
Operating Systems

Jürgen Schönwälder

November 26, 2018

Abstract

This memo contains annotated slides for the course “Operating Systems”. This is largely work in
progress since annotating a large collection of slides is an effort that takes time.

Contents

I Introduction 4

Definition and Requirements / Services 5

Types of Operating Systems 13

Operating System Architectures 21

II Hardware 26

Common Computer Architecture 27

I/O Systems and Interrupts 31

Memory 38

III Processes and Threads 46

Fundamental Concepts 47

Processes 52

Threads 66

IV Synchronization 72

Race Conditions and Critical Sections 73

Basic Synchronization Mechanisms 80

Semaphores 86

Semaphore Pattern 97

Critical Regions, Condition Variables, Messages 105

Synchronization in Java and Go and POSIX APIs 113

1

V Deadlocks 130

Deadlocks 131

Resource Allocation Graphs 135

Deadlock Strategies 141

VI Scheduling 157

CPU Scheduling 158

CPU Scheduling Strategies 165

VII Linking 178

Linker 179

Libraries 188

Interpositioning 191

VIII Memory Management 197

Memory Systems and Translation of Memory Addresses 198

Segmentation 206

Paging 215

Virtual Memory 224

IX Inter-Process Communication 237

Signals 239

Pipes 250

Sockets 259

X File Systems 274

General File System Concepts 275

File System Programming Interface 284

File System Implementation 290

XI Input/Output and Devices 298

Goals and Design Considerations 299

Storage Devices and RAIDs 305

Storage Virtualization 314

2

Terminal Devices 318

XII Virtual Machines 324

Terminology 325

XIII Distributed Systems 332

Definition and Models 333

Remote Procedure Calls 342

Distributed File Systems 351

Distributed Message Queues 359

3

Part I

Introduction

We start by defining what we understand as an operating system and we discusses general operating
system requirements and services. Afterwards, we briefly discuss different types of operating systems
and we look at software architectures that were used to construct operating system.

4

Section 1: Definition and Requirements/Services

1 Definition and Requirements/Services

2 Types of Operating Systems

3 Operating System Architectures

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 8 / 355

5

What is an Operating System?

• An operating system is similar to a government. . . Like a government, the operating
system performs no useful function by itself. (A. Silberschatz, P. Galvin)

• The most fundamental of all systems programs is the operating system, which
controls all the computer’s resources and provides the basis upon which the
application programs can be written. (A.S. Tanenbaum)

• An operating system (OS) is system software that manages computer hardware and
software resources and provides common services for computer programs.
(Wikipedia, 2018-08-16)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 9 / 355

For computer scientists, the operating system is the system software, which provides an abstraction
on which application software can be written, hiding the details of a collection of hardware components
from the application programmer and making application programs portable.

For ordinary people, the operating system is often associated with the (graphical) user interface running
on top of what computer scientists understand as the operations system. This is understandable since
the operating system underlying the graphical user interface is largely invisible to ordinary people.

In this course, we do not discuss user interface or usability aspects. The goal of this course is to explain
how an operating systems provides the services necessary to execute programs and how essentially
abstractions provided to programmers of applications are realized.

A second important aspect that we are discussing in this course is concurrency. To achieve good
performance, it is necessary to exploit concurrency at the hardware level. And this is meanwhile not only
true for operating systems but also for applications since the number of processor cores is increasing
steadily. Hence, we will study primitives that support the implementation of concurrent programs.

A large number of operating systems have been implemented since the 1960s. They differ significantly
in their functionality since they target different environments. Some examples of operating systems:

• Unix (AT&T), Solaris (Sun), HP-UX (HP), AIX (IBM), MAC OS X (Apple)

• BSD, NetBSD, FreeBSD, OpenBSD, Linux

• Windows (Microsoft), MAC OS (Apple), OS/2 (IBM)

• MVS (IBM), OS/390 (IBM), BS 2000 (Siemens)

• VxWorks (Wind River Systems), Embedded Linux like OpenWrt, Embedded BSD

• Symbian (Nokia), iOS (Apple), Android (Google)

• TinyOS, Contiki, RIOT

Implementing and maintaining on operating system is a huge effort and this has lead to some consoli-
dation of the operating systems that are actually uses. For hardware manufacturers it is often cheaper
to contribute to an open source operating system instead of developing and maintaining their own op-
erating system.

6

Hardware vs. System vs. Application

system calls System
software

Hardware

Browser, Databases, Office Software, Games, ...

Compiler, Editors, Command interpreters, Libraries

Operating system

software
Application

Integrated circuits

Microprogramms

Machine language

Memory Devices

library calls

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 10 / 355

From the operating system perspective, the hardware is mainly characterized by the machine language
(also called the instruction set) of the main processors, the memory system, and the I/O busses and
interfaces to devices.

The operating system is part of the system software, which includes next to the operating system ker-
nel system libraries and tools like command interpreters and in some cases development tools like
editors, compilers, linkers, and various debugging and troubleshooting tools. Operating system distribu-
tions usually add software package management functionality to simplify and automate the installation,
maintenance, and removal of (application) software.

Applications are build on top of the system software, primarily by using application programming inter-
faces (APIs) exposed by system libraries. Complex applications often use libraries that wrap system
libraries in order to provide more abstract interfaces, to supply a generally useful data structures, and to
enhance portability by hiding differences of system libraries from application programmers. Examples
of such libraries are:

• GLib1 originating from the Gnome project

• Apache Portable Runtime (APR)2 originating from the Apache web server

• Netscape Portable Runtime3 (NSR) originating from the Mozilla web browser

• QtCore of the Qt Framework4

Some of these libraries make it possible to write applications that can be compiled to run on very
different operating systems, e.g., Linux, Windows and MacOS.

1https://wiki.gnome.org/Projects/GLib
2https://apr.apache.org/
3https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSPR
4http://doc.qt.io/

7

https://wiki.gnome.org/Projects/GLib
https://apr.apache.org/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSPR
http://doc.qt.io/

General Requirements

• An operating system should manage resources in a way that avoids shortages or
overload conditions

• An operating system should be efficient and introduce little overhead

• An operating system should be robust against malfunctioning application programs

• Data and programs should be protected against unauthorized access and hardware
failures

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 11 / 355

Some of the requirements are contradictory. Protecting the operating system against malfunctioning
applications or isolating applications against each other does have an impact on performance. Similarly,
hiding hardware failures from applications usually requires the allocation and management of additional
resources. Hence, operating system designers often have to find engineering solutions requiring trade-
off decisions.

8

Services for Application Programs

• Loading of programs

• Execution of programs (management of processes)

• High-level input/output operations

• Logical file systems (open(), write(), ...)

• Control of peripheral devices

• Interprocess communication primitives

• Support of basic communication protocols

• Checkpoint and restart primitives

• . . .

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 12 / 355

What are the system services that are needed to execute a hello world program? Discuss different ways
to implement a hello world program in C and their advantages and disadvantages.

1 /*

2 * hello-naive.c --

3 *

4 * This file contains a naive program which uses the stdio

5 * library to print a short message.

6 *

7 * Exercise:

8 *

9 * On Linux, run the program with ltrace and strace. Explain the

10 * results produced by ltrace and strace.

11 */

12

13 #include <stdio.h>

14

15 int

16 main()

17 {

18 printf("Hello World\n");

19 return 0;

20 }

Listing 1: Naive hello world program using C library functions

9

1 /*

2 * hello-stdio.c --

3 *

4 * This file contains a program which uses the stdio library to

5 * print a short message. Note that we check the return code of

6 * puts() and that we flush() the buffered output stream manually

7 * to check whether writing to stdout actually worked.

8 *

9 * Exercise:

10 *

11 * On Linux, run the program with ltrace and strace. Explain the

12 * results produced by ltrace and strace.

13 */

14

15 #include <stdio.h>

16 #include <stdlib.h>

17

18 int

19 main(int argc, char *argv[])

20 {

21 const char msg[] = "Hello World";

22 int n;

23

24 n = puts(msg);

25 if (n == EOF) {

26 return EXIT_FAILURE;

27 }

28

29 if (fflush(stdout) == EOF) {

30 return EXIT_FAILURE;

31 }

32

33 return EXIT_SUCCESS;

34 }

Listing 2: Proper hello world program using C library functions

10

1 /*

2 * hello-write.c --

3 *

4 * This file contains a program which invokes the Linux write()

5 * system call.

6 *

7 * Exercise:

8 *

9 * Statically Compile and run the program. Look at the assembler code

10 * generated (objdump -S write, or gcc -S).

11 */

12

13 #include <stdlib.h>

14 #include <unistd.h>

15

16 int

17 main(int argc, char *argv[])

18 {

19 const char msg[] = "Hello World\n";

20 ssize_t n;

21

22 n = write(STDOUT_FILENO, msg, sizeof(msg));

23 if (n == -1 || n != sizeof(msg)) {

24 return EXIT_FAILURE;

25 }

26

27 return EXIT_SUCCESS;

28 }

Listing 3: Proper hello world program using the write() system call

1 /*

2 * hello-syscall.c --

3 *

4 * This file contains a program which directly invokes a Linux

5 * write() system call by using the syscall library function.

