Module: CH-233 Date: 2024-11-08 Due: 2024-11-15

Problem Sheet #10

Problem 10.1: product group

Let $G = (S_G, \star, e_G)$ and $H = (S_H, \star, e_H)$ be two groups. Then the product of G and H, denoted by $G \times H$, consists of all ordered pairs (x, y) in $S_G \times S_H$. We define the operation \circ on $S_G \times S_H$ as follows:

$$(x, y) \circ (x', y') = (x \star x', y \star y')$$

Show that $G \times H = (S_G \times S_H, \circ, e)$ is a group for a suitable identity element *e*.

Problem 10.2: subgroups of $(\mathbb{Z}_6, +, 0)$

(3 points)

Determine all subgroups of $G = (\mathbb{Z}_6, +, 0)$ where + denotes addition modulo 6.

Problem 10.3: another subgroup test

Let $G = (S, \circ, e)$ be a group and let U be a non-empty subset of S. Show that (U, \circ, e) is a subgroup of G if and only if for all $a, b \in U$ the element $a \circ b^{-1} \in U$.

(2 points)

(5 points)