Integer Number Ranges

• Most computers these days use the two’s complement internally.

• The number of bits available defines the ranges we can use.

bits name range (decimal)

8 int8 −128 to 127
16 int16 −32 768 to 32 767
32 int32 −2 147 483 648 to 2 147 483 647
64 int64 −9 223 372 036 854 775 808 to 9 223 372 036 854 775 807

• Be careful if your arithmetic expressions overflows/underflows the range!
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Rational Numbers

• Computer systems usually do not natively represent rational numbers, i.e., they
cannot compute with rational numbers at the hardware level.

• Software can, of course, implement rational number data types by representing the
numerator and the denominator as integer numbers internally and keeping them in
the reduced form.

• Example using Haskell (execution prints 5 % 6):

import Data.Ratio

main = print $ 1%2 + 1%3
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Real Numbers

• Computer systems usually do not natively represent real numbers, i.e., they cannot
compute with real numbers at the hardware level.

• The primary reason is that real numbers like the result of 1
7
or numbers like π have

by definition not a finite representation.

• So the best we can do is to have a finite approximation. . .

• Since all we have are approximations of real numbers, we always make rounding
errors when we use these approximations. If we are not extremely cautious, these
rounding errors can accumulate badly.

• Numeric algorithms can be analyzed according to how good or bad they propagate
rounding errors, leading to the notion of numeric stability.
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Floating Point Numbers

• Floating point numbers are useful in situations where a large range of numbers
must be represented with fixed size storage for the numbers.

• The general notation of a (normalized) base b floating point number with precision
p is

s · d0.d1d2 . . . dp−1 · be = s ·

(
p−1∑
k=0

dkb
−k

)
· be

where b is the base, e is the exponent, d0, d1, . . . , dp−1 are digits of the mantissa
with di ∈ {0, . . . , b − 1} for i ∈ {0, . . . , p − 1}, s ∈ {1,−1} is the sign, and p is
the precision.
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Floating Point Number Normalization

• Floating point numbers are usually normalized such that d0 is in the range
{1, . . . , b − 1}, except when the number is zero.

• Normalization must be checked and restored after each arithmetic operation since
the operation may denormalize the number.

• When using the base b = 2, normalization implies that the first digit d0 is always 1
(unless the number is 0). Hence, it is not necessary to store d0 and instead the
mantissa can be extended by one additional bit.

• Floating point numbers are at best an approximation of a real number due to their
limited precision.

• Calculations involving floating point numbers usually do not lead to precise results
since rounding must be used to match the result into the floating point format.

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Data Representation CC-BY-NC-ND September 5, 2024 110 / 285



IEEE 754 Floating Point Formats

precision single (float) double quad

sign 1 bit 1 bit 1 bit
exponent 8 bit 11 bit 15 bit
exponent range [-126,. . . ,127] [-1022,. . . ,1023] [-16382,. . . ,16383]
exponent bias 127 1023 16383
mantissa 23 bit 52 bit 112 bit
total size 32 bit 64 bit 128 bit

decimal digits ≈ 7.2 ≈ 15.9 ≈ 34.0

• IEEE 754 is a widely implemented standard for floating point numbers.

• IEEE 754 floating point numbers use the base b = 2 and as a consequence decimal
numbers such as 1 · 10−1 cannot be represented precisely.
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IEEE 754 Exceptions and Special Values

• The standard defines five exceptions, some of them lead to special values:

1. Invalid operation: returns not a number (nan)
2. Division by zero: returns ±infinity (inf)
3. Overflow: returns ±infinity (inf)
4. Underflow: depends on the operating mode
5. Inexact: returns rounded result by default

• Computations may continue if they did produce a special value like nan or inf.

• Hence, it is important to check whether a calculation resulted in a value at all.
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Floating Point Surprises

• Any floating point computation should be treated with the utmost suspicion unless
you can argue how accurate it is. [Alan Mycroft, Cambridge]

• Floating point arithmetic almost always involves rounding errors and these errors
can badly aggregate.

• It is possible to “loose” the reasonably precise digits and to continue calculation
with the remaining rather imprecise digits.

• Comparisons to floating point constants may not be “exact” and as a consequence
loops may not end where they are expected to end.

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Data Representation CC-BY-NC-ND September 5, 2024 113 / 285



Section 13: International System of Units

9 Natural Numbers

10 Integer Numbers

11 Rational and Real Numbers

12 Floating Point Numbers

13 International System of Units

14 Characters and Strings

15 Date and Time
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Importance of Units and Unit Prefixes

• Most numbers we encounter in practice have associated units. It is important to be
very explicit about the units used.
• NASA lost a Mars climate orbiter (worth $125 million) in 1999 due to a unit

conversion error.
• An Air Canada plane ran out of fuel in the middle of a flight in 1983 due to a fuel

calculation error while switching to the metric system.

• There is an International System of Units (SI Units) to help you. . .

� Always be explicit about units.

� And always be clear about the unit prefixes.
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SI Base Units

Unit Symbol Description

metre m The distance travelled by light in a vacuum in a certain fraction
of a second.

kilogram kg The mass of the international prototype kilogram.
second s The duration of a number of periods of the radiation of the

caesium-133 atom.
ampere A The constant electric current which would produce a certain

force between two conductors.
kelvin K A fraction of the thermodynamic temperature of the triple

point of water.
mole mol The amount of substance of a system which contains atoms

corresponding to a certain mass of carbon-12.
candela cd The luminous intensity of a source that emits monochromatic

radiation.
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SI Derived Units

• Many important units can be derived from the base units. Some have special
names, others are simply defined by a formula over their base units. Some
examples:

Name Symbol Definition Description

herz Hz s−1 frequency
newton N kgm s−1 force
watt W kgm2 s−3 power
volt V kgm2 s−3 A−1 voltage
ohm Ω kgm2 s−3 A−2 resistance

velocity m s−1 speed
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Metric Prefixes (International System of Units)

Name Symbol Base 10 Base 1000 Value

kilo k 103 10001 1000
mega M 106 10002 1 000 000
giga G 109 10003 1 000 000 000
tera T 1012 10004 1 000 000 000 000
peta P 1015 10005 1 000 000 000 000 000
exa E 1018 10006 1 000 000 000 000 000 000
zetta ζ 1021 10007 1 000 000 000 000 000 000 000
yotta Y 1024 10008 1 000 000 000 000 000 000 000 000
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Metric Prefixes (International System of Units)

Name Symbol Base 10 Base 1000 Value

milli m 10−3 1000−1 0.001
micro µ 10−6 1000−2 0.000 001
nano n 10−9 1000−3 0.000 000 001
pico p 10−12 1000−4 0.000 000 000 001
femto f 10−15 1000−5 0.000 000 000 000 001
atto a 10−18 1000−6 0.000 000 000 000 000 001
zepto z 10−21 1000−7 0.000 000 000 000 000 000 001
yocto y 10−24 1000−8 0.000 000 000 000 000 000 000 001
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Binary Prefixes

Name Symbol Base 2 Base 1024 Value

kibi Ki 210 10241 1024
mebi Mi 220 10242 1 048 576
gibi Gi 230 10243 1 073 741 824
tebi Ti 240 10244 1 099 511 627 776
pebi Pi 250 10245 1 125 899 906 842 624
exbi Ei 260 10246 1 152 921 504 606 846 976
zebi Zi 270 10247 1 180 591 620 717 411 303 424
yobi Yi 280 10248 1 208 925 819 614 629 174 706 176
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Characters and Character Encoding

• A character is a unit of information that roughly corresponds to a grapheme,
grapheme-like unit, or symbol, such as in an alphabet or syllabary in the written
form of a natural language.

• Examples of characters include letters, numerical digits, common punctuation
marks, and whitespace.

• Characters also includes control characters, which do not correspond to symbols in
a particular natural language, but instead encode bits of information used to
control information flow or presentation.

• A character encoding is used to represent a set of characters by some kind of
encoding system. A single character can be encoded in different ways.
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ASCII Characters and Encoding

• The American Standard Code for Information Interchange (ASCII) is a still widely
used character encoding standard.

• Traditionally, ASCII encodes 128 specified characters into seven-bit natural
numbers. Extended ASCII encodes the 128 specified characters into eight-bit
natural numbers. This makes code points available for additional characters.

• ISO 8859 is a family of extended ASCII codes that support different language
requirements, for example:
• ISO 8859-1 adds characters for the most common Western European languages
• ISO 8859-2 adds characters for the most common Eastern European languages
• ISO 8859-5 adds characters for Cyrillic languages

• Unfortunately, ISO 8859 code points overlap, making it difficult to represent texts
requiring several different character sets.
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ASCII Characters and Code Points (decimal)

0 nul 1 soh 2 stx 3 etx 4 eot 5 enq 6 ack 7 bel

8 bs 9 ht 10 nl 11 vt 12 np 13 cr 14 so 15 si

16 dle 17 dc1 18 dc2 19 dc3 20 dc4 21 nak 22 syn 23 etb

24 can 25 em 26 sub 27 esc 28 fs 29 gs 30 rs 31 us

32 sp 33 ! 34 " 35 # 36 $ 37 % 38 & 39 ’

40 ( 41 ) 42 * 43 + 44 , 45 - 46 . 47 /

48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7

56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?

64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G

72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O

80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W

88 X 89 Y 90 Z 91 [ 92 \ 93 ] 94 ^ 95 _

96 ‘ 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o

112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w

120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 del
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Universal Coded Character Set and Unicode

• The Universal Coded Character Set (UCS) is a standard set of characters defined
and maintained by the International Organization of Standardization (ISO).

• The Unicode Consortium produces industry standards based on the UCS for the
encoding. Unicode 15.0 (published Sep. 2022) defines 149 186 characters, each
identified by an unambiguous name and an integer number called its code point.