6 */

7

8 #define _GNU_SOURCE

9

10 #include <stdlib.h>

11 #include <unistd.h>

12 #include <syscall.h>

13

14 int

15 main(int argc, char *argv[])

16 {

17 const char msg[] = "Hello World\n";

18 ssize_t n;

19

20 n = syscall(SYS_write, 1, msg, sizeof(msg));

21 if (n == -1 || n != sizeof(msg)) {

22 return EXIT_FAILURE;

23 }

24

25 return EXIT_SUCCESS;

26 }

Listing 4: Proper hello world program using the generic syscall() interface

11

Services for System Operation

• User identification and authentication

• Access control mechanisms

• Support for cryptographic operations and the management of keys

• Control functions (e.g., forced abort of processes)

• Testing and repair functions (e.g., file systems checks)

• Monitoring functions (observation of system behavior)

• Logging functions (collection of event logs)

• Accounting functions (collection of usage statistics)

• System generation and system backup functions

• Software management functions

• . . .

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 13 / 355

When did you do your last backup? When did you check the last time that your backup is complete and
sufficient to restore your system? Is the backup process you are using automated?

When did you last update your software? Is your software update process automated?

12

Section 2: Types of Operating Systems

1 Definition and Requirements/Services

2 Types of Operating Systems

3 Operating System Architectures

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 14 / 355

Operating systems can be classified by the types of computing environments they are designed to
support:

• Batch processing operating systems

• General purpose operating systems

• Parallel operating systems

• Distributed operating systems

• Real-time operating systems

• Embedded operating systems

Subsequent slides provide details about these different operating system types.

13

Batch Processing Operating Systems

• Characteristics:
• Batch jobs are processed sequentially from a job queue
• Job inputs and outputs are saved in files or printed
• No interaction with the user during the execution of a batch program

• Batch processing operating systems were the early form of operating systems.

• Batch processing functions still exist today, for example to execute jobs on super
computers.

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 15 / 355

14

General Purpose Operating Systems

• Characteristics:
• Multiple programs execute simultaneously (multi-programming, multi-tasking)
• Multiple users can use the system simultaneously (multi-user)
• Processor time is shared between the running processes (time-sharing)
• Input/output devices operate concurrently with the processors
• Network support but no or very limited transparency

• Examples:
• Linux, BSD, Solaris, . . .
• Windows, MacOS, . . .

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 16 / 355

We often think of general purpose operating systems when we talk about operating systems. While
general purpose operating systems do play an important role, we often neglect the large number of
operating systems we find in embedded devices.

15

Parallel Operating Systems

• Characteristics:
• Support for a very large number of tightly integrated processors
• Symmetrical

• Each processor has a full copy of the operating system
• Asymmetrical

• Only one processor carries the full operating system
• Other processors are operated by a small operating system stub to transfer code and

tasks

• Massively parallel systems are a niche market and hence parallel operating systems
are usually very specific to the hardware design and application area.

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 17 / 355

16

Distributed Operating Systems

• Characteristics:
• Support for a medium number of loosely coupled processors
• Processors execute a small operating system kernel providing essential

communication services
• Other operating system services are distributed over available processors
• Services can be replicated in order to improve scalability and availability
• Distribution of tasks and data transparent to users (single system image)

• Examples:
• Amoeba (Vrije Universiteit Amsterdam)
• Plan 9 (Bell Labs, AT&T)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 18 / 355

Some distributed operating systems aimed at providing a single system image to the user where the
user would interact with a single system image that hides the fact that the underlying hardware is
a loosely coupled collection of computers. The idea was to provide transparency by hiding where
computations take place or where data is actually stored and by masking failures that occur in the
system.

17

Real-time Operating Systems

• Characteristics:
• Predictability
• Logical correctness of the offered services
• Timeliness of the offered services
• Services are to be delivered not too early, not too late
• Operating system executes processes to meet time constraints

• Examples:
• QNX
• VxWorks
• RTLinux, RTAI, Xenomai
• Windows CE

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 19 / 355

A hard real-time operating system guarantees to always meet time constraints. A soft real-time operat-
ing system guarantees to meet time constraints most of the time. Note that a real-time system does not
require a super fast processor or something like that. What is required is predictability and this implies
that for every operating system function there is a defined upper time bound by which the function has
to be completed. The operating system never blocks in an uncontrolled manner.

Hard real-time operating systems are required for many things that interact with the real word such as
robots, medical devices, computer controlled vehicles (cars, planes, . . .), and many industrial control
systems.

18

Embedded Operating Systems

• Characteristics:
• Usually real-time systems, sometimes hard real-time systems
• Very small memory footprint (even today!)
• No or limited user interaction
• 90-95 % of all processors are running embedded operating systems

• Examples:
• Embedded Linux, Embedded BSD
• Symbian OS, Windows Mobile, iPhone OS, BlackBerry OS, Palm OS
• Cisco IOS, JunOS, IronWare, Inferno
• Contiki, TinyOS, RIOT

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 20 / 355

Special variants of Linux and BSD systems have been developed to support embedded systems and
they are gaining momentum. On mobile phones, the computing resources are meanwhile big enough
that mobile phone operating systems tend to become variants of general purpose operating systems.
There are, however, a fast growing number of systems that run embedded operating systems as the
Internet is reaching out to connect things (Internet of Things).

Some notable Linux variants:

• OpenWRT5 (low cost network devices)

• Raspbian6 (Raspberry Pi)

5https://openwrt.org/
6https://www.raspbian.org/

19

https://openwrt.org/
https://www.raspbian.org/

Evolution of Operating Systems

• 1st Generation (1945-1955): Vacuum Tubes
• Manual operation, no operating system
• Programs are entered via plugboards

• 2nd Generation (1955-1965): Transistors
• Batch systems automatically process job queues
• The job queue is stored on magnetic tapes

• 3rd Generation (1965-1980): Integrated Circuits
• Spooling (Simultaneous Peripheral Operation On Line)
• Multiprogramming and Time-sharing

• 4th Generation (1980-2000): VLSI
• Personal computer (CP/M, MS-DOS, Windows, Mac OS, Unix)
• Network operating systems (Unix)
• Distributed operating systems (Amoeba, Mach, V)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 21 / 355

The development since 2000 is largely driven by virtualization techniques such as virtual machines or
containers and software systems that manage very large collections of virtual machines and containers.
Some notable open source systems:

• OpenStack7

• OpenNebula8

• Kubernetes9

7https://www.openstack.org/
8https://opennebula.org/
9https://kubernetes.io/

20

https://www.openstack.org/
https://opennebula.org/
https://kubernetes.io/

Section 3: Operating System Architectures

1 Definition and Requirements/Services

2 Types of Operating Systems

3 Operating System Architectures

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 22 / 355

Operating systems can be classified by their software architecture:

• Monolithic operating systems

• Monolithic modular operating systems

• Monolithic layered operating systems

• Virtual machines

• Client/Server operating systems

• Distributed operating systems

21

Monolithic Operating Systems

• A collection of functions without a
structure (the big mess)

• Typically not-portable, difficult to
maintain, lack of reliability

• All services are in the kernel with the
same privilege level

• Monolithic systems can be highly
efficient

Hardware

Operating System

API

Tasks

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 23 / 355

22

Monolithic and Modular Operating Systems

• Modules can be platform independent

• Easier to maintain and to develop

• Increased reliability / robustness

• All services are in the kernel with the
same privilege level

• May reach high efficiency

• Example: Linux
Hardware

API

Tasks

Operating System

M1 M2 Mn

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 24 / 355

23

Monolithic and Layered Operating Systems

• Easily portable, significantly easier to
maintain

• Often reduced efficiency because of the
need to go through many layered
interfaces

• Rigorous implementation of the stacked
virtual machine perspective

• Services offered by the various layers are
important for the overall performance

• Example: THE (Dijkstra, 1968)
Hardware

API

Tasks

Input/output

Multi−programming

Memory management

Operator console driver

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 25 / 355

24

Virtual Machines

• Virtualization of the hardware

• Multiple operating systems can execute
concurrently

• Separation of multi-programming from
other operating system services

• Examples: IBM VM/370 (’79), VMware
(1990s), XEN (2003)

Hardware

Tasks Tasks

API

OS

API

OS

Virtual Machine Monitor

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 26 / 355

25

Part II

Hardware

In this part we review some basic concepts of computer architecture that are relevant for understanding
operating systems.

26

Section 4: Common Computer Architecture

4 Common Computer Architecture

5 I/O Systems and Interrupts

6 Memory

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 29 / 355

27

Common Computer Architecture

Registers

Sequencer

ALU

In
te

rf
ac

e

Memory Memory I/O Device I/O Device

Control

Address

Data

.

• Today’s common computer architecture uses busses to connect memory and I/O
systems to the central processing unit

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 30 / 355

The usage of shared busses to connect components of a computer requires arbitration, synchronization,
interrupts, priorities.

A CPU consists of a command sequencer fetching instructions, an arithmetic logic unit (ALU), and a set
of registers. Data is carried over the data bus to/from the address carried over the address bus. The
control bus signals the direction of the data transfer and when the transfer takes place.

