Mathematical Foundations of Computer Science

Constructor University Dr. Jürgen Schönwälder

Problem Sheet #4

Problem 4.1: properties of relations

(2+3 = 5 points)

For each of the following relations, determine whether they are reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive. Provide a reasoning for each property why it holds or why it does not hold.

a) The absolute difference of the integer numbers a and b is less than or equal to 5.

$$R = \{ (a, b) \in \mathbb{Z} \times \mathbb{Z} \mid |a - b| \le 5 \}$$

b) Let $m \mod n$ denote the positive remainder of m divided by n with $n \neq 0$.

$$R = \{ (a, b) \in \mathbb{Z} \times \mathbb{Z} \mid (a \bmod 10) = (b \bmod 5) \}$$

Problem 4.2: properties of relation composition

(1+1+1 = 3 points)

Let $R \subseteq X \times Y$ and $S \subseteq Y \times Z$ be two binary relations. We define the composition of R and S as follows:

$$R; S = \{ (x, z) \in X \times Z \mid \exists y \in Y . (x, y) \in R \land (y, z) \in S \}$$

Prove or disprove the following statements for the composition of binary endorelations:

- a) If R and S are both reflexive on A, then R; S is reflexive as well.
- b) If R and S are both symmetric on A, then R; S is symmetric as well.
- c) If R and S are both transitive on A, then R; S is transitive as well.

Problem 4.3: injective, surjective, bijective functions

(1+1 = 2 points)

Are the following functions injective, surjective, or bijective? Expain why or why not.

- a) $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = x \cdot sin(x)$
- b) $g \circ f : \mathbb{N} \to \mathbb{N}$ with $f(x) = x^3$ and g(x) = 2x + 1

Module: CH-233 Date: 2025-09-26 Due: 2025-10-03