• The overall code point space is divided into 17 planes where each plane has
216 = 65536 code points. The Basic Multilingual Plane (plane 0) contains
characters of almost all modern languages, and a large number of symbols.

• Unicode can be implemented using different character encodings. The UTF-32
encoding encodes character code points directly into 32-bit numbers (fixed length
encoding). While simple, an ASCII text of size n becomes a UTF-32 text of size 4n.
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Unicode Transformation Format UTF-8

bytes cp bits first cp last cp byte 1 byte 2 bytes 3 byte 4

1 7 U+0000 U+007F 0xxxxxxx
2 11 U+0080 U+07FF 110xxxxx 10xxxxxx
3 16 U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx
4 21 U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

• A variable-length encoding of Unicode code points (cp) that turns seven-bit ASCII
code points into valid UTF-8 code points.

• The € symbol with the code point U+20AC (0010 0000 1010 1100 in binary
notation) encodes as 0xE282AC (11100010 10000010 10101100 in binary notation).

• Note that this makes the € more expensive than the $. ,
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Strings

• Let Σ be a non-empty finite set of symbols (or characters), called the alphabet.

• A string (or word) over Σ is any finite sequence of symbols from Σ, including (of
course) the empty sequence.

• Typical operations on strings are length(), concatenation(), reverse(), . . .

• There are different ways to store strings internally. Two common approaches are:
• The sequence is null-terminated, i.e., the characters of the string are followed by a

special NUL character.
• The sequence is length-prefixed, i.e., a natural number indicating the length of the

string is stored in front of the characters.

• In some programming languages, you need to know how strings are stored, in other
languages you happily leave the details to the language implementation.
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System Time and Clocks

• Computer systems usually maintain a notion of system time. The term system time
indicates that two different systems usually have a different notion of system time.

• System time is measured by a system clock, which is typically implemented as a
simple count of the number of ticks (periodic timer interrupts) that have transpired
since some arbitrary starting date, called the epoch.

• Since internal counting mechanisms are not very precise, systems often exchange
time information with other systems that have “better” clocks or sources of time in
order to converge their notions of time.

• Time is sometimes used to order events, due to its monotonic nature.

• In distributed systems, this has its limitations and therefore the notion of logical
clocks has been invented. (Logical clocks do not measure time, they only help to
order events.)
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Calendar Time

• System time can be converted into calendar time, a reference to a particular time
represented within a calendar system.

• A popular calendar is the Gregorian calendar, which maps a time reference into a
year, a month within the year, and a day within a month.

• The Gregorian calendar was introduced by Pope Gregory XIII in October 1582.

• The Coordinated Universal Time (UTC) is the primary time standard by which the
world regulates clocks and time.

• Due to the rotation of the earth, days start and end at different moments. This is
reflected by the notion of a time zone, which is essentially an offset to UTC.

• The number of time zones is not static and time zones change occasionally.
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ISO 8601 Date and Time Formats

• Different parts of the world use different formats to write down a calendar time,
which can easily cause confusion.

• The ISO 8601 standard defines an unambiguous notation for calendar time.

• ISO 8601 in addition defines formats for durations and time intervals.

name format example

date yyyy-mm-dd 2017-06-13
time hh:mm:ss 15:22:36
date and time yyyy-mm-ddThh:mm:ss[±hh:mm] 2017-06-13T15:22:36+02:00
date and time yyyy-mm-ddThh:mm:ss[±hh:mm] 2017-06-13T13:22:36+00:00
date and time yyyy-mm-ddThh:mm:ssZ 2017-06-13T13:22:36Z
date and week yyyy-Www 2017-W24
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Boolean Variables

• Boolean algebra describes objects that can take only one of two values.

• The values may be different voltage levels {0,V+} or special symbols {F ,T} or
simply the digits {0, 1}.
• In the following, we use the notation B = {0, 1}.
• In artificial intelligence, such objects are often called propositions and they are
either true or false.

• In mathematics, the objects are called Boolean variables and we use the symbols
x1, x2, x3, . . . for them (sometimes also a, b, c , . . .).

• The main purpose of Boolean logic is to describe (or design) interdependencies
between Boolean variables.
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Interpretation of Boolean Variables

Definition (Boolean variables)

A Boolean variable xi with i ≥ 1 is an object that can take on one of the two values 0
or 1. The set of all Boolean variables is X = { x1, x2, x3, . . . }.

Definition (Interpretation)

Let D be a subset of X . An interpretation I of D is a function I : D → B.

• The set X is very large. It is often sufficient to work with a suitable subset D of X .
• An interpretation assigns to every Boolean variable a value.

• An interpretation is also called a truth value assignment.
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Boolean ∧ Function (and)

x y x ∧ y

0 0 0
0 1 0
1 0 0
1 1 1

• The logical and (∧) can be viewed as a function
mapping two Boolean values to a Boolean value:

∧ : B× B→ B

• A truth table defines a Boolean operation (or function)
by listing the result for all possible arguments.

• Many programming languages like C or C++ (or Rust or Haskell) use the operator
&& to represent the ∧ function. (Python uses the and keyword.)
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Boolean ∨ Function (or)

x y x ∨ y

0 0 0
0 1 1
1 0 1
1 1 1

• The logical or (∨) can be viewed as a function mapping
two Boolean values to a Boolean value:

∨ : B× B→ B

• Each row in the truth table corresponds to one
interpretation.

• A truth table simply lists all possible interpretations.

• Many programming languages like C or C++ (or Rust or Haskell) use the operator
|| to represent the ∨ function. (Python uses the or keyword.)
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Boolean ¬ Function (not)

x ¬x
0 1
1 0

• The logical not (¬) can be viewed as a unary function
mapping a Boolean value to a Boolean value:

¬ : B→ B

• The ¬ function applied to x is also written as x .

• Many programming languages like C or C++ (or Rust) use the operator ! to
represent the ¬ function. (Python uses the not keyword while Haskell uses the
function not :: Bool -> Bool).
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Boolean → Function (implies)

x y x → y

0 0 1
0 1 1
1 0 0
1 1 1

• The logical implication (→) can be viewed as a function
mapping two Boolean values to a Boolean value:

→: B× B→ B

• The implication represents statements of the form “if x
then y” (where x is called the precondition and y the
consequence).

• The logical implication is often confusing to ordinary mortals. A logical implication
is false only if the precondition is true, but the consequence it asserts is false.

• The claim “if cats eat dogs, then the sun shines” is logically true.
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Boolean ↔ Function (equivalence)

x y x ↔ y

0 0 1
0 1 0
1 0 0
1 1 1

• The logical equivalence ↔ can be viewed as a function
mapping two Boolean values to a Boolean value:

↔: B× B→ B

• Many programming languages like C or C++ (or Rust or Haskell) use the operator
== to represent the equivalence function.
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Boolean ∨ Function (exclusive or)

x y x ∨ y
0 0 0
0 1 1
1 0 1
1 1 0

• The logical exclusive or ∨ can be viewed as a function
mapping two Boolean values to a Boolean value:

∨ : B× B→ B

• Another commonly used symbol for the exclusive or is ⊕.
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Boolean ∧ Function (not-and)

x y x ∧ y
0 0 1
0 1 1
1 0 1
1 1 0

• The logical not-and (nand) or ∧ can be viewed as a
function mapping two Boolean values to a Boolean
value:

∧ : B× B→ B
• The ∧ function is also written using the Sheffer stroke
symbol ↑.

• While we use the functions ∧, ∨, and ¬ to define more complex Boolean functions,
the ∧ is sufficient to derive all elementary Boolean functions from it.

• This is important for digital circuits since all you need are not-and gates.
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Boolean ∨ Function (not-or)

x y x ∨ y
0 0 1
0 1 0
1 0 0
1 1 0

• The logical not-or (nor) ∨ can be viewed as a function
mapping two Boolean values to a Boolean value:

∨ : B× B→ B

• The ∨ function is also written using the Quine arrow ↓.

• The ∨ is like ∧ sufficient to derive all elementary Boolean functions.
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Alternative Notations

function mnemonic mathematics engineering C / C++ C / C++ (bits)

and x and y x ∧ y x · y x && y &

or x or y x ∨ y x + y x || y |

not not x ¬x x , x ′ ! x ~

implication x impl y x → y
equivalence x equiv y x ↔ y x == y

exclusive-or x xor y x ∨ y x ⊕ y ^

not-and x nand y x ∧ y , x∧y x · y
not-or x nor y x ∨ y , x∨y x + y
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Boolean Functions

• Elementary Boolean functions (¬,∧,∨) can be composed to define more complex
functions.

• An example of a composed function is f : B× B→ B with (x , y) 7→ ¬(x ∧ y).
The meaning is “first compute the logical and of x and y , then apply ¬ on the
result obtained.”

• Boolean functions can take a large number of arguments. Here is a function
f : B× B× B→ B taking three arguments.

• We may define the function f using a shorthand notation:

f (x , y , z) = (¬(x ∧ y) ∨ (z ∧ y))

The left hand side of the notation above defines the function name and its
arguments, the right hand side defines the function itself by means of a formula.
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Boolean Functions

Definition (Boolean function)

A Boolean function f is any function of the type f : Bk → B, where k ≥ 0. The
number of arguments k is called the arity of the function.

Theorem
The truth table of a Boolean function with arity k has 2k rows.

• A Boolean function with arity k = 0 assigns truth values to nothing. There are two
such functions, one always returning 0 and the other always returning 1. We simply
identify these two functions of arity 0 with the truth value constants 0 and 1.

• For functions with a large arity, truth tables become unmanageable.
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Syntax of Boolean formulas (aka Boolean expressions)

Definition (Syntax of Boolean formulas)

Basis of inductive definition:

1a Every Boolean variable xi is a Boolean formula.

1b The two Boolean constants 0 and 1 are Boolean formulas.