28

CPU Registers

• Typical set of registers:
• Processor status register
• Instruction register (current instruction)
• Program counter (current or next instruction)
• Stack pointer (top of stack)
• Special privileged registers
• Dedicated registers
• Universal registers

• Privileged registers are only accessible when the processor is in privileged mode

• Switch from non-privileged to privileged mode via traps or interrupts

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 31 / 355

CPUs used by general purpose computers usually support multiple privilege levels. The Intel x86 ar-
chitecture, for example, supports four privilege levels (protection rings 0. . . 3). Note that CPUs for small
embedded systems often do not support multiple privilege levels and this has serious implications on
the robustness an operating system can achieve. In the following, we focus on operating systems that
run on hardware that supports multiple CPU privilege levels.

29

CPU Instruction Sets

• Non-privileged instruction set:
• General purpose set of processor instructions

• Privileged instruction set:
• Provide access to special resources such as privileged registers or memory

management units
• Subsumes the non-privileged instruction set

• Some processors support multiple privilege levels

• Changes to higher privilege levels via traps / interrupts only

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 32 / 355

In the following, we assume that an unprivileged instruction set is available to run application programs
and a privileged instruction is available to execute core operating system functionality.

30

Section 5: I/O Systems and Interrupts

4 Common Computer Architecture

5 I/O Systems and Interrupts

6 Memory

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 33 / 355

31

I/O Devices

• I/O devices are essential for every computer

• Typical classes of I/O devices:
• clocks, timers
• user-interface devices
• document I/O devices (scanner, printer, ...)
• audio and video equipment
• network interfaces
• mass storage devices
• sensors and actuators in control applications

• Device drivers are often the biggest component of general purpose operating
system kernels

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 34 / 355

32

Basic I/O Programming

• Status driven: the processor polls an I/O device for information
• Simple but inefficient use of processor cycles

• Interrupt driven: the I/O device issues an interrupt when data is available or an
I/O operation has been completed
• Program controlled : Interrupts are handled by the processor directly
• Program initiated : Interrupts are handled by a DMA-controller and no processing is

performed by the processor (but the DMA transfer might steal some memory access
cycles, potentially slowing down the processor)

• Channel program controlled : Interrupts are handled by a dedicated channel device,
which is usually itself a micro-processor

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 35 / 355

33

Interrupts

• Interrupts can be triggered by hardware and by software

• Interrupt control:
• grouping of interrupts
• encoding of interrupts
• prioritizing interrupts
• enabling / disabling of interrupt sources

• Interrupt identification:
• interrupt vectors, interrupt states

• Context switching:
• mechanisms for CPU state saving and restoring

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 36 / 355

34

Interrupt Service Routines

• Minimal hardware support (supplied by the CPU)
• Save essential CPU registers
• Jump to the vectorized interrupt service routine
• Restore essential CPU registers on return

• Minimal wrapper (supplied by the operating system)
• Save remaining CPU registers
• Save stack-frame
• Execute interrupt service code
• Restore stack-frame
• Restore CPU registers

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 37 / 355

35

Interrupt Handling Sketch 1/2

void (*interrupt_handler)(void);

interrupt_handler interrupt_vector[] =

{

handler_a,

handler_b,

...

}

/* the following logic executed by the hardware when an interrupt *

* has arrived and the execution of an instruction is complete */

// on interrupt #x:

// save_essential_registers(); // includes instruction pointer

// handler = interrupt_vector[#x];

// if (handler) handler();

// restore_essential_registers(); // includes instruction pointer

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 38 / 355

36

Interrupt Handling Sketch 2/2

void handler_a(void)

{

save_cpu_registers();

save_stack_frame();

interrupt_a_handling_logic();

restore_stack_frame();

restore_cpu_registers();

}

void handler_b(void)

{

save_cpu_registers();

save_stack_frame();

interrupt_b_handling_logic();

restore_stack_frame();

restore_cpu_registers();

}

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 39 / 355

37

Section 6: Memory

4 Common Computer Architecture

5 I/O Systems and Interrupts

6 Memory

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 40 / 355

38

Memory Sizes and Access Times

Disks

Main Memory

Level 2 Cache

Level 1 Cache

> 60 GB

> 256 MB

> 64 KB

< 8 ms

< 8 ns

< 4 ns

< 1−2 ns

> 512 KB

CPU

> 1 KB < 1 ns

Memory Size Access Time

Registers

• There is a trade-off between memory speed and memory size.

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 41 / 355

39

Memory Segments

Segment Description

text machine instructions of the program
data static variables and constants, may be further devided into

initialized and uninitialized data
heap dynamically allocated data structures
stack automatically allocated local variables, management of

function calls (parameters, results, return addresses)

• Memory used by a program is usually partitioned into different segments that serve
different purposes and may have different access rights

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 42 / 355

40

Stack Frames

void
function(int a, int b, int c)
{
 char buffer1[40];
 char buffer2[48];
}

instruction pointer (4 byte)	
frame pointer (4 byte)

buffer1 (40 bytes)

a (4 byte)
b (4 byte)
c (4 byte)

buffer2 (48 bytes)
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

stack region

data region

text region

• Every function call leaves an entry (stack frame) on the stack
• Stack frame layout is processor specific (here Intel x86)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 43 / 355

41

Example

static int foo(int a)

{

static int b = 5;

int c;

c = a * b;

b += b;

return c;

}

int main(int argc, char *argv[])

{

return foo(foo(1));

}

• What is returned by main()?

• Which memory segments store the variables?

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 44 / 355

42

Stack Smashing Attacks

#include <string.h>

void foo(char *bar)

{

char c[12];

strcpy(c, bar); // no bounds checking

}

int main(int argc, char *argv[])

{

if (argv[1]) foo(argv[1]);

return 0;

}

• Overwriting a function return address on the stack

• Returning into a ’landing area’ (typically sequences of NOPs)

• Landing area is followed by shell code (code to start a shell)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 45 / 355

Since programming languages such as C or C++ do not restrict memory access to properly allocated
data objects, it is the programmer’s responsibility to ensure that buffers are never overrun or underrun
and that pointers point to valid memory areas. Unfortunately, many programs fail to implement this
correctly, partly due to laziness, partly due to programming errors. As a consequence, programs written
in C or C++ often contain bugs that can be exploited to change the control flow of a program. While
there are some defense techniques tat make it more difficult to exploit such programming bugs, there
are also an increasing number of tools that can systematically find such programming problems.

For C and C++ programmers, there is no alternative to developing the discipline to always ensure that
uncontrolled access to memory is prevented, i.e., making it a habit to always write robust code.

43

Caching

• Caching is a general technique to speed up memory access by introducing smaller
and faster memories which keep a copy of frequently / soon needed data

• Cache hit: A memory access which can be served from the cache memory

• Cache miss: A memory access which cannot be served from the cache and requires
access to slower memory

• Cache write through: A memory update which updates the cache entry as well as
the slower memory cell

• Delayed write: A memory update which updates the cache entry while the slower
memory cell is updated at a later point in time

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 46 / 355

There are several caches in modern computing systems. Data essentially moves through the cache
hierarchy until it is finally manipulated in CPU registers. To run CPUs at maximum speed, it is necessary
that data that is needed in the next instructions is properly cached since otherwise CPUs have to wait
for data to be retrieved from slow memory systems. In order to fill caches properly, CPUs have gone
as far as executing machine instructions in a speculative way (e.g., while waiting for a slow memory
transfer). Speculative execution has lead to a number of attacks on caches (Spectre).

44

Locality

• Cache performance is relying on:
• Spatial locality :

Nearby memory cells are likely to be accessed soon
• Temporal locality :

Recently addressed memory cells are likely to be accessed again soon

• Iterative languages generate linear sequences of instructions (spatial locality)

• Functional / declarative languages extensively use recursion (temporal locality)

• CPU time is in general often spend in small loops/iterations (spatial and temporal
locality)

• Data structures are organized in compact formats (spatial locality)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 47 / 355

Operating systems often use heuristics to control resources. A common assumption is that application
programs have spatial and temporal locality when it comes to memory access. For programs that do
not have locality, operating systems may make rather poor resource allocation decisions.

As a programmer, it is useful to be aware of resource allocation strategies used by the operating system
if the goal is to write highly efficient application programs.

45

Part III

Processes and Threads

Processes are a key abstraction provided by operating systems. A process is simply a program under
execution. The operating system kernel manages all properties of a process and all resources assigned
to a process by maintaining several data structures in the kernel. These data structures change con-
stantly, for example when new processes are created, when running processes allocate or deallocate
resources, or when processes are terminated. There are user space tools to inspect the information
maintained in the kernel data structures. But note that these tools usually show you a snapshot onlyq
and the snapshot may not even be consistent.

Processes are relatively heavy-weight objects since every process has its own memory, his own col-
lection of open files, etc. In order to exploit hardware with multiple CPU cores, it is desirable to exploit
multiple cores within a single process, i.e., within the same memory image. The lead to the introduction
of thread, which represent a thread of execution within a process.

