Operating Systems


  • Course: Operating Systems (320202)
  • Semester: Spring 2015
  • Instructor: Jürgen Schönwälder
  • TA: Ungureanu, Vlad
  • Class: Monday, 08:15-09:30 (West Hall 2)
  • Class: Monday, 14:15-15:30 (CS Lecture Hall)
  • Class: Wednesday, 09:45-11:00 (West Hall 2)
  • Start: 2015-02-02


This course provides an introduction to the concepts underlying operating systems. Students will develop an understanding how operating systems realize a virtual machine that can be used to execute multiple concurrent application programs. The course discusses resource allocation algorithms and how concurrency problems can be solved.

Topics: Operating system architectures, system calls and interrupts, concurrent processes and threads, scheduling, synchronization, deadlocks, virtual memory, file systems, inter-process communication, socket programming interface.


  • Abraham Silberschatz, Peter B. Galvin, Greg Gagne: "Applied Operating System Concepts", John Wiley, 2000
  • Andrew S. Tanenbaum: "Modern Operating Systems", Prentice Hall, 2008
  • Andrew S. Tanenbaum: "Modern Operating Systems", Prentice Hall, 2001
  • William Stallings: "Operating Systems: Internals and Design Principles", Prentice Hall, 2005
  • Robert Love: "Linux Kernel Development", Sams Publishing, 2003


Mon (08:15) Mon (14:15) Wed (09:45) Topics
2015-02-02 2015-02-04 Introduction, Libraries, Function Call, System Calls, Tools
2015-02-09 2015-02-11 Processes, Threads
2015-02-16 2015-02-16 2015-02-18 Synchronization (Mutual Exclusion, Semaphores)
2015-02-23 2015-02-23 2015-02-25 Synchronization (Condition Variables, Monitors)
2015-03-02 2015-03-04 Synchronization Pattern, Deadlocks, Scheduling
2015-03-09 2015-03-09 2015-03-11 Memory Management (Segmentation)
2015-03-16 2015-03-16 2015-03-18 Virtual Memory (Paging, Working Sets)
2015-03-23 2015-03-25 Inter-Process Communication (Signals, Pipes)
2015-03-30+ 2015-04-01 Spring Break
2015-04-06 2015-04-08 Inter-Process Communication (Sockets)
2015-04-13 2015-04-13 2015-04-15 Inter-Process Communication (Sockets)
2015-04-20 2015-04-20 2015-04-22 File Systems
2015-04-27 2015-04-29 Memory Mapping / Dynamic Linking
2015-05-04 2015-05-06 Block and Character Devices
2015-05-11 2015-05-13 Virtualization and Virtual Machines


Date/Due Name Topics
2015-02-11 Quiz #1 processes, threads, system calls
2015-02-18 Sheet #1 vfork and parallel
2015-02-25 Quiz #2 semaphores
2015-03-04 Sheet #2 posix threads
2015-03-11 Quiz #3 deadlocks
2015-03-18 Sheet #3 scheduling
2015-04-08 Quiz #4 memory (segmentation and paging)
2015-04-15 Sheet #4 dynamic linking
2015-04-22 Quiz #5 signals, pipes, sockets
2015-04-29 Sheet #5 ricart agrawala distributed mutual exclusion
2015-05-06 Quiz #6 filesystems and storage devices
2015-05-13 Sheet #6 filesystem implementation (fuse)
2015-05-27 Final Exam 16:00-18:00 Lecture Hall Research III


The final grade is made up of homeworks/assignments (30%), bi-weekly quizzes (30%), and the final exam (40%). The homeworks and projects must be submitted individually. It is required to submit the solution for programming assignments electronically. <b>Late submissions will not be accepted.</b> Homeworks and project work may have to be defended in an oral interview.

Note 1: Students must submit solutions individually.

Note 2: If you copy material verbatim from the Internet (or other sources), you have to provide a proper reference. If we find your solution text on the Internet without a proper reference, you risk to lose your points.

Note 3: Any cheating cases will be reported to the registrar. In addition, you will lose the points (of course).

Note 4: If you are unhappy with the grading, please report immediately (within one week) to the TAs. If you can't resolve things, contact the instructor. Problem reports which come late, that is after the one week period, are not considered anymore.

Electronic submission is the preferred way to hand in homework solutions. Please submit documents (plain ASCII text or PDF, no Word) and your source code (tar, zip) via the online grader system. If you have problems, please contact one of the TAs.

Any programs which have to be written will be evaluated based on the following criteria:

  • correctness including proper handling of error conditions
  • proper use of programming language constructs
  • clarity of the program organization and design
  • readability of the source code and any output produced

For any questions stated on assignment sheets, quiz sheets, exam sheets or during makeups, we by default expect a reasoning for the answer given, unless explicitely stated otherwise.

The policy on makeup quizzes is the following: There won't be any quiz makeups. If you (a) get an official excuse for a quiz from the registrar's office or (b) approach we well in advance of the quiz with a very good reason for not being able to participate (e.g., because you take a GRE computer science subject test at the day of a quiz), then the weight of the final exam will be increased according to the weight of the quiz you got excused for.