Induction step:

2a If f and g are Boolean formulas, then (f ∧ g) is a Boolean formula.

2b If f and g are Boolean formulas, then (f ∨ g) is a Boolean formula.

2c If f is a Boolean formula, then ¬f is a Boolean formula.
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Semantics of Boolean formulas

Definition (Semantics of Boolean formulas)

Let D be a set of Boolean variables and I : D → B an interpretation. Let Φ(D) be the
set of all Boolean formulas which contain only Boolean variables that are in D. We
define a generalized version of an interpretation I∗ : Φ(D)→ B.
Basis of the inductive definition:

1a For every Boolean variable x ∈ D, I∗(x) = I(x).
1b For the two Boolean constants 0 and 1, we set I∗(0) = 0 and I∗(1) = 1.
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Semantics of Boolean formulas

Definition (Semantics of Boolean formulas (cont.))

Induction step, with f and g in Φ(D):
2a

I∗((f ∧ g)) =

{
1 if I∗(f ) = 1 and I∗(g) = 1

0 otherwise

2b

I∗((f ∨ g)) =

{
1 if I∗(f ) = 1 or I∗(g) = 1

0 otherwise

2c

I∗(¬f ) =

{
1 if I∗(f ) = 0

0 if I∗(f ) = 1
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Tautology and contradiction

Definition (adapted interpretation)

An interpretation I : D → B is adapted to a Boolean formula f if all Boolean variables
that occur in f are contained in D.

Definition (tautologies and contradictions)

A Boolean formula f is a tautology if for all interpretations I, which are adapted to f ,
I(f ) = 1 holds. A Boolean formula f is a contradiction if for all interpretations I,
which are adapted to f , I(f ) = 0 holds.
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Satisfying a Boolean formula

Definition (satisfying a Boolean formula)

An interpretation I, which is adapted to a Boolean formula f , is said to satisfy the
formula f if I(f ) = 1. A formula f is called satisfiable if there exists an interpretation
which satisfies f .

The following two statements are equivalent characterizations of satisfiability:

• A Boolean formula is satisfiable if and only if its truth table contains at least one
row that results in 1.

• A Boolean formula is satisfiable if and only if it is not a contradiction.
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Equivalence of Boolean formulas

Definition (equivalence of Boolean formulas)

Let f , g be two Boolean formulas. The formula f is equivalent to the formula g , written
f ≡ g , if for all interpretations I, which are adapted to both f and g , it holds that
I(f ) = I(g).

• There are numerous “laws” of Boolean logic which are stated as equivalences.
Each of these laws can be proven by writing down the corresponding truth table.

• Boolean equivalence “laws” can be used to “calculate” with logics, executing
stepwise transformations from a starting formula to some target formula, where
each step applies one equivalence law.
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Boolean Equivalence laws

Proposition (equivalence laws)

For any Boolean formulas f , g , h, the following equivalences hold:

1. f ∧ 1 ≡ f , f ∨ 0 ≡ f (identity)

2. f ∨ 1 ≡ 1, f ∧ 0 ≡ 0 (domination)

3. (f ∧ f ) ≡ f , (f ∨ f ) ≡ f ) (idempotency)

4. (f ∧ g) ≡ (g ∧ f ), (f ∨ g) ≡ (g ∨ f ) (commutativity)

5. ((f ∧ g) ∧ h) ≡ (f ∧ (g ∧ h)), ((f ∨ g) ∨ h) ≡ (f ∨ (g ∨ h)) (associativity)

6. f ∧ (g ∨ h) ≡ (f ∧ g) ∨ (f ∧ h), f ∨ (g ∧ h) ≡ (f ∨ g) ∧ (f ∨ h) (distributivity)

7. ¬¬f ≡ f , f ∧ ¬f ≡ 0, f ∨ ¬f ≡ 1 (double negation, complementation)

8. ¬(f ∧ g) ≡ (¬f ∨ ¬g), ¬(f ∨ g) ≡ (¬f ∧ ¬g) (de Morgan’s laws)

9. f ∧ (f ∨ g) ≡ f , f ∨ (f ∧ g) ≡ f (absorption laws)
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Jürgen Schönwälder (Constructor University) Mathematical Foundations: Boolean Algebra CC-BY-NC-ND September 5, 2024 156 / 285



Literals, Monomials, Clauses

Definition (literals)

A literal Li is a Boolean formula that has one of the forms xi , ¬xi , 0, 1, ¬0, ¬1, i.e., a
literal is either a Boolean variable or a constant or a negation of a Boolean variable or a
constant. The literals xi , 0, 1 are called positive literals and the literals ¬xi , ¬0, ¬1 are
called negative literals.

Definition (monomial)

A monomial (or product term) is a literal or the conjunction (product) of literals.

Definition (clause)

A clause (or sum term) is a literal or the disjunction (sum) of literals.
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Conjunctive Normal Form

Definition (conjunctive normal form)

A Boolean formula is said to be in conjunctive normal form (CNF) if it is a conjunction
of disjunctions of literals.

• Examples of formulas in CNF:
• x1 short form of ((1 ∨ 1) ∧ (x1 ∨ 0))
• x1 ∧ x2 short form of ((x1 ∨ x1) ∧ (x2 ∨ x2))
• x1 ∨ x2 short form of ((1 ∨ 1) ∧ (x1 ∨ x2))
• ¬x1 ∧ (x2 ∨ x3) short form of ((0 ∨ ¬x1) ∧ (x2 ∨ x3))
• (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2)

• We typically write the short form, leaving out trivial expansions into full CNF form.
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Disjunctive Normal Form

Definition (disjunctive normal form)

A Boolean formula is said to be in disjunctive normal form (DNF) if it is a disjunction of
conjunctions of literals.

• Examples of formulas in DNF:
• x1 short form of ((0 ∧ 0) ∨ (x1 ∧ 1))
• x1 ∧ x2 short form of ((0 ∧ 0) ∨ (x1 ∧ x2))
• x1 ∨ x2 short form of ((x1 ∧ x1) ∨ (x2 ∧ x2))
• (¬x1 ∧ x2) ∨ (¬x1 ∧ x3)
• (¬x1 ∧ ¬x2) ∨ (x1 ∧ x2)

• We typically write the short form, leaving out trivial expansions into full DNF form.
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Equivalence of Normal Forms

Proposition (CNF equivalence)

Every Boolean formula f is equivalent to a Boolean formula g in conjunctive normal
form.

Proposition (DNF equivalence)

Every Boolean formula f is equivalent to a Boolean formula g in disjunctive normal
form.

• These two results are important since we can represent any Boolean formula in a
“shallow” format that does not need any “deeply nested” bracketing levels.
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Minterms and Maxterms

Definition (minterm)

A minterm of a Boolean function f (xn, . . . , x1, x0) is a monomial (x̂n ∧ . . . ∧ x̂1 ∧ x̂0)
where x̂i is either xi or ¬xi . A shorthand notation is md where d is the decimal
representation of the binary number obtained by replacing all negative literals with 0
and all positive literals with 1 and by dropping the operator.

Definition (maxterm)

A maxterm of a Boolean function f (xn, . . . , x1, x0) is a clause (x̂n ∨ . . . ∨ x̂1 ∨ x̂0) where
x̂i is either xi or ¬xi . A shorthand notation is Md where d is the decimal representation
of the binary number obtained by replacing all negative literals with 1 and all positive
literals with 0 and by dropping the operator.

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Boolean Algebra CC-BY-NC-ND September 5, 2024 161 / 285



Obtaining a DNF from a Truth Table

• Given a truth table, a DNF can be obtained by writing down a conjunction of the
input values for every row where the result is 1 and connecting all obtained
conjunctions together with a disjunction.

x y x ∨ y
0 0 0
0 1 1
1 0 1
1 1 0

• 2nd row: ¬x ∧ y

• 3rd row: x ∧ ¬y
• x ∨ y = (¬x ∧ y) ∨ (x ∧ ¬y) = m1 +m2
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Obtaining a CNF from a Truth Table

• Given a truth table, a CNF can be obtained by writing down a disjunction of the
negated input values for every row where the result is 0 and connecting all obtained
disjunctions together with a conjunction.

x y x ∨ y
0 0 0
0 1 1
1 0 1
1 1 0

• 1st row: x ∨ y

• 4th row: ¬x ∨ ¬y
• x ∨ y = (x ∨ y) ∧ (¬x ∨ ¬y) = M0 ·M3
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Cost of Boolean Formulas and Functions

Definition (cost of boolean formula)

The cost C (f ) of a boolean formula f is the number of operators in f .

Definition (cost of boolean function)

The cost C (f ) of a boolean function f is the minimum cost of boolean formulas
defining f :

C (f ) = min
g defines f

C (g)

• We can find formulas of arbitrary high cost for a given boolean function.

• How do we find a formula with minimal cost for a given boolean function?
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Implicants and Prime Implicants

Definition (implicant)

A product term of a Boolean function f of n variables is called an implicant of the
function f if and only if for every combination of values of the n variables for which the
product term is true, the function f is also true.

Definition (prime implicant)

An implicant of a function f is called a prime implicant of the function f if it is no
longer an implicant if any literal is deleted from it.

Definition (essential prime implicant)

A prime implicant of a function f is called an essential prime implicant of f if it covers a
true case of f that no combination of other prime implicants covers.
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Quine McCluskey Algorithm

QM-0 Find all implicants of a given function (e.g., by determining the DNF from a truth
table or by converting a boolean expression into DNF).

QM-1 Repeatedly combine non-prime implicants until there are only prime implicants left.

QM-2 Determine a minimum disjunction (sum) of prime implicants that defines the
function. (This sum not necessarily includes all prime implicants.)

• We will further detail the steps QM-1 and QM-2 in the following slides.