46

Section 7: Fundamental Concepts

7 Fundamental Concepts

8 Processes

9 Threads

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 49 / 355

47

Separation of Mechanisms and Policies

• An important design principle is the separation of policy from mechanism.

• Mechanisms determine how to do something.

• Policies decide what will be done.

• The separation of policy and mechanism is important for flexibility, especially since
policies are likely to change.

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 50 / 355

Good operating system designs (or good software designs in general) separates mechanisms from
policies. Instead of hard-wiring certain policies in an implementation of a function, it is better to expose
mechanism with which different policies and be enforced.

Examples:

• An operating system implements a packet filter, which provides mechanisms to filter packets based
on a variety of properties of a packet. The exact policies which types of packets are filtered is
provided as a set of packet filter rules at runtime.

• An operating system kernel provides mechanisms to enforce access control rules on filesystem
objects. The configuration of the access control rules, i.e., the access control policy, is left to be
configured by the user of the system.

Good separation of mechanisms and policies leads to systems that can be adapted to different usage
scenarios in flexible ways.

48

User Mode

In user mode,

• the processor executes machine instructions of (user space) processes;

• the instruction set of the processor is restricted to the so called unprivileged
instruction set;

• the set of accessible registers is restricted to the so called unprivileged register set;

• the memory addresses used by a process are typically mapped to physical memory
addresses by a memory management unit;

• direct access to hardware components is protected by using hardware protection
where possible;

• direct access to the state of other concurrently running processes is restricted.

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 51 / 355

The programs that we write and use every day are all running as processes in user mode. Even
processes with special priviledges still run in user mode (they just have additional privileges).

49

System Mode

In system mode,

• the processor executes machine instructions of the operating system kernel;

• all instructions of the processor can be used, the so called privileged instruction set;

• all registers are accessible, the so called privileged register set;

• direct access to physical memory addresses and the memory address mapping
tables is enabled;

• direct access to the hardware components of the system is enableds;

• the direct manipulation of the state of processes is possible.

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 52 / 355

The operating system kernel generally runs in system mode while processes execute in user mode. By
enforcing a hardware assisted separation of the operating system kernel from user space processes,
the kernel can protect itself against malfunctioning processes. A robust and well debugged kernel will
never die due to a misbehaving user space process. (But as we will see soon, there can be situations
where user space processes make a system practically unusable, e.g., by making the kernel really busy,
but strictly speaking the kernel still does what it was designed to do in such situations – just slowly.)

Embedded systems sometimes lack the hardware support that is necessary to enforce a clear sepa-
ration of user mode from system mode. Such systems are by design less robust than systems that
can use hardware assisted separation since programming errors in application code (or malware in
application code) can impact the behavior of the entire system.

50

Entering the Operating System Kernel

• System calls (supervisor calls, software traps)
• Synchronous to the running process
• Parameter transfer via registers, the call stack or a parameter block

• Hardware traps
• Synchronous to a running process (devision by zero)
• Forwarded to a process by the operating system

• Hardware interrupts
• Asynchronous to the running processes
• Call of an interrupt handler via an interrupt vector

• Software interrupts
• Asynchronous to the running processes

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 53 / 355

The operating system kernel exists to support applications and to coordinate resource requests. As
such, the operating system kernel is not constantly running but instead most of the time waiting for
something to happen that requires the kernel’s intervention.

• System calls are invoked by a process when the process needs services provided by the operating
system kernel. A system call looks like a library function call but the mechanics of performing a
system call are way more complex since a system call requires a transition from user mode into
kernel mode.

• Hardware traps are signaled by a hardware component (i.e., via a hardware interrupt) but caused
by the execution of a user-mode process. A hardware tap occurs because a user space process
was trying to do something that is not well defined. When a hardware trap occurs, the user space
process is stopped and the kernel investigates which process was causing the trap and which
action needs to be taken.

• Hardware interrupts are any hardware interrupts that are not triggered by a user space process.
For example, an interrupt may signal that a network packet has been received. When an interrupt
occurs, a running user space process may be stopped stopped and the kernel investigates how
the interrupt needs to be handled.

• Software interrupts are signaling a user space process that something exceptional has happened.
A user space process, when receiving a software interrupt, may change its normal execution path
and jump into a special function that handles the software interrupt. On Unix systems, software
interrupts are implemented as signals.

Note that system calls are much more expensive than library calls since system calls require a transition
from user mode to system mode and finally back to user mode. Efficient programs therefore tend to
minimize the system calls they need to perform.

51

Section 8: Processes

7 Fundamental Concepts

8 Processes

9 Threads

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 54 / 355

52

Process Characterization

• A process is an instance of a program under execution

• A process uses/owns resources (e.g., CPU, memory, files) and is characterized by
the following:

1. A sequence of machine instructions which determines the behavior of the running
program (control flow)

2. The current state of the process given by the content of the processor’s registers,
the contents of the stack, and the contents of the heap (internal state)

3. The state of other resources (e.g., open files or network connections, timer, devices)
used by the running program (external state)

• Processes are sometimes also called tasks.

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 55 / 355

53

Processes: State Machine View

• new : just created, not yet admitted

• ready : ready to run, waiting for CPU

• running : executing, holds a CPU

• blocked : not ready to run, waiting for a resource

• terminated : just finished, not yet removed

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 56 / 355

54

Processes: Queueing Model View

I/O

event

CPU

time slice expired

I/O operation
I/O queue

wait for event

run queue

• Processes are enqueued if resources are not readily available or if processes wait for
events
• Dequeuing strategies have strong performance impact
• Queueing models can be used for performance analysis

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 57 / 355

55

Process Control Block

• Processes are internally represented by a
process control block (PCB)
• Process identification
• Process state
• Saved registers during context switches
• Scheduling information (priority)
• Assigned memory regions
• Open files or network connections
• Accounting information
• Pointers to other PCBs

• PCBs are often enqueued at a certain
state of condition

process id

process state

saved registers

open files

memory info

scheduling info

pointers

accounting info

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 58 / 355

56

Process Lists

P1 P2 P3

head

tail

• PCBs are often organized in doubly-linked lists or tables

• PCBs can be queued by pointer operations

• Run queue length of the CPU is a good load indicator

• The system load often defined as the exponentially smoothed average of the run
queue length over 1, 5 and 15 minutes

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 59 / 355

57

Process Creation

time

P2

P1

P3

fork()

exec()

• The fork() system call creates a new child process
• which is an exact copy of the parent process,
• except that the result of the system call differs

• The exec() system call replaces the current process image with a new process
image.

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 60 / 355

58

Process Trees

getty

init

update bash inetd cron

make

emacs

• First process is created when the system is initialized

• All other processes are created using fork(), which leads to a process tree

• PCBs often contain pointers to parent PCBs

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 61 / 355

59

Process Termination

time

P2

P1

P3

fork() wait()

exec() exit()

• Processes can terminate themself by calling exit()

• The wait() system call allows processes to wait for the termination of a child
process
• Terminating processes return a numeric result code

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 62 / 355

60

POSIX API (fork, exec)

#include <unistd.h>

pid_t getpid(void);

pid_t getppid(void);

pid_t fork(void);

int execve(const char *filename, char *const argv [],

char *const envp[]);

extern char **environ;

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg, ...,

char * const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 63 / 355

/*

* pthread/fork-echo.c --

*

* A simple program to fork and wait processes.

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <errno.h>

static void

work(const char *msg)

{

printf("%s ", msg);

exit(EXIT_SUCCESS);

}

int

main(int argc, char *argv[])

{

int i, status;

pid_t pids[argc];

for (i = 1; i < argc; i++) {

pids[i] = fork();

if (pids[i] == -1) {

fprintf(stderr, "failed to fork: %s\n", strerror(errno));

continue;

}

if (pids[i] == 0) {

work(argv[i]);

}

}

61

for (i = 1; i < argc; i++) {

if (pids[i] > 0) {

(void) waitpid(pids[i], &status, 0);

}

}

printf("\n");

return EXIT_SUCCESS;

}

62

POSIX API (exit, wait)

#include <stdlib.h>

void exit(int status);

int atexit(void (*function)(void));

#include <unistd.h>

void _exit(int status);

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

#include <sys/time.h>

#include <sys/resource.h>

#include <sys/wait.h>

pid_t wait3(int *status, int options, struct rusage *rusage);

pid_t wait4(pid_t pid, int *status, int options, struct rusage *rusage);

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 64 / 355

63

Sketch of a Command Interpreter

while (1) {

show_prompt(); /* display prompt */

read_command(); /* read and parse command */

pid = fork(); /* create new process */

if (pid < 0) { /* continue if fork() failed */

perror("fork");

continue;

}

if (pid != 0) { /* parent process */

waitpid(pid, &status, 0); /* wait for child to terminate */

} else { /* child process */

execvp(args[0], args, 0); /* execute command */

perror("execvp"); /* only reach on exec failure */

_exit(1); /* exit without any cleanups */

}

}

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 65 / 355

64

Context Switch

• Save the state of the running
process/thread

• Reload the state of the next
running process/thread

• Context switch overhead is an
important operating system
performance metric

• Switching processes can be
expensive if memory must be
reloaded

• Preferable to continue a process
or thread on the same CPU

restore state from P2’s PCB

save state into P2’s PCB

reload state from P1’s PCB

ru
n

n
in

g

ru
n

n
in

g
ru

n
n

in
g

w
ai

ti
n

g

w
aitin

g
w

aitin
g

P1 P2

save state into P1’s PCB

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 66 / 355

65

Section 9: Threads

7 Fundamental Concepts

8 Processes

9 Threads

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 67 / 355

66

Threads

• Threads are individual control flows, typically within a process (or within a kernel)

• Every thread has its own private stack (so that function calls can be managed for
each thread separately)

• Multiple threads share the same address space and other resources
• Fast communication between threads
• Fast context switching between threads
• Often used for very scalable server programs
• Multiple CPUs can be used by a single process
• Threads require synchronization (see later)

• Some operating systems provide thread support in the kernel while others
implement threads in user space

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 68 / 355

A thread is the smallest sequence of programmed instructions that can be managed independently (by
the operating system kernel).

