Mathematical Foundations of Computer Science

Constructor University Dr. Jürgen Schönwälder

Problem Sheet #2

Problem 2.1: boyer moore algorithm

(2+2=4 points)

Module: CH-233

Date: 2025-09-12

Due: 2025-09-19

You have implemented a run and jump game, which is controlled by a game controller sending a sequence of run (R), jump (J), wait (W), and turn (T) control signals. A game play thus can be expressed with a sequence such as RRJRJRWRWRRJRWR. Using the Boyer Moore algorithm, we can determine whether a sequence of a game play contains certain control sequences.

Let $\Sigma = \{J, R, T, W\}$ be an alphabet and $t \in \Sigma^*$ be a text of length n describing a game play. Let $p \in \Sigma^*$ be a pattern of length m. We are looking for the first occurrence of p in t.

Consider the text t = RTJRJRWRWRTJRTJRWR and the pattern p = JRTJR.

- a) Execute the Boyer-Moore string search algorithm with the good suffix rule only. How many alignments are used? How many comparisons are done?
- b) Execute the Boyer-Moore string search algorithm with the bad character rule and the good suffix rule. How many alignments are used? How many comparisons are done?

Problem 2.2: landau sets

(2+2+2 = 6 points)

Let $\sin:\mathbb{R}\to\mathbb{R}$ denote the sine trigonometric function and let $n!:\mathbb{N}\to\mathbb{N}$ denote the factorial of n, that is $n!=\prod_{k=1}^n k=1\cdot 2\cdot 3\cdot\ldots\cdot n$.

- a) Let $f: \mathbb{N} \to \mathbb{R}$ be a function with $f(n) = n \cdot \sin(n^2)$. Show that $f \in O(n)$.
- b) Let $f: \mathbb{N} \to \mathbb{N}$ be a function with $f(n) = 2^n$. Show that $f \notin \Theta(3^n)$.
- c) Let $f: \mathbb{N} \to \mathbb{N}$ be a function with $f(n) = \sum_{i=0}^n i!$. Show that $f \in \Theta(n!)$.