• See also the complete example in the notes.
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Finding Prime Implicants (QM-1)

PI-1 Classify and sort the minterms by the number of positive literals they contain.

PI-2 Iterate over the classes and compare each minterms of a class with all minterms of
the following class. For each pair that differs only in one bit position, mark the bit
position as a wildcard and write down the newly created shorter term combining
two terms. Mark the two terms as used.

PI-3 Repeat the last step if new combined terms were created.

PI-4 The set of minterms or combined terms not marked as used are the prime
implicants.

• Note: You can only combine minterms that have the wildcard at the same position.

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Boolean Algebra CC-BY-NC-ND September 5, 2024 168 / 285



Finding Minimal Sets of Prime Implicants (QM-2)

MS-1 Identify essential prime implicants (essential prime implicants cover an implicant
that is not covered by any of the other prime implicants)

MS-2 Find a minimum coverage of the remaining implicants by the remaining prime
implicants

• Note that multiple minimal coverages may exist. The algorithm above does not
define which solution is returned in this case.

• There are ways to cut the search space by eliminating rows or columns that are
“dominated” by other rows or columns.
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Propositional Logic (zeroth-order logic, ZOL)

• Propositional logic (zeroth-order logic) is a basic logic dealing with simple
propositions, which are either true or false, and the relations between propositions.

• Propositional logic can be formalized by introducing propositional variables
(representing propositions) and logical connectives (∧, ∨, ¬, →, ↔) that can be
used to construct more complex logical statements.

• Statements of propositional logic can be formalized using Boolean algebra and
hence propositional logic is also known as Boolean logic.
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Predicate Logic (first-order logic, FOL)

• Predicate logic (first-order logic) considers a world of objects and their properties.
More specifically:

- Variables denote invidual objects or constants.
- Predicates express properties of objects and how they relate to other objects.
- Functions can map values, e.g., to form simple mathematical expressions.
- Quantifiers ranging over variables can be used to express that (i) some statement
holds for all elements of a set or that (ii) at least one element of a set must exist for
which a statement holds.

• Predicate logic can be fully formalized as well.

• For a formula in predicate logic, in which all variables are bound by quantifiers, we
can derive whether it is true or false (once we agree on the semantics of the
predicates and functions).
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Second-order Logic (SOL)

• Second-order logic extends predicate logic by allowing quantifiers to range over
predicates, which is impossible in first-order logic.

• Second-order logic provides additional expressiveness but this expressiveness is only
needed in rare cases.

• Most theorems in mathematics can be formalized using first-order logic.
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Non-standard Logics

• Temporal logics capture the notion of time. They can be used to reason about the
temporal relationship of events, e.g. that a person is hungry until she eats
something.

• Many-valued logics overcome the notion that a statement is either true or false by
allowing additional truth values. For example, a three-valued logic could distinguish
true, false, and unknown.

• Fuzzy logics represent the truth of a statement by a real number between 0 and 1.
Fuzzy logic is based on the notion of fuzzy sets where set membership is described
by a membership function returning a fuzzy value between 0 and 1.

• . . .
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Logic Statements

• A common task is to decide whether statements of the following form are true:
if premises P1 and ... and Pm hold, then conclusion C holds

• The premises Pi and the conclusion C are expressed in some logic formalism, the
simplest is Boolean logic (also called propositional logic).

• Restricting us to Boolean logic here, the statement above can be seen as a Boolean
formula of the following structure

(φ1 ∧ . . . ∧ φm)→ ψ

and we are interested to find out whether such a formula is true, i.e., whether it is
a tautology.
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Tautology and Satisfiability

• Recall that a Boolean formula τ is a tautology if and only if τ ′ = ¬τ is a
contradiction. Furthermore, a Boolean formula is a contradiction if and only if it is
not satisfiable. Hence, in order to check whether

τ = (φ1 ∧ . . . ∧ φm)→ ψ

is a tautology, we may check whether

τ ′ = ¬((φ1 ∧ . . . ∧ φm)→ ψ)

is unsatisfiable.

• If we show that τ ′ is satisfiable, we have disproven τ .
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Tautology and Satisfiability

• Since φ→ ψ ≡ ¬(φ ∧ ¬ψ), we can rewrite the formulas as follows:

τ = (φ1 ∧ . . . ∧ φm)→ ψ = ¬(φ1 ∧ . . . ∧ φm ∧ ¬ψ)

τ ′ = ¬((φ1 ∧ . . . ∧ φm)→ ψ) = (φ1 ∧ . . . ∧ φm ∧ ¬ψ)
• To disprove τ , it is often easier to prove that τ ′ is satisfiable.

• Note that τ ′ has a homogenous structure. If we transform the elements
φ1, . . . , φm, ψ into CNF, then the entire formula is in CNF.

• If τ ′ is in CNF, all we need to do is to invoke an algorithm that searches for
interpretations I which satisfy a formula in CNF. If there is such an interpretation,
τ is disproven, otherwise, if there is no such interpretation, then τ is proven.
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Satisfiability Problem

Definition (satisfiability problem)

The satisfiability problem (SAT) is the following computational problem: Given as input
a Boolean formula in CNF, compute as output a “yes” or “no” response according to
whether the input formula is satisfiable or not.

• It is believed that there is no polynomial time solution for this problem.
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Symbol Sets

Definition (symbol set)

The symbol set S of a predicate logic consists of generic symbols and domain-specific
symbols. The generic symbols are:

- variables x1, x2, x3, . . . (we may also use a, b, c , . . .)

- logical connectives ∧,∨,¬,→,↔
- the equality symbol =

- the brackets ( and )

The domain-specific symbols are:

- a set of constant symbols

- a set of n-ary predicate symbols, n ≥ 1

- a set of n-ary function symbols, n ≥ 1

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Propositional and Predicate Logic CC-BY-NC-ND September 5, 2024 182 / 285



Syntax of Terms

Definition (terms)

Given a symbol set S , terms over S (also called S-terms) are defined inductively as
follows:

1. Every variable from S is an S-term.

2. Every constant from S is an S-term.

3. If f is an n-ary function symbol from S and t0, . . . , tn−1 are S-terms, then
f t0 . . . tn−1 is an S-term.

• This definition requires functions to be written in prefix notation.

• Infix notation is often allowed for functions such as addition or multiplication.

• Brackets are often allowed and used to add clarity.
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Syntax of Expressions

Definition (expressions)

Given a symbol set S , expressions over S (also called S-expressions) are defined
inductively as follows:

1. If t0 and t1 are S-terms, then t0 = t1 is an S-expression.

2. If t0, . . . , tn−1 are S-terms and P is an n-ary predicate symbol, then P t0 . . . tn−1 is
an S-expression.

3. If φ is an S-expression, then ¬φ is an S-expression.

4. If φ and ψ are S-expressions, then are (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), and (φ↔ ψ)
S-expressions.

5. If φ is an S-expressions and x is a variable, then are ∃ x φ and ∀ x φ S-expressions.
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Free Variables

Definition (free variables)

Let var(t) denote the variables that occur in a term t. The set free(φ) of variables that
occur free in the expression φ is defined inductively as follows:

free(t0 = t1) = var(t0) ∪ var(t1)

free(P t0 . . . tn−1) = var(t0) ∪ . . . ∪ var(tn−1)

free(¬φ) = free(φ)

free((φ ∧ ψ)) = free(φ) ∪ free(ψ) free((φ ∨ ψ)) = free(φ) ∪ free(ψ)

free((φ→ ψ)) = free(φ) ∪ free(ψ) free((φ↔ ψ)) = free(φ) ∪ free(ψ)

free(∃ x φ) = free(φ) \ x
free(∀ x φ) = free(φ) \ x
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Domain of Discourse

Definition (domain of discourse)

A domain of discourse D is a nonempty set of objects of some kind.

Definition (variable assignment)

A variable assignment µ associates an element of the domain of discourse D with each
variable xi of a symbol set S .

• A domain of discourse is often assumed to be a fixed set.

• If the domain of discourse varies over time, then things get complicated.

• A variable assignment may be restricted to all non-free variables of a formula.

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Propositional and Predicate Logic CC-BY-NC-ND September 5, 2024 187 / 285



Interpretation of Non-logical Symbols

Definition (interpretation of non-logical symbols)

An interpretation I of non-logical symbols of D is a mapping of symbols of constants,
predicates and functions of a symbol set to constants, predicates and functions in the
domain of discourse:

1. The interpretation of a constant symbol is an object in D.
2. The interpretation of an n-ary predicate symbol is a set of n-tuples over D for

which the predicate is true.

3. The interpretation of an n-ary function symbol f is a function Dn → D.

• An interpretation provides meaning to symbols of constants, predicates, and
functions.
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Interpretation of Logical Symbols

Definition (interpretation of logical symbols)

The interpretation I∗ of an expression using the domain D and the interpretation I of
non-logical symbols is defined inductively:

1. P t0 . . . tn−1 is true if and only if the tuple (v0, . . . , vn) is in the interpretation I of
P and v0, . . . , vn−1 are the interpretations of t0, . . . , tn−1.

2. t0 = t1 is true if and only if t0 and t1 evaluate to the same object in D.
3. ¬φ is true if and only if the interpretation of φ is false.

4. (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), and (φ↔ ψ) are true if and only if the interpretations
of φ and ψ satisfy the truth tables of the logical connectives.

5. ∃ x φ is true for a variable assignment µ if and only if there exists an interpretation
for a variable assignment µ′ that differs from µ at most regarding x .

6. ∀ x φ is true for a variable assignment µ if and only if it is true for all
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Models and Relation to Expressions

Definition (model)

The combination or structure of an interpretation I and its domain D is called a model.

Definition (model relation between interpretations and expressions)

A model M satisfies the expression φ, denoted as M ⊨ φ, if there is a suitable
assignment of values in the domain of M to variables in φ such that the expression φ
evaluates to true according to interpretation of M .