A process has a single thread of control executing a sequence of machine instructions. Threads extend
this model by enabling processes with more than one thread of control. Note that the execution of
threads is concurrent and hence the execution order is in general non-deterministic. Never make any
assumption about thread execution order. On systems with multiple processor cores, threads within a
process may execute concurrently at the hardware level.

67

POSIX API (pthreads)

#include <pthread.h>

typedef ... pthread_t;

typedef ... pthread_attr_t;

int pthread_create(pthread_t *thread,

pthread_attr_t *attr,

void * (*start) (void *),

void *arg);

void pthread_exit(void *retval);

int pthread_cancel(pthread_t thread);

int pthread_join(pthread_t thread, void **retvalp);

int pthread_cleanup_push(void (*func)(void *), void *arg)

int pthread_cleanup_pop(int execute)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 69 / 355

/*

* pthread/pthread-echo.c --

*

* A simple program to start and join threads.

*/

#define _REENTRANT

#define _DEFAULT_SOURCE

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <pthread.h>

static void*

work(void *data)

{

char *msg = (char *) data;

printf("%s ", msg);

return NULL;

}

int

main(int argc, char *argv[])

{

int i, r;

pthread_t tids[argc];

for (i = 1; i < argc; i++) {

r = pthread_create(&tids[i], NULL, work, argv[i]);

if (r) {

fprintf(stderr, "failed to create thread: %s\n", strerror(r));

}

}

for (i = 1; i < argc; i++) {

if (tids[i]) {

(void) pthread_join(tids[i], NULL);

68

}

}

printf("\n");

return EXIT_SUCCESS;

}

69

Processes and Threads in Linux (2.6.x)

• Linux internally treats processes and threads as so called tasks

• Linux distinguishes three different types of tasks:

1. idle tasks (also called idle threads)
2. kernel tasks (also called kernel threads)
3. user tasks

• Tasks are in one of the states running, interruptible, uninterruptible, stopped,
zombie, or dead

• A special clone() system call is used to create processes and threads

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 70 / 355

70

Processes and Threads in Linux (2.6.x)

• Linux tasks (processes) are represented by a struct task struct defined in
<linux/sched.h>

• Tasks are organized in a circular, doubly-linked list with an additional hashtable,
hashed by process id (pid)

• Non-modifying access to the task list requires the usage of the tasklist lock for
READ

• Modifying access to the task list requires the usage the tasklist lock for WRITE

• System calls are identified by a number

• The sys call table contains pointers to functions implementing the system calls

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 71 / 355

71

Part IV

Synchronization

Concurrent threads or processes require synchronization in order to coordinate access to shared re-
sources. The general idea is that the multiple processes or threads handshake at a certain point in their
execution, in order to reach an agreement or commit to a certain sequence of action. Synchronization
is in particular a major concern with threads or processes that share memory since concurrent access
to memory must be coordinated.

72

Section 10: Race Conditions and Critical Sections

10 Race Conditions and Critical Sections

11 Synchronization Mechanisms

12 Semaphores

13 Semaphore Pattern

14 Critical Regions, Condition Variables, Messages

15 Synchronization in Java and Go and POSIX APIs

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 73 / 355

73

Race Conditions

• A race condition exists if the result produced by concurrent processes (or threads),
which access and manipulate shared resources (variables), depends unexpectedly on
the order of the execution of the processes (or threads)

=⇒ Protection against race conditions is a very important issue within operating
system kernels, but equally well in many application programs

=⇒ Protection against race conditions is difficult to test (actual behaviour usually
depends on many factors that are hard to control)

=⇒ High-level programming constructs move the generation of correct low-level
protection into the compiler

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 74 / 355

74

Bounded Buffer Problem

• Two processes share a common fixed-size buffer

• The producer process puts data into the buffer

• The consumer process reads data out of the buffer

• The producer must wait if the buffer is full

• The consumer must wait if the buffer is empty

void producer() void consumer() {

{ {

produce(&item); while (count == 0) sleep(1);

while (count == N) sleep(1); item = buffer[out];

buffer[in] = item; out = (out + 1) % N;

in = (in + 1) % N; count = count - 1;

count = count + 1; consume(item);

} }

=⇒ This solution has a race condition and is not correct!
Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 75 / 355

75

Bounded Buffer Problem

• Pseudo machine code for count = count + 1 and count = count - 1:
P1: load reg_a,count C1: load reg_b,count

P2: incr reg_a C2: decr reg_b

P3: store reg_a,count C3: store reg_b,count

• Lets assume count has the value 5. What happens to count in the following
execution sequences?

a) P1, P2, P3, C1, C2, C3 leads to the value 5
b) P1, P2, C1, C2, P3, C3 leads to the value 4
c) P1, P2, C1, C2, C3, P3 leads to the value 6

=⇒ Every situation, in which multiple processes (threads) manipulate shared resources,
can lead to race conditions

=⇒ Synchronization mechanisms are always needed to coordinate access to shared
resources

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 76 / 355

/*

* race/race.c --

*

* A simple program demonstrating race conditions. Note that it

* is system specific how frequently race conditions occur. Run

* this program using

*

* watch -n 0.5 -d "./race | xargs -n 1 | sort -n | xargs"

*

* and lean back and you may see numbers suddenly changing.

*/

#define _POSIX_C_SOURCE 200809L

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

static unsigned int c = 0; /* shared variable */

static void *

count(void *ignored)

{

int i;

const struct timespec ts = { .tv_sec = 0, .tv_nsec = 123456 };

for (i = 0; i < 10; i++) {

nanosleep(&ts, NULL);

c++;

printf(" %d", c);

}

return NULL;

}

int

main(int argc, char *argv[])

{

76

const unsigned int num = 8;

int i, rt[num];

pthread_t t[num];

for (i = 0; i < num; i++) {

rt[i] = pthread_create(&t[i], NULL, count, NULL);

if (rt[i]) {

fprintf(stderr, "thread creation failed\n");

exit(EXIT_FAILURE);

}

}

for (i = 0; i < num; i++) {

(void) pthread_join(t[i], NULL);

}

printf("\n");

return EXIT_SUCCESS;

}

77

Critical Sections

exit section

entry section

critical section

uncritical section

uncritical section

exit section

entry section

critical section

uncritical section

uncritical section

exit section

entry section

critical section

uncritical section

uncritical section

• A critical section is a segment of code that can only be executed by one process at
a time
• The execution of critical sections by multiple processes is mutually exclusive in time
• Entry and exit sections must protect critical sections

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 77 / 355

78

Critical-Section Problem

• The critical-section problem is to design a protocol that the processes can use to
cooperate

• A solution must satisfy the following requirements:

1. Mutual Exclusion: No two processes may be simultaneously inside the same critical
section.

2. Progress: No process outside its critical sections may block other processes.
3. Bounded-Waiting : No process should have to wait forever to enter its critical

section.

• General solutions are not allowed to make assumptions about execution speeds or
the number of CPUs present in a system.

