Module: CH-233 Date: 2024-10-25 Due: 2024-11-01

Problem Sheet #8

Problem 8.1: *quine-mccluskey algorithm*

(2+4+3+1 = 10 points)

Consider natural numbers in the range 0...63, which can be represented using six bits x_i with $i \in \{0, \ldots, 5\}$. The boolean function $f(x_5, x_4, x_3, x_2, x_1, x_0)$ is true when the number $(x_5x_4x_3x_2x_1x_0)_2$ is a Fibonacci number and false otherwise. The Fibonacci sequence F_0, F_1, F_2, \ldots is defined by the recurrance relation $F_n = F_{n-1} + F_{n-2}$ with $F_0 = 0$ and $F_1 = 1$.

- a) Provide a boolean expression in DNF defining the boolean function *f*. What is the cost of the DNF expression?
- b) Determine the prime implicants of the boolean function f.
- c) Construct the prime implicant chart and determine the essential prime implicants. What is a minimal set of prime implicants covering the boolean function f?
- d) Write out a minimal boolean expression defining f using mathematical logic notation. What is the cost of the minimal boolean expression?

For calculating the cost of a boolean expression, we only consider \land and \lor operations.