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Propositional and Predicate Logic CC-BY-NC-ND September 5, 2024 190 / 285



Entailment, Tautology, Contradiction, Satisfiability

Definition (entailment)

Let Φ be a set of expressions and φ be an expression. Then Φ entails φ, written as
Φ ⊨ φ, if and only if every interpretation, which is a model of every ψ ∈ Φ, is also a
model of φ.

Definition (tautology, contradiction, satisfiability)
• An expression φ is valid or a tautology, if it always holds, that is, ∅ ⊨ φ. We also
write ⊨ φ.
• An expression φ is invalid or a contradiction, if it never holds, that is for all
interpretations I, I ⊨ φ never holds.

• An expression φ is satisfiable if there exists and interpretation I such that I ⊨ φ
holds.
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Algebraic Structures

Definition (algebraic structure)

An algebraic structure consists of a nonempty set S (called the underlying set, carrier set
or domain), a collection of operations on S (typically binary operations such as addition
and multiplication), and a finite set of axioms that these operations must satisfy.

• A branch of mathematics known as universal algebra studies algebraic structures.

• A set S is a degenerate algebraic structure having no operations.

• We are interested in algebraic structures with one or multiple defined operations.
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Magma

Definition (magma)

A magma M = (S , ◦) is an algebraic structure consisting of a set S together with a
binary operation ◦ satisfying the following property:

∀a, b ∈ S : a ◦ b ∈ S closure

The operation ◦ is a function ◦ : S × S → S .

• A magma is a very general algebraic structure.

• By imposing additional constraints on the operation ◦, we can define more useful
classes of algebraic structures.
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Semigroup

Definition (semigroup)

A semigroup G = (S , ◦) is an algebraic structure consisting of a set S together with a
binary operation ◦ : S × S → S satisfying the following property:

∀a, b, c ∈ S : (a ◦ b) ◦ c = a ◦ (b ◦ c) associativity

• A semigroup extends a magma by requiring that the operation is associative.

• The set of semigroups is a true subset of the set of all magmas.
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Monoid

Definition (monoid)

A monoid M = (S , ◦, e) is an algebraic structure consisting of a set S together with a
binary operation ◦ : S × S → S and an identity element e satisfying the following
properties:

∀a, b, c ∈ S : (a ◦ b) ◦ c = a ◦ (b ◦ c) associativity

∃e ∈ S ,∀a ∈ S : e ◦ a = a = a ◦ e identity element

The identity element e is also called the neutral element.

• A monoid extends a semigroup by requiring that there is an identity element.

• The set of monoids is a true subset of the set of all semigroups.

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Abstract Algebra CC-BY-NC-ND September 5, 2024 197 / 285



Group

Definition (group)

A group G = (S , ◦, e) is an algebraic structure consisting of a set S together with a
binary operation ◦ : S × S → S and an identity element e satisfying the following
properties:

∀a, b, c ∈ S : (a ◦ b) ◦ c = a ◦ (b ◦ c) associativity

∃e ∈ S ,∀a ∈ S : e ◦ a = a = a ◦ e identity element

∀a ∈ S , ∃b ∈ S : a ◦ b = e inverse element

The element b is called the inverse element of a; it is often denoted as a−1.

• A group extends a monoid by requiring that there is an inverse element.

• The set of groups is a true subset of the set of all monoids.
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Abelian Group

Definition (abelian group)

An Abelian group (S , ◦, e) is an algebraic structure consisting of a set S together with a
binary operation ◦ : S × S → S and an identity element e satisfying the following
properties:

∀a, b, c ∈ S : (a ◦ b) ◦ c = a ◦ (b ◦ c) associativity

∃e ∈ S ,∀a ∈ S : e ◦ a = a = a ◦ e identity element

∀a ∈ S , ∃b ∈ S : a ◦ b = e inverse element

∀a, b ∈ S : a ◦ b = b ◦ a commutativity

• An Abelian group extends a group by requiring that the operation is commutativ.

• The set of Abelian groups is a true subset of the set of all groups.
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Group Theorems

Theorem (single identity element)

Every group G has a single identity element.

Theorem (single inverse element)

Let G = (S , ◦, e) be a group. For every a ∈ G, there exists a single b ∈ G for which
a ◦ b = e holds.

Theorem
Let G = (S , ◦, e) be a group and a, b ∈ G. Then the equation a ◦ x = b has the
solution x = a−1 ◦ b and the equation y ◦ a = b has the solution y = b ◦ a−1.
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Subgroup

Definition (subgroup)

Let G = (S , ◦, e) be a group. The group H = (S ′, ◦, e) is called a subgroup of G if
S ′ ⊆ S , denoted as H ≤ G .

Definition (proper subgroup)

A subgroup H = (S ′, ◦, e) of a group G = (S , ◦, e) defined over a proper subset of
S ′ ⊂ S is called a proper subgroup of G , denoted as H < G .

• The trivial subgroup of any group G is the group H = ({e}, ◦, e).
• Note that subgroup and group use the same operation ◦ and have the same
identity element e.
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Subgroup Test Theorem

Theorem
A nonempty subset H of a group G = (S , ◦, e) is a subgroup of G if and only if the
following properties hold:

(1) If a, b ∈ H, then a ◦ b ∈ H.

(2) If a ∈ H, then a−1 ∈ H.

• To check whether a H is a subgroup of G , it is sufficient to show that H is
nonempty, closed under ◦, and closed under inverses.

• This is often simpler than showing all group properties.
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Cyclic Subgroup Theorem

Theorem
Let G = (S , ◦, e) be a group and a ∈ G. Then H = (S ′, ◦, e) with S ′ = { an | n ∈ Z } is
a subgroup of G .

• Recall that the notation an means applying the group operation circ n times to a.

• For an additive group, an equals na.

• For a group representing symmetries, an means applying a symmetry operation
(e.g., a certain rotation) n times.
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Permutation Groups and Symmetric Groups

Definition (permutation group)

A permutation group G is a group whose elements are permutations of a given set M
and whose group operation is a composition of permutations of G .

Definition (symmetric group)

The group of all permutations of a given set M is called the symmetric group of M . If
M = {1, 2, . . . , n}, then the symmetric group of degree n is denoted by Sn.

• We usually consider only finite sets M .

• If the cardinality of M is n, then it is easy to see that |Sn| = n!.

• Permutation groups of M are subgroups of the symmetric group of M .
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Left Cosets and Right Cosets

Definition (left cosets and right cosets)

Let G = (S , ◦, e) be a group and H be a subgroup of G . For a given fixed element
a ∈ G , we call the set aH = { a ◦ h | h ∈ H } the left coset of H for a ∈ G . Similarly, for
a given fixed element a ∈ G , we call the set Ha = { h ◦ a | h ∈ H } the right coset of H
for a ∈ G .

• For an Abelian group G , we know that aH = Ha for any a ∈ G .

• Since G is closed under the group operation, every coset of G is a subset of G .
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Coset Partition and Equivalence Relation

Theorem (coset partition and equivalence relation)

Let H be a subgroup of a group G = (S , ◦, e). Then the following statements hold and
are equivalent:

(1) The family of left cosets of H form a partition of the group G, that is, G is a
disjoint union of left cosets of H.

(2) The relation a ∼ b ⇔ a ∈ bH is an equivalence relation on G.

(3) For every g ∈ G, there is exactly one left coset of H in G containing g.

(4) If aH and bH are left cosets of H in G, then either aH = bH or aH ∩ bH = ∅.
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Lagrange’s Theorem

Theorem (Lagrange’s theorem)

Let H be a subgroup of a finite group G. Then the order of H, denoted as |H |, is a
divisor of the order of G , denoted as |G |. This can also be stated as |G | = [G : H] · |H |.

• A corollary is that any group of prime order is cyclic and simple, that is, it only has
two subgroups, the trival subgroup of the identity element and the group itself.

• Lagrange’s theorem can be used to prove Fermat’s little theorem and it’s
generalization, Euler’s theorem.

• Note that it is not true that for all divisors d of |G | there is also a subgroup H with
that order, |H | = d .
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Ring

Definition
A ring R = (S ,+, ·, 0, 1) is an algebraic structure consisting of a set S together with two
binary operations + : S × S → S and · : S × S → S satisfying the following properties:

1. (S ,+, 0) is an Abelian group with the identity element 0.

2. (S , ·, 1) is a monoid with the identity element 1.

3. Multiplication is distributive with respect to addition:

∀a, b, c ∈ S : a · (b + c) = (a · b) + (a · c) left distributivity

∀a, b, c ∈ S : (b + c) · a = (b · a) + (c · a) right distributivity
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Field

Definition (field)

A field F = (S ,+, ·, 0, 1) is an algebraic structure consisting of a set S together with
two operations + : S × S → S and · : S × S → S satisfying the following properties:

1. (S ,+, 0) is a group with the identity element 0

2. (S \ {0}, ·, 1) is a group with the identity element 1

3. Multiplication distributes over addition

• A field is a commutative ring where 0 ̸= 1 and all nonzero elements are invertible
under multiplication.

• Well known fields are the field of rational numbers, the field of real numbers, or the
field of complex numbers.
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Homomorphism, Monomorphism, Epimorphism, Isomorphism

Definition (homomorphism)

A homomorphism is a structure-preserving map between two algebraic structures of the
same type that preserves the operations of the structures.

Definition (monomorphism)

An injective homomorphism is called a monomorphism.

Definition (epimorphism)

A surjective homomorphism is called an epimorphism.

Definition (isomorphism)

A bijective homomorphism is called an isomorphism.
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Endomorphism, Automorphism

Definition (endomorphism)

A homomorphism where the domain equals the codomain is called an endomorphism.