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 78 / 355

79

Section 11: Synchronization Mechanisms

10 Race Conditions and Critical Sections

11 Synchronization Mechanisms

12 Semaphores

13 Semaphore Pattern

14 Critical Regions, Condition Variables, Messages

15 Synchronization in Java and Go and POSIX APIs

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 79 / 355

80

Disabling Interrupts

• The simplest solution is to disable all interrupts during the critical section so that
nothing can interrupt the critical section

disable_interrupts();

critical_section();

enable_interrupts();

• Can usually not be used in user-space

• Problematic on systems with multiple processors

• Fails if interrupts are needed in the critical section

• Very efficient and sometimes used in some special cases

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 80 / 355

81

Strict Alternation

• Lets assume just two processes which share a variable called turn which holds the
values 0 and 1

/* process 0 */ /* process 1 */

uncritical_section(); uncritical_section();

while (turn != 0) sleep(1); while (turn != 1) sleep(1);

criticial_section(); critical_section()

turn = 1; turn = 0;

uncritical_section(); uncritical_section();

• Ensures mutual exclusion

• Can be extended to handle alternation between N processes

• Does not satisfy the progress requirement since the solution enforces strict
alternation

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 81 / 355

82

Peterson’s Algorithm

• Lets assume two processes i and j sharing a variable turn (which holds a process
identifier) and a boolean array interested, indexed by process identifiers

uncritical_section();

interested[i] = true;

turn = j;

while (interested[j] && turn == j) sleep(1);

criticial_section();

interested[i] = false;

uncritical_section();

• Modifications of turn (and interested) are protected by a loop to handle
concurrency issues

• Algorithm satisfies mutual exclusion, progress and bounded-waiting requirements
and can be extended to handle N processes

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 82 / 355

83

Spin-Locks

• So called spin-locks are locks which cause the processor to spin while waiting for
the lock

• Spin-locks are often used to synchronize multi-processor systems with shared
memory

• Spin-locks require atomic test-and-set-lock machine instructions on shared memory
cells

• Reentrant locks do not harm if you already hold a lock

enter: tsl register, flag ; copy shared variable flag to register and set flag to 1

cmp register, #0 ; was flag 0?

jnz enter ; if not 0, a lock was set, so try again

ret ; critical region entered

leave: move flag, #0 ; clear lock by storing 0 in flag

ret ; critical region left

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 83 / 355

84

Critique

• Busy waiting potentially wastes processor cycles

• Busy waiting can lead to priority inversion:
• Consider processes with high and low priority
• Processes with high priority are preferred over processes with lower priority by the

scheduler
• Once a low priority process enters a critical section, processes with high priority will

be slowed down more or less to the low priority
• Depending on the scheduler, complete starvation is possible

=⇒ Find alternatives which do not require busy waiting

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 84 / 355

85

Section 12: Semaphores

10 Race Conditions and Critical Sections

11 Synchronization Mechanisms

12 Semaphores

13 Semaphore Pattern

14 Critical Regions, Condition Variables, Messages

15 Synchronization in Java and Go and POSIX APIs

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 85 / 355

86

Semaphores

• A semaphore is a protected integer variable which can only be manipulated by the
atomic operations up() and down()
• High-level definition of the behavior of semaphores:

down(s)

{

s = s - 1;

if (s < 0) queue_this_process_and_block();

}

up(s)

{

s = s + 1;

if (s <= 0) dequeue_and_wakeup_process();

}

• Dijkstra called the operations P() and V(), other popular names are wait() and
signal()

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 86 / 355

87

Critical Sections with Semaphores

• Critical sections are easy to implement with semaphores:
semaphore mutex = 1;

uncritical_section(); uncritical_section();

down(&mutex); down(&mutex);

critical_section(); critical_section();

up(&mutex); up(&mutex);

uncritical_section(); uncritical_section();

• Rule of thumb: Every access to a shared data object must be protected by a mutex

semaphore for the shared data object as shown above

• However, some synchronization problems require more creative usage of
semaphores for proper coordination

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 87 / 355

88

Bounded Buffer with Semaphores

const int N;

shared item_t buffer[N];

semaphore mutex = 1, empty = N, full = 0;

void producer() void consumer()

{ {

produce(&item); down(&full);

down(&empty); down(&mutex);

down(&mutex); item = buffer[out];

buffer[in] = item; out = (out + 1) % N;

in = (in + 1) % N; up(&mutex);

up(&mutex); up(&empty);

up(&full); consume(item);

} }

• Semaphore mutex protects the critical section
• Semaphore empty counts empty buffer space
• Semaphore full counts used buffer space

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 88 / 355

89

Readers / Writers Problem

• A data object is to be shared among several concurrent processes

• Multiple processes (the readers) should be able to read the shared data object
simultaneously

• Processes that modify the shared data object (the writers) may only do so if no
other process (reader or writer) accesses the shared data object

• Several variations exist, mainly distinguishing whether either reader or writers gain
preferred access

=⇒ Starvation can occur in many solutions and is not taken into account here

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 89 / 355

90

Readers / Writers with Semaphores

shared object data;

shared int readcount = 0;

semaphore mutex = 1, writer = 1;

void reader() void writer()

{ {

down(&mutex); down(&writer);

readcount = readcount + 1; write_shared_object(&data);

if (readcount == 1) down(&writer); up(&writer);

up(&mutex); }

read_shared_object(&data);

down(&mutex);

readcount = readcount - 1;

if (readcount == 0) up(&writer);

up(&mutex);

}

=⇒ Many readers can cause starvation of writers

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 90 / 355

91

Dining Philosophers

• Philosophers sitting on a round table either think or eat
• Philosophers do not keep forks while thinking
• A philosopher needs two forks (left and right) to eat
• A philosopher may not pick up only one fork at a time

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 91 / 355

92

Dining Philosophers with Semaphores

const int N; /* number of philosophers */

shared int state[N]; /* thinking (default), hungry or eating */

semaphore mutex = 1; /* mutex semaphore to protect state */

semaphore s[N] = 0; /* semaphore for each philosopher */

void philosopher(int i) void test(int i)

{ {

while (true) { if (state[i] == hungry

think(i); && state[(i-1)%N] != eating

take_forks(i); && state[(i+1)%N] != eating) {

eat(i); state[i] = eating;

put_forks(i); up(&s[i]);

} }

} }

• The test() function tests whether philosopher i can eat and conditionally
unblocks his semaphore

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 92 / 355

93

Dining Philosophers with Semaphores

void take_forks(int i) void put_forks(int i)

{ {

down(&mutex); down(&mutex);

state[i] = hungry; state[i] = thinking;

test(i); test((i-1)%N);

up(&mutex); test((i+1)%N);

down(&s[i]); up(&mutex);

} }

• The function take forks() introduces a hungry state and waits for the
philosopher’s semaphore

• The function put forks() gives the neighbors a chance to eat

• Starvation of philosophers? Fairness?

• What about trying to pick forks after waiting randomly?

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 93 / 355

94

Implementation of Semaphores

• The semaphore operations up() and down() must be atomic

• On uniprocessor machines, semaphores can be implemented by either disabling
interrupts during the up() and down() operations or by using a correct software
solution (e.g., Peterson’s algorithm)

• On multiprocessor machines, semaphores are usually implemented by using
spin-locks, which themself use special machine instructions

• Semaphores are therefore often implemented on top of more primitive
synchronization mechanisms

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 94 / 355

95

Binary Semaphores

• Binary semaphores are semaphores that only take the two values 0 and 1.
• Counting semaphores can be implemented by means of binary semaphores:

shared int c;

binary_semaphore mutex = 1, wait = 0, barrier = 1;

void down() void up()

{ {

down(&barrier); down(&mutex);

down(&mutex); c = c + 1;

c = c - 1; if (c <= 0) {

if (c < 0) { up(&wait);

up(&mutex); }

down(&wait); up(&mutex);

} else { }

up(&mutex);

}

up(&barrier);

}

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 95 / 355

96

Section 13: Semaphore Pattern

10 Race Conditions and Critical Sections

11 Synchronization Mechanisms

12 Semaphores

13 Semaphore Pattern

14 Critical Regions, Condition Variables, Messages

15 Synchronization in Java and Go and POSIX APIs

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 96 / 355

97

Semaphore Pattern: Mutual Exclusion

A critical section may only be executed by a single thread.

semaphore_t s = 1;

thread()

{

/* do something */

down(&s);

/* critical section */

up(&s);

/* do something */

}

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 97 / 355

98

Semaphore Pattern: Multiplex

A section may be executed concurrently with a certain fixed limit of N concurrent
threads. (This is a generalization of the mutual exclusion pattern, which is essentially
multiplex with N = 1.)

semaphore_t s = N;

thread()

{

/* do something */

down(&s);

/* multiplex section */

up(&s);

/* do something */

}

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 98 / 355

99

Semaphore Pattern: Signaling

A thread waits until some other thread signals a certain condition.

semaphore_t s = 0;

waiting_thread() signaling_thread()

{ {

/* do something */ /* do something */

down(&s); up(&s);

/* do something */ /* do something */

} }

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 99 / 355

100

Semaphore Pattern: Rendezvous

Two threads wait until they both have reached a certain state (the rendezvous point)
and afterwards they proceed independently again. (This can be seen as using the
signaling pattern twice.)

semaphore_t s1 = 0, s2 = 0;

thread_A() thread_B()

{ {

/* do something */ /* do something */

up(&s2); up(&s1);

down(&s1); down(&s2);

/* do something */ /* do something */

}

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 100 / 355

101

Semaphore Pattern: Simple Barrier

Generalization of the rendezvous pattern to N threads. First a simple barrier solution
using counting semaphores.

shared int count = 0;

semaphore_t mutex = 1, turnstile = 0;

thread()

{

/* do something */

down(&mutex);

count++;

if (count == N) {

for (int j = 0; j < N; j++) {

up(&turnstile); /* let N threads pass through the turnstile */

}

count = 0;

}

up(&mutex);

down(&turnstile); /* block until opened by the Nth thread */

/* do something */

}

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 101 / 355

102

Semaphore Pattern: Double Barrier

Next a solution allowing to do something while passing through the barrier, which is
sometimes needed.

shared int count = 0;

semaphore_t mutex = 1, turnstile1 = 0, turnstile2 = 1;

{

/* do something */

down(&mutex);

count++;

if (count == N) {

down(&turnstile2); /* close turnstile2 (which was left open) */

up(&turnstile1); /* open turnstile1 for one thread */

}

up(&mutex);

down(&turnstile1); /* block until opened by the last thread */

up(&turnstile1); /* every thread lets another thread pass */

/* do something controlled by a barrier */

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 102 / 355

103

Semaphore Pattern: Double Barrier (cont.)