Definition (automorphism)

An endomorphism which is also an isomorphism is called an automorphism.
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Properties of Group Homomorphisms

Theorem
Let G = (S , ◦, eG ) and H = (T , ⋆, eH) be groups and let f : G → H be a
homomorphism mapping G to H. Then the following holds:

f (eG ) = eH f maps the identity elements

∀a ∈ G : f (a−1) = (f (a))−1 f maps inverses
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Cayley’s Theorem

Theorem
Every group G is isomorphic to a subgroup of a symmetric group.

• If G is a finite group of order n, then G is isomorphic to a subgroup of the
standard symmetric group Sn.

• Recall that the symmetric group Sn is the group whose elements are all bijections
from a set with n elements to itself under composition.
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Lattice

Definition (lattice)

A lattice L = (S ,⊔,⊓) is an algebraic structure consisting of a nonempty set S together
with two binary operations ⊔ : S × S → S (join) and ⊓ : S × S → S (meet) satisfying
the following properties for a, b, c ∈ S :

a ⊔ b = b ⊔ a a ⊓ b = b ⊓ a commutative laws

a ⊔ (b ⊔ c) = (a ⊔ b) ⊔ c a ⊓ (b ⊓ c) = (a ⊓ b) ⊓ c associative laws

a ⊔ a = a a ⊓ a = a idempotent laws

a ⊔ (a ⊓ b) = a a ⊓ (a ⊔ b) = a absorption laws
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Lattice and Partial Orders

Theorem
A nonempty partially ordered set S for which both the suprenum sup(a, b) and the
infimum inf(a, b) exist in S for every a, b ∈ S forms the lattice L = (S , sup, inf).

• Recall that a binary relation is a partial order if it is
• reflexive,
• antisymmetric, and
• transitive.

• The suprenum sup(a, b) of a, b ∈ S is the smallest upper bound of a and b.

• The infimum inf(a, b) of a, b ∈ S is the greatest lower bound of a and b.

• Some authors define lattices via partially ordered sets.
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Distributive Lattice

Definition (distributive lattice)

A distributive lattice is a lattice L = (S ,⊔,⊓) which satisfies the distributive laws for
a, b, c ∈ S :

a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c)

a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ (a ⊔ c)

• It can be shown that one distributive law implies the other.
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Simple Graphs

Definition (simple graphs)

A simple graph is a pair G = (V ,E ), where V is a set of vertices, and E is a set of
unordered pairs {u, v} of edges with u, v ∈ V and u ̸= v . The vertices u and v of an
edge {u, v} are called the edge’s endpoints. When an edge {u, v} exists, then the
vertices u and v are called adjacent. The set of vertices adjacent to a give vertex v are
called the neighbors of v .

• A simple graph has no links connecting a vertex to itself (so called self-loops).

• There can only be a single edge connecting two vertices in a simple graph.

• Sometimes it is convenient to restrict V to finite sets.
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Multigraphs

Definition (multigraphs)

A multigraph is a triple G = (V ,E , f ), where V is a set of vertices, E is a set of edges,
and f : E → (V × V ) is a function mapping edges to pairs (u, v).

• Multigraphs allow self-loops.

• Multigraphs allow multiple edges between a pair of vertices.

• Obviously, every simple graph is also a multigraph.

• Since multigraph are more complex, it makes sense to use simple graphs when
there is no need for multigraphs.
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Degree of Vertices

Definition (degrees)

Let G = (V ,E ) be a graph and v ∈ V be a vertex of G . Then, the number of edges
e ∈ E that contain v is called the degree of v , denoted as deg v .

Theorem
Let G = (V ,E ) be a simple graph. Then, the sum of the degrees of all vertices of G
equals twice the number of edges of G :∑

v∈V

deg v = 2 · |E |
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Walks, Trails, Paths

Definition (walk)

Let G = (V ,E ) be a graph. A finite sequence (v0, v1, . . . , vk) of vertices vi ∈ V is
called a walk of G if the pairs vi and vi+1, with i ∈ {0, . . . , k − 1}, are edges in E . The
number k is called the length of the walk.

Definition (trail)

Let G = (V ,E ) be a graph and w be a walk of G . The walk is called a trail if all edges
of the walk are distinct.

Definition (path)

Let G = (V ,E ) be a graph and w be a walk of G . The walk is called a path if all
verticies of the walk are distinct.
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Closed Walks and Cycles

Definition (closed walk)

Let w = (v0, v1, . . . , vk) be a walk of a graph G . The walk is called a closed walk of G
if the first and last vertex are the same, that is v0 = vk .

Definition (cycle)

Let w = (v0, v1, . . . , vk) be a closed walk of a graph G . The walk is called a cycle of G
if k ≥ 3 and the vertices v0, v1, . . . , vk−1 are distinct.

• Common algorithmic problems:

- Determine whether a given graph is cycle-free.
- Determine a shortest closed walk covering a given set of vertices.
- Determine a shortest path between two vertices.
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Connected Components

Definition (path-connectedness)

Let G = (V ,E ) be a simple graph. Two vertices u, v ∈ V are path-connected, denoted
as u ≃G v , if and only if there is a walk from u to v in G .

Theorem
Let G be a simple graph. Then ≃G is an equivalence relation.

Definition (connected components)

Let G be a simple graph. The equivalence classes of the equivalence relation ≃G are
called the connected components of G . A graph G is connected if G has exactly one
component.

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Graphs and Graph Algorithms CC-BY-NC-ND September 5, 2024 227 / 285



Subgraphs, Induced Subgraphs, Triangles

Definition (subgraph)

Let G = (V ,E ) be a simple graph. A graph H = (W ,F ) is called a subgraph of G if
and only if W ⊆ V and F ⊆ E .

Definition (induced subgraph)

Let G = (V ,E ) be a simple graph. A graph H = (S ,F ) is called an induced subgraph
of G if there exists an S ⊆ V and F contains precisely those edges whose endpoints
belong to S .

Definition (triangle)

Let G = (V ,E ) be a simple graph and u, v , w be three distinct vertices of G . The
induced subgraph of G on {u, v ,w} is a triangle of G.
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Composition: Disjoint Union

Definition (disjoint union)

Let G1,G2, . . . ,Gk be simple graphs, where Gi = (Vi ,Ei) for each i ∈ {1, 2, . . . , k}. The
disjoint union of the graphs G1,G2, . . . ,Gk , denoted as G1 ⊔ G2 ⊔ . . . ⊔ Gk , is defined to
be the simple graph G = (V ,E ), where

V = {(i , v) | i ∈ {1, 2, . . . , k} ∧ v ∈ Vi} and

E = {{(i , v1), (i , v2)} | i ∈ {1, 2, . . . , k} ∧ {v1, v2} ∈ Ei}
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Decompositions: Subgraphs of Components

Theorem
Let G be a simple graph and C be a component of G . Then, the induced subgraph of
G on the set C is connected.

Theorem
Let G be a simple graph and let C1,C2, . . . ,Ck be all components of G . Then G is
isomorphic to the disjoint union of subgraphs induced by the components.
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Section 30: Directed Graphs and Directed Multigraphs

29 Graphs and Multigraphs

30 Directed Graphs and Directed Multigraphs

31 Trees

32 Graph Traversals

33 Maximum Flows
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Directed Graphs

Definition (simple directed graphs)

A simple directed graph (also called a digraph) is a pair G = (V ,E ), where V is a finite
set of vertices, and E is a subset of V × V of edges. An edge (u, v) ∈ E is also called
an arc of G and u is called the source of this arc and v the target of this arc.

• We draw edges of digraphs as arrows pointing from the source to the target.

• Note that this definition of simple digraphs allows loops.
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Directed Multigraphs

Definition (directed multigraphs)

A directed multigraph is a triple G = (V ,E , f ), where V is a finite set of vertices, E is
finite set of edges, and f : E → (V × V ) is a function mapping edges to arcs (u, v).

• Directed multigraphs allow multiple directed edges between a pair of vertices.

• Obviously, every simple directed graph is also a directed multigraph.

• Since directed multigraph are more complex, it makes sense to use simple directed
graphs when there is no need for directed multigraphs.
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Indegrees and Outdegrees

Definition (indegrees and outdegrees)

Let G = (V ,E ) be a simpe directed graph or a directed multigraph and v ∈ V be a
vertex of G . Then, the number of edges e ∈ E that contain v as a source is called the
outdegree of v , denoted as deg+ v . The number of edges e ∈ E that contain v as a
target is called the indegree of v , denoted as deg− v .

Theorem
Let G = (V ,E ) be a directed graph or directed multigraph. Then, the sum of all
indegree equals the sum of all outdegree and is given by the size of E .∑

v∈V

deg+ v =
∑
v∈V

deg− v = |E |

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Graphs and Graph Algorithms CC-BY-NC-ND September 5, 2024 234 / 285



Walks, Trails, Paths, Cycles

Definition (cycle)

Let w = (v0, v1, . . . , vk) be a closed walk of a directed graph G . The walk is called a
cycle of G if k ≥ 1 and the vertices v0, v1, . . . , vk−1 are distinct.

• The definition of walks, trails, paths, closed paths, and cylces for graphs can be
easily extended to directed graphs, the only difference is that edges can only be
traversed in one direction in directed graphs.

• A new definition of a cycle is needed since
• directed graphs can have loops and
• directed arcs avoid problems caused by the possibility to pass edges in both

directions.

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Graphs and Graph Algorithms CC-BY-NC-ND September 5, 2024 235 / 285



Strong Components

Definition (strong path-connectedness)

Let G = (V ,E ) be a directed graph or a directed multigraph. Two vertices u, v ∈ V are
strong path-connected, denoted as u ≃ v , if and only if there is a walk from u to v and
a walk from v to u in G .

Theorem
Let G be a directed graph or a directed multigraph. Then ≃G is an equivalence relation.