/* do something controlled by a barrier */

down(&mutex);

count--;

if (count == 0) {

down(&turnstile1); /* close turnstile1 again */

up(&turnstile2); /* open turnstile2 for one thread */

}

up(&mutex);

down(&turnstile2); /* block until opened by the last thread */

up(&turnstile2); /* every thread lets another thread pass */

/* (turnstile2 is left open) */

/* do something */

}

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 103 / 355

104

Section 14: Critical Regions, Condition Variables, Messages

10 Race Conditions and Critical Sections

11 Synchronization Mechanisms

12 Semaphores

13 Semaphore Pattern

14 Critical Regions, Condition Variables, Messages

15 Synchronization in Java and Go and POSIX APIs

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 104 / 355

105

Critical Regions

• Simple programming errors (omissions, permutations) with semaphores usually lead
to difficult to debug synchronization errors
• Idea: Let the compiler do the tedious work

shared struct buffer {

item_t pool[N]; int count; int in; int out;

}

region buffer when (count < N) region buffer when (count > 0)

{ {

pool[in] = item; item = pool[out];

in = (in + 1) % N; out = (out + 1) % N;

count = count + 1; count = count - 1;

} }

• Reduces the number of synchronization errors, does not eliminate synchronization
errors

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 105 / 355

106

Monitors

• Idea: Encapsulate the shared data object and the synchronization access methods
into a monitor

• Processes can call the procedures provided by the monitor

• Processes can not access monitor internal data directly

• A monitor ensures that only one process is active in the monitor at every given
point in time

• Monitors are special programming language constructs

• Compilers generate proper synchronization code

• Monitors were developed well before object-oriented languages became popular

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 106 / 355

107

Condition Variables

• Condition variables are special monitor variables that can be used to solve more
complex coordination and synchronization problems

• Condition variables support the two operations wait() and signal():
• The wait() operation blocks the calling process on the condition variable c until

another process invokes signal() on c. Another process may enter the monitor
while waiting to be signaled.

• The signal() operation unblocks a process waiting on the condition variable c.
The calling process must leave the monitor before the signaled process continues.

• Condition variables are not counters. A signal() on c is ignored if no processes is
waiting on c

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 107 / 355

108

Bounded Buffer with Monitors

monitor BoundedBuffer

{

condition full, empty;

int count = 0;

item_t buffer[N];

void enter(item_t item) item_t remove()

{ {

if (count == N) wait(&full); if (count == 0) wait(&empty);

buffer[in] = item; item = buffer[out];

in = (in + 1) % N; out = (out + 1) % N;

count = count + 1; count = count - 1;

if (count == 1) signal(&empty); if (count == N-1) signal(&full);

} return item;

}

}

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 108 / 355

109

Messages

• Exchange of messages can be used for synchronization

• Two primitive operations:

send(destination, message)

recv(source, message)

• Blocking message systems block processes in these primitives if the peer is not
ready for a rendevous

• Storing message systems maintain messages in special mailboxes called message
queues. Processes only block if the remote mailbox is full during a send() or the
local mailbox is empty during a recv()

• Some programming languages (e.g., go) use message queues as the primary
abstraction for synchronization (e.g., go routines and channels)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 109 / 355

110

Bounded Buffer with Messages

• Messages are used as tokens which control the exchange of items
• Consumers initially generate and send a number of tokens to the producers

void init() { for (i = 0; i < N; i++) { send(&producer, &m); } }

void producer() void consumer()

{ {

produce(&item); recv(&producer, &m);

recv(&consumer, &m); unpack(&m, &item)

pack(&m, item); send(&producer, &m);

send(&consumer, &m) consume(item);

} }

• Mailboxes are used as temporary storage space and must be large enough to hold
all tokens / messages

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 111 / 355

111

Equivalence of Mechanisms

• Are there synchronization problems which can be solved only with a subset of the
mechanisms?

• Or are all the mechanisms equivalent?

• Constructive proof technique:
• Two mechanisms A and B are equivalent if A can emulate B and B can emulate A
• In both proof directions, construct an emulation (does not have to be efficient - just

correct ;-)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 112 / 355

112

Section 15: Synchronization in Java and Go and POSIX APIs

10 Race Conditions and Critical Sections

11 Synchronization Mechanisms

12 Semaphores

13 Semaphore Pattern

14 Critical Regions, Condition Variables, Messages

15 Synchronization in Java and Go and POSIX APIs

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 113 / 355

113

Synchronization in Java

• Java supports mutual exclusion of code blocks by declaring them synchronized:

synchronized(expr) {

// ’expr’ must evaluate to an Object

}

• Java supports mutual exclusion of critical sections of an object by marking methods
as synchronized, which is in fact just syntactic sugar:

synchronized void foo() { /* body */ }

void foo() { synchronized(this) { /* body */ } }

• Additional wait(), notify() and notifyAll() methods can be used to
coordinate critical sections

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 114 / 355

/*

* bounded/BoundedBuffer.java --

*

* Bounded buffer (producer / consumer) problem solution with

* Java synchronized methods.

*/

import java.lang.Thread;

class BoundedBuffer

{

private final int size;

private int count = 0, out = 0, in = 0;

private int[] buffer;

public BoundedBuffer(int size) {

this.in = 0;

this.out = 0;

this.count = 0;

this.size = size;

this.buffer = new int[this.size];

}

public synchronized void insert(int i)

{

try {

while (count == size) {

wait();

}

buffer[in] = i;

in = (in + 1) % size;

count++;

notifyAll(); // wakeup all waiting threads

} catch (InterruptedException e) {

Thread.currentThread().interrupt();

}

}

114

public synchronized int remove()

{

try {

while (count == 0) {

wait();

}

int r = buffer[out];

out = (out + 1) % size;

count--;

notifyAll(); // wakeup all waiting threads

return r;

} catch (InterruptedException e) {

Thread.currentThread().interrupt();

return -1;

}

}

}

/*

* bounded/BoundedBufferTest.java --

*

* Bounded buffer (producer / consumer) problem solution with

* Java synchronized methods. This test driver uses synchronized

* expressions to generate an increasing sequence of numbers

* concurrently.

*/

import java.lang.Runnable;

import java.lang.Thread;

import java.lang.ThreadGroup;

public class BoundedBufferTest

{

private static BoundedBuffer buffer = new BoundedBuffer(8);

private static class Producer implements Runnable

{

private static Integer fake = 0;

private static int next = 0;

public void run()

{

while (true) {

synchronized (fake) {

buffer.insert(next++);

}

}

}

}

private static class Consumer implements Runnable

{

public void run()

{

while (true) {

int val = buffer.remove();

System.out.println(val);

}

}

}

public static void main(String[] args)

{

BoundedBufferTest test = new BoundedBufferTest();

115

ThreadGroup producer = new ThreadGroup("producer");

ThreadGroup consumer = new ThreadGroup("consumer");

for (int i = 0; i < 5; i++) {

Thread t = new Thread(producer, new Producer());

t.start();

}

for (int i = 0; i < 2; i++) {

Thread t = new Thread(consumer, new Consumer());

t.start();

}

}

}

116

Synchronization in Go

• Light-weigth “goroutines” that are typically mapped to an operating system level
thread pool

• Channels provide message queues between goroutines

• Philosophy: Do not communicate by sharing memory; instead, share memory by
communicating

• Inspired by Hoare’s work on Communicating Sequential Processes (CSP)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 115 / 355

/*

* bounded/bounded.go --

*

* Bounded buffer (producer / consumer) problem solution with

* go and channels. Well, actually a go channel in fact is a

* bounded buffer. Anyway, this code is in analogy to the C

* version and it primarily serves to demonstrate how channels

* can be used to avoid the usage of explicit synchronization

* primitives.

*/

package main

import (

"fmt"

goopt "github.com/droundy/goopt"

)

const (

size = 12

)

var nc = goopt.Int([]string{"-c", "--consumers"}, 1, "number of consumers")

var np = goopt.Int([]string{"-p", "--producers"}, 1, "number of producers")

var ve = goopt.Flag([]string{"-v", "--verbose"}, []string{"-q", "--quiet"}, "verbose output", "be quiet")

func generator() (<-chan int, chan<- bool) {

s := make(chan int)

n := make(chan bool)

cnt := 0

go func() {

for {

cnt++

s <- cnt

<-n

}

}()

return s, n

117

}

func discarder() (chan<- int, <-chan bool) {

d := make(chan int)

r := make(chan bool)

cnt := 0

go func() {

for {

r <- true

v := <-d

cnt++

if *ve {

fmt.Printf(".")