Definition (strong components)

Let G be a directed graph or a directed multigraph. The The equivalence classes of the
equivalence relation ≃G are called the strong components of G . A directed graph or
directed multigraph G is strongly connected if G has exactly one strong component.
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Section 31: Trees

29 Graphs and Multigraphs

30 Directed Graphs and Directed Multigraphs

31 Trees

32 Graph Traversals

33 Maximum Flows

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Graphs and Graph Algorithms CC-BY-NC-ND September 5, 2024 237 / 285



Forrests and Trees

Definition (forrest)

A forrest is a multigraph with no cycles.

Definition (tree)

A tree is a connected forrest.

Definition (backtrack-free walk)

Let G be a multigraph. A backtrack-free walk of G is a walk w where no two adjacent
edges of w are identical.
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Tree Equivalence Theorem

Theorem
Let G = (V ,E ) be a multigraph. Then the following statements are equivalent:

1. G is a tree.

2. G has no loops, and we have V ̸= ∅, and for each u, v ∈ V , there is a unique path
from u to v.

3. V ̸= ∅, and for each u, v ∈ V , there is a unique backtrack-free walk from u to v.

4. G is connected, and we have |E | = |V | − 1.

5. G is connected, and we have |E | < |V |.
6. G is a forrest with V ̸= ∅, but adding any new edge to G creates a cycle.

7. G is connected, but removing any edge from G yields a disconnected graph.

8. G is a forrest, and we have |E | ≥ |V | − 1 and V ̸= ∅.
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Induction Principle for Trees

Definition (leaf)

Let T = (V ,E ) be a tree. A vertex v of T is called a leaf if its degree deg v = 1.

Theorem
Let T = (V ,E ) be a tree with at least two vertices. Let v be a leaf of T . Let T \ v be
the multigraph obtained from T by removing v and all edges that contain v . Then,
T \ v is a tree.
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Spanning Trees

Definition (spanning subgraph)

Let G = (V ,E , f ) be a multigraph. A spanning subgraph is a multigraph of the form
(V ,F , f |F ), where F is a subset of E .

Definition (spanning tree)

A spanning tree of a multigraph G is a spanning subgraph of G that is also a tree.

Theorem
Each connected multigraph G has at least one spanning tree.

• A spanning subgraph is created by removing edges.

• A spanning tree can be created by repeatedly removing edges until a tree is left.
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Section 32: Graph Traversals

29 Graphs and Multigraphs

30 Directed Graphs and Directed Multigraphs

31 Trees

32 Graph Traversals

33 Maximum Flows
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Graph Traversals

Definition (graph traversal)

Let G = (V ,E ) be a connected graph. A graph traversal is a systematic method for
visiting every vertex of G from a given start vertex s ∈ V .

Definition (queue)

A queue is a collection of elements maintained in sequence where elements can be
added (enqueued) at the end of the queue and be removed (dequeued) from the front
of the queue.

Definition (stack)

A stack is a collection of elements maintained in sequence where elements can be added
(pushed) on the top of the stack and be removed (popped) from the top of the stack.
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Breath First Search Graph Traversal

1: procedure bfs(G , start, func)
2: visited ← ∅, queue ← ∅
3: queue.enqueue(start)
4: while queue ̸= ∅ do
5: current ← queue.dequeue()
6: if current ̸∈ visited then
7: visited ← visited ∪ {current}
8: func(current)
9: for node ∈ G .adjacencies(current) do
10: if node ̸∈ visited then
11: queue.enqueue(node)
12: end if
13: end for
14: end if
15: end while
16: end procedure
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Depth First Search Graph Traversal

1: procedure bfs(G , start, func)
2: visited ← ∅, stack ← ∅
3: stack .push(start)
4: while stack ̸= ∅ do
5: current ← stack .pop()
6: if current ̸∈ visited then
7: visited ← visited ∪ {current}
8: func(current)
9: for node ∈ G .adjacencies(current) do
10: if node ̸∈ visited then
11: stack .push(node)
12: end if
13: end for
14: end if
15: end while
16: end procedure
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Section 33: Maximum Flows

29 Graphs and Multigraphs

30 Directed Graphs and Directed Multigraphs

31 Trees

32 Graph Traversals

33 Maximum Flows
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Network

Definition (network)

A network N = (G , s, t, c) consists of a directed multigraph G = (V ,E , f ), a vertice
s ∈ V , called the source, a vertice t ∈ V distinct from s called the sink, and a function
c : E → N, called the capacity function.

• Network theory is a branch of mathematics studying graphs where vertices and
edges posses some attributes.

• Other attributes of interest are usually cost functions expressing the cost of using
an edge.
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Flow

Definition (flow)

Let N = (G , s, t, c) be a network with G = (V ,E , g). A flow on the network N is a
function f : E → N with the following properties:

• f satisfies the capacity constraints 0 ≤ f (e) ≤ c(e) for each e ∈ E .

• f satisfies the conversation constraints f −(v) = f +(v) for each v ∈ V \ {s, t}.

Definition (inflow and outflow)

Let N = (G , s, t, c) be a network with G = (V ,E , g) and let f be a flow. The inflow of
f , denoted as f −(v), and the outflow of f , denoted as f +(v), are defined as follows:

f −(v) =
∑

e∈E ,v target of e

f (e) f +(v) =
∑

e∈E ,v source of e

f (e)
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Part 8: Software Correctness

34 Software Specification

35 Software Verification

36 Automation of Software Verification
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Section 34: Software Specification

34 Software Specification

35 Software Verification

36 Automation of Software Verification
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Formal Specification and Verification

Definition (formal specification)

A formal specification uses a formal (mathematical) notation to provide a precise
definition of what a program should do.

Definition (formal verification)

A formal verification uses logical rules to mathematically prove that a program satisfies
a formal specification.

• For many non-trivial problems, creating a formal, correct, and complete
specification is a problem by itself.

• A bug in a formal specification leads to programs with verified bugs.
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Floyd-Hoare Triple

Definition (hoare triple)

Given a state that satisfies precondition P , executing a program C (and assuming it
terminates) results in a state that satisfies postcondition Q. This is also known as the
“Hoare triple”:

{P} C {Q }

• Invented by Charles Anthony (“Tony”) Richard Hoare with original ideas from
Robert Floyd (1969).

• Hoare triple can be used to specify what a program should do.

• Example:
{X = 1} X := X + 1 {X = 2 }
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Partial Correctness and Total Correctness

Definition (partial correctness)

An algorithm starting in a state that satisfies a precondition P is partially correct with
respect to P and Q if results produced by the algorithm satisfy the postcondition Q.
Partial correctness does not require that a result is always produced, i.e., the algorithm
may not terminate for some inputs.

Definition (total correctness)

An algorithm is totally correct with respect to P and Q if it is partially correct with
respect to P and Q and it always terminates.
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Hoare Notation Conventions

1. The symbols V , V1, . . . , Vn stand for arbitrary variables. Examples of particular
variables are X , Y , R etc.

2. The symbols E , E1, . . . , En stand for arbitrary expressions (or terms). These are
expressions like X + 1,

√
2 etc., which denote values (usually numbers).

3. The symbols S , S1, . . . , Sn stand for arbitrary statements. These are conditions
like X < Y , X 2 = 1 etc., which are either true or false.

4. The symbols C , C1 , . . . , Cn stand for arbitrary commands of our programming
language; these commands are described on the following slides.

• We will use lowercase letters such as x and y to denote auxiliary variables (e.g., to
denote values stored in variables).
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Hoare Assignments

• Syntax: V := E

• Semantics: The state is changed by assigning the value of the expression E to the
variable V . All variables are assumed to have global scope.

• Example: X := X + 1
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Hoare Skip Command

• Syntax: SKIP

• Semantics: Do nothing. The state after executing the SKIP command is the same
as the state before executing the SKIP command.

• Example: SKIP
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Hoare Command Sequences

• Syntax: C1; . . . ;Cn

• Semantics: The commands C1, . . . ,Cn are executed in that order.

• Example: R := X ;X := Y ;Y := R
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Hoare Conditionals

• Syntax: IF S THEN C1 ELSE C2 FI

• Semantics: If the statement S is true in the current state, then C1 is executed. If S
is false, then C2 is executed.

• Example: IF X < Y THEN M := Y ELSE M := X FI
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Hoare While Loop

• Syntax: WHILE S DO C OD

• Semantics: If the statement S is true in the current state, then C is executed and
the WHILE-command is repeated. If S is false, then nothing is done. Thus C is
repeatedly executed until the value of S becomes false. If S never becomes false,
then the execution of the command never terminates.

• Example: WHILE ¬(X = 0) DO X := X − 2 OD
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Termination can be Tricky

1: function collatz(X )
2: while X > 1 do
3: if (X%2) ̸= 0 then
4: X ← (3 · X ) + 1
5: else
6: X ← X/2
7: end if
8: end while
9: return X
10: end function

• Collatz conjecture: The program will eventually return the number 1, regardless of
which positive integer is chosen initially.
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Specification can be Tricky

• Specification for the maximum of two variables:

{T} C { Y = max(X ,Y ) }

• C could be:

IF X > Y THEN Y := X ELSE SKIP FI

• But C could also be:

IF X > Y THEN X := Y ELSE SKIP FI

• And C could also be:

Y := X

• Use auxiliary variables x and y to associate Q with P :

{ X = x ∧ Y = y } C { Y = max(x , y) }
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Section 35: Software Verification

34 Software Specification

35 Software Verification

36 Automation of Software Verification
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Floyd-Hoare Logic

• Floyd-Hoare Logic is a set of inference rules that enable us to formally proof partial
correctness of a program.

• If S is a statement, we write ⊢ S to mean that S has a proof.

• The axioms of Hoare logic will be specified with a notation of the following form:

⊢ S1, . . . ,⊢ Sn

⊢ S

• The conclusion S may be deduced from ⊢ S1, . . . ,⊢ Sn, which are the hypotheses
of the rule.

• The hypotheses can be theorems of Floyd-Hoare logic or they can be theorems of
mathematics.
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Precondition Strengthening

• If P implies P ′ and we have shown {P ′} C {Q}, then {P} C {Q} holds as well:

⊢ P → P ′, ⊢ {P ′} C {Q}
⊢ {P} C {Q}

• Example: Since ⊢ X = n→ X + 1 = n + 1, we can strengthen

⊢ { X + 1 = n + 1 } X := X + 1 { X = n + 1 }

to
⊢ { X = n } X := X + 1 { X = n + 1 }.
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Postcondition Weakening

• If Q ′ implies Q and we have shown {P} C {Q ′}, then {P} C {Q} holds as well:

⊢ {P} C {Q ′}, ⊢ Q ′ → Q

⊢ {P} C {Q}

• Example: Since X = n + 1→ X > n, we can weaken

⊢ { X = n } X := X + 1 { X = n + 1 }

to
⊢ { X = n } X := X + 1 { X > n }

Jürgen Schönwälder (Constructor University) Mathematical Foundations: Software Correctness CC-BY-NC-ND September 5, 2024 266 / 285



Weakest Precondition

Definition (weakest precondition)

Given a program C and a postcondition Q, the weakest precondition wp(C ,Q) denotes
the largest set of states for which C terminates and the resulting state satisfies Q.

Definition (weakest liberal precondition)

Given a program C and a postcondition Q, the weakest liberal precondition wlp(C ,Q)
denotes the largest set of states for which C leads to a resulting state satisfying Q.

• The “weakest” precondition P means that any other valid precondition implies P .

• The definition of wp(C ,Q) is due to Dijkstra (1976) and it requires termination
while wlp(C ,Q) does not require termination.
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Strongest Postcondition

Definition (stronges postcondition)

Given a program C and a precondition P , the strongest postcondition sp(C ,P) has the
property that ⊢ { P } C { sp(C ,P) } and for any Q with ⊢ { P } C { Q }, we have
⊢ sp(C ,P)→ Q.

• The “strongest” postcondition Q means that any other valid postcondition is
implied by Q (via postcondition weakening).
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Assignment Axiom

• Let P[E/V ] (P with E for V ) denote the result of substituting the expression E for
all occurances of the variable V in the statement P .

• An assignment assigns a variable V an expression E :

⊢ { P[E/V ] } V := E { P }

• Example:
{ X + 1 = n + 1 } X := X + 1 { X = n + 1 }
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Specification Conjunction and Disjunction

• If we have shown { P1 } C { Q1 } and { P2 } C {Q2}, then
{ P1 ∧ P2 } C { Q1 ∧ Q2 } holds as well:

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∧ P2} C {Q1 ∧ Q2}

• We get a similar rule for disjunctions:

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∨ P2} C {Q1 ∨ Q2}

• These rules allows us to prove ⊢ { P } C { Q1 ∧ Q2 } by proving both
⊢ { P } C { Q1 } and ⊢ { P } C { Q2 }.
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Skip Command Rule

• Syntax: SKIP

• Semantics: Do nothing. The state after executing the SKIP command is the same
as the state before executing the command SKIP .

• Skip Command Rule:

⊢ {P} SKIP {P}
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Sequence Rule

• Syntax: C1; . . . ;Cn

• Semantics: The commands C1, . . . ,Cn are executed in that order.

• Sequence Rule:

⊢ {P} C1 {R}, ⊢ {R} C2 {Q}
⊢ {P} C1;C2 {Q}

The sequence rule can be easily generalized to n > 2 commands:

⊢ {P} C1 {R1}, ⊢ {R1} C2 {R2}, . . . , ⊢ {Rn−1} Cn {Q}
⊢ {P} C1;C2; . . . ;Cn {Q}
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Conditional Command Rule

• Syntax: IF S THEN C1 ELSE C2 FI

• Semantics: If the statement S is true in the current state, then C1 is executed. If S
is false, then C2 is executed.

• Conditional Rule:

⊢ {P ∧ S} C1 {Q}, ⊢ {P ∧ ¬S} C2 {Q}
⊢ {P} IF S THEN C1 ELSE C2 FI {Q}
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While Command Rule

• Syntax: WHILE S DO C OD

• Semantics: If the statement S is true in the current state, then C is executed and
the WHILE-command is repeated. If S is false, then nothing is done. Thus C is
repeatedly executed until the value of S becomes false. If S never becomes false,
then the execution of the command never terminates.

• While Rule:

⊢ {P ∧ S} C {P}
⊢ {P} WHILE S DO C OD {P ∧ ¬S}

P is an invariant of C whenever S holds. Since executing C preserves the truth of
P , executing C any numbner of times also preserves the truth of P .
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Section 36: Automation of Software Verification

34 Software Specification

35 Software Verification

36 Automation of Software Verification
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Proof Automation

• Proving even simple programs manually takes a lot of effort

• There is a high risk to make mistakes during the process

• General idea how to automate the proof:

(i) Let the human expert provide annotations of the specification (e.g., loop invariants)
that help with the generation of proof obligations

(ii) Generate proof obligations automatically (verification conditions)
(iii) Use automated theorem provers to verify some of the proof obligations
(iv) Let the human expert prove the remaining proof obligations (or let the human

expert provide additional annotations that help the automated theorem prover)

• Step (ii) essentially compiles an annotated program into a conventional
mathematical problem.
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Annotations

• Annotations are required

(i) before each command Ci (with i > 1) in a sequence C1;C2; . . . ;Cn, where Ci is not
an assignment command and

(ii) after the keyword DO in a WHILE command (loop invariant)

• The inserted annotation is expected to be true whenever the execution reaches the
point of the annotation.

• For a properly annotated program, it is possible to generate a set of proof goals
(verification conditions).

• It can be shown that once all generated verification conditions have been proved,
then ⊢ {P} C {Q}.
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Generation of Verification Conditions

• Assignment {P} V := E {Q}:
Add verification condition P → Q[E/V ].

• Conditions {P} IF S THEN C1 ELSE C2 FI {Q}
Add verification conditions generated by {P ∧ S} C1 {Q} and {P ∧ ¬S} C2 {Q}
• Sequences of the form {P} C1; . . . ;Cn−1; {R} Cn {Q}
Add verification conditions generated by {P} C1; . . . ;Cn−1 {R} and {R} Cn {Q}
• Sequences of the form {P} C1; . . . ;Cn−1; V := E {Q}
Add verification conditions generated by {P} C1; . . . ;Cn−1 {Q[E/V ]}
• While loops {P} WHILE S DO {R} C OD {Q}
Add verification conditions P → R and R ∧ ¬S → Q
Add verificiation conditions generated by {R ∧ S} C {R}
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Total Correctness

• We assume that the evaluation of expressions always terminates.

• With this simplifying assumption, only WHILE commands can cause loops that
potentially do not terminate.

• All rules for the other commands can simply be extended to cover total correctness.

• The assumption that expression evaluation always terminates is often not true.
(Consider recursive functions that can go into an endless recursion.)

• We have so far also silently assumed that the evaluation of expressions always
yields a proper value, which is not the case for a division by zero.

• Relaxing our assumptions for expressions is possible but complicates matters
significantly.
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Rules for Total Correctness [1/4]

• Assignment axiom
⊢ [P[E/V ]] V := E [P]

• Precondition strengthening

⊢ P → P ′, ⊢ [P ′] C [Q]

⊢ [P] C [Q]

• Postcondition weakening

⊢ [P] C [Q ′], ⊢ Q ′ → Q

⊢ [P] C [Q]
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Rules for Total Correctness [2/4]

• Specification conjunction

⊢ [P1] C [Q1], ⊢ [P2] C [Q2]

⊢ [P1 ∧ P2] C [Q1 ∧ Q2]

• Specification disjunction

⊢ [P1] C [Q1], ⊢ [P2] C [Q2]

⊢ [P1 ∨ P2] C [Q1 ∨ Q2]

• Skip command rule

[P] SKIP [P]
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Rules for Total Correctness [3/4]

• Sequence rule

⊢ [P] C1 [R1], ⊢ [R1] C2 [R2], . . . , ⊢ [Rn−1] Cn [Q]

⊢ [P] C1;C2; . . . ;Cn [Q]

• Conditional rule
⊢ [P ∧ S ] C1 [Q], ⊢ [P ∧ ¬S ] C2 [Q]

⊢ [P] IF S THEN C1 ELSE C2 FI [Q]
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Rules for Total Correctness [4/4]

• While rule

⊢ [P ∧ S ∧ E = n] C [P ∧ (E < n)], ⊢ P ∧ S → E ≥ 0

⊢ [P] WHILE S DO C OD [P ∧ ¬S ]

E is an integer-valued expression
n is an auxiliary variable not occuring in P , C , S , or E

• A prove has to show that a non-negative integer, called a variant, decreases on
each iteration of the loop command C .
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Generation of Termination Verification Conditions

• The rules for the generation of termination verificiation conditions follow directly
from the rules for the generation of partial correctness verificiation conditions,
except for the while command.

• To handle the while command, we need an additional annotation (in square
brackets) that provides the variant expression.

• For while loops of the form {P} WHILE S DO {R} [E ] C OD {Q} add the
verification conditions

P → R

R ∧ ¬S → Q

R ∧ S → E ≥ 0

and add verificiation conditions generated by {R ∧ S ∧ (E = n)} C {R ∧ (E < n)}
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Termination and Correctness

• Partial correctness and termination implies total correctness:

⊢ {P} C {Q}, ⊢ [P] C [T]

⊢ [P] C [Q]

• Total correctness implies partial correctness and termination:

⊢ [P] C [Q]

⊢ {P} C {Q}, ⊢ [P] C [T]
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