}

if cnt != v {

panic(fmt.Sprintf("unexpected number %d (expected %d)", v, cnt))

}

}

}()

return d, r

}

func producer(b chan int, g <-chan int, n chan<- bool) {

for {

v := <-g

b <- v

n <- true

}

}

func consumer(b chan int, d chan<- int, r <-chan bool) {

for {

<- r

v := <-b

d <- v

}

}

func run(nc int, np int) {

b := make(chan int, size) // bounded buffer

g, n := generator() // lock-step generator

d, r := discarder() // lock-step discarder

for i := 0; i < np; i++ {

go producer(b, g, n)

}

for i := 0; i < nc; i++ {

go consumer(b, d, r)

}

}

func main() {

goopt.Parse(nil)

run(*nc, *np)

<-make(chan struct{}) // block on a channel that never delivers

}

118

POSIX Mutex Locks

#include <pthread.h>

typedef ... pthread_mutex_t;

typedef ... pthread_mutexattr_t;

int pthread_mutex_init(pthread_mutex_t *mutex,

pthread_mutexattr_t *mutexattr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_timedlock(pthread_mutex_t *mutex,

struct timespec *abstime);

• Mutex locks are a simple mechanism to achieve mutual exclusion in critical sections

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 116 / 355

119

POSIX Condition Variables

#include <pthread.h>

typedef ... pthread_cond_t;

typedef ... pthread_condattr_t;

int pthread_cond_init(pthread_cond_t *cond,

pthread_condattr_t *condattr);

int pthread_cond_destroy(pthread_cond_t *cond);

int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_timedwait(pthread_cond_t *cond,

pthread_mutex_t *mutex,

struct timespec *abstime);

• Condition variables can be used to bind the entrance into a critical section
protected by a mutex to a condition

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 117 / 355

/*

* bounded/bounded.c --

*

* Bounded buffer (producer / consumer) problem solution with

* pthreads and condition variables.

*/

#define _REENTRANT

#define _DEFAULT_SOURCE

#define _XOPEN_SOURCE

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <getopt.h>

#include <assert.h>

#include <pthread.h>

#define BUFFER_SIZE 12

typedef struct buffer {

unsigned int count;

unsigned int data[BUFFER_SIZE];

int in;

int out;

pthread_mutex_t mutex;

pthread_cond_t empty;

pthread_cond_t full;

} buffer_t;

static buffer_t shared_buffer = {

.count = 0,

.in = 0,

.out = 0,

.mutex = PTHREAD_MUTEX_INITIALIZER,

.empty = PTHREAD_COND_INITIALIZER,

.full = PTHREAD_COND_INITIALIZER

120

};

static const char *progname = "bounded";

static unsigned int

next()

{

static unsigned int cnt = 0;

return ++cnt;

}

static void

check(unsigned int num)

{

static unsigned int cnt = 0;

assert(num == ++cnt);

}

static void*

producer(void *data)

{

buffer_t *buffer = (buffer_t *) data;

while (1) {

(void) pthread_mutex_lock(&buffer->mutex);

while (buffer->count == BUFFER_SIZE) {

(void) pthread_cond_wait(&buffer->empty, &buffer->mutex);

}

buffer->data[buffer->in] = next();

buffer->in = (buffer->in + 1) % BUFFER_SIZE;

buffer->count++;

(void) pthread_cond_signal(&buffer->full);

(void) pthread_mutex_unlock(&buffer->mutex);

}

return NULL;

}

static void*

consumer(void *data)

{

buffer_t *buffer = (buffer_t *) data;

while (1) {

(void) pthread_mutex_lock(&buffer->mutex);

while (buffer->count == 0) {

(void) pthread_cond_wait(&buffer->full, &buffer->mutex);

}

check(buffer->data[buffer->out]);

buffer->out = (buffer->out + 1) % BUFFER_SIZE;

buffer->count--;

(void) pthread_cond_signal(&buffer->empty);

(void) pthread_mutex_unlock(&buffer->mutex);

}

return NULL;

}

static int

run(int nc, int np)

{

int err, n = nc + np;

pthread_t thread[n];

for (int i = 0; i < n; i++) {

121

err = pthread_create(&thread[i], NULL,

i < nc ? consumer : producer, &shared_buffer);

if (err) {

fprintf(stderr, "%s: %s(): unable to create thread %d: %s\n",

progname, __func__, i, strerror(err));

return EXIT_FAILURE;

}

}

for (int i = 0; i < n; i++) {

if (thread[i]) {

err = pthread_join(thread[i], NULL);

if (err) {

fprintf(stderr, "%s: %s(): unable to join thread %d: %s\n",

progname, __func__, i, strerror(err));

}

}

}

return EXIT_SUCCESS;

}

int

main(int argc, char *argv[])

{

int c, nc = 1, np = 1;

while ((c = getopt(argc, argv, "c:p:h")) >= 0) {

switch (c) {

case 'c':

if ((nc = atoi(optarg)) <= 0) {

fprintf(stderr, "number of consumers must be > 0\n");

exit(EXIT_FAILURE);

}

break;

case 'p':

if ((np = atoi(optarg)) <= 0) {

fprintf(stderr, "number of producers must be > 0\n");

exit(EXIT_FAILURE);

}

break;

case 'h':

printf("Usage: %s [-c consumers] [-p producers] [-h]\n", progname);

exit(EXIT_SUCCESS);

}

}

return run(nc, np);

}

122

POSIX Barriers

#include <pthread.h>

typedef ... pthread_barrier_t;

typedef ... pthread_barrierattr_t;

int pthread_barrier_init(pthread_barrier_t *barrier,

pthread_barrierattr_t *barrierattr,

unsigned count);

int pthread_barrier_destroy(pthread_barrier_t *barrier);

int pthread_barrier_wait(pthread_barrier_t *barrier);

• Barriers block threads until the required number of threads have called
pthread barrier wait().

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 118 / 355

123

POSIX Message Queues

#include <mqueue.h>

typedef ... mqd_t;

mqd_t mq_open(const char *name, int oflag);

mqd_t mq_open(const char *name, int oflag, mode_t mode,

struct mq_attr *attr);

int mq_getattr(mqd_t mqdes, struct mq_attr *attr);

int mq_setattr(mqd_t mqdes, const struct mq_attr *newattr,

struct mq_attr *oldattr);

int mq_close(mqd_t mqdes);

int mq_unlink(const char *name);

• Message queues can be used to exchange messages between threads and processes
running on the same system efficiently

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 119 / 355

Message queues are a very important software components for building distributed applications. The
POSIX message queues exist in the kernel and hence are restricted to a single system.

There are far more flexible message queues that can work efficient locally (i.e., between threads) and
in a distributed applicaiton (i.e., processes running on different computers). Interested readers should
lookup ZeroMQ10 and nanomsg11.

10http://zeromq.org/
11https://nanomsg.org/

124

http://zeromq.org/
https://nanomsg.org/

POSIX Message Queues

#include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr,

size_t msg_len, unsigned int msg_prio);

int mq_timedsend(mqd_t mqdes, const char *msg_ptr,

size_t msg_len, unsigned int msg_prio,

const struct timespec *abs_timeout);

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr,

size_t msg_len, unsigned int *msg_prio);

ssize_t mq_timedreceive(mqd_t mqdes, char *msg_ptr,

size_t msg_len, unsigned int *msg_prio,

const struct timespec *abs_timeout);

int mq_notify(mqd_t mqdes, const struct sigevent *sevp);

• Message queues notifications can be delivered in different ways, e.g., as signals or
in a thread-like fashion

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 120 / 355

125

POSIX Semaphores

#include <semaphore.h>

typedef ... sem_t;

int sem_init(sem_t *sem, int pshared, unsigned int value);

int sem_destroy(sem_t *sem);

int sem_wait(sem_t *sem);

int sem_post(sem_t *sem);

int sem_trywait(sem_t *sem);

int sem_getvalue(sem_t *sem, int *sval);

sem_t* sem_open(const char *name, int oflag);

sem_t* sem_open(const char *name, int oflag, mode_t mode, unsigned int value);

int int sem_close(sem_t *sem);

int sem_unlink(const char *name);

• Unnamed semaphores are created with (sem_init())
• Named semaphores are created with (sem_open())

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 121 / 355

126

Atomic Operations in Linux (2.6.x)

struct ... atomic_t;

int atomic_read(atomic_t *v);

void atomic_set(atomic_t *v, int i);

void atomic_add(int i, atomic_t *v);

void atomic_sub(int i, atomic_t *v);

void atomic_inc(atomic_t *v);

void atomic_dec(atomic_t *v);

int atomic_add_negative(int i, atomic_t *v);

int atomic_sub_and_test(int i, atomic_t *v);

int atomic_inc_and_test(atomic_t *v)

int atomic_dec_and_test(atomic_t *v);

• The atomic t is essentially 24 bit wide since some processors use the remaining 8
bits of a 32 bit word for locking purposes

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 122 / 355

127

Atomic Operations in Linux (2.6.x)

void set_bit(int nr, unsigned long *addr);

void clear_bit(int nr, unsigned long *addr);

void change_bit(int nr, unsigned long *addr);

int test_and_set_bit(int nr, unsigned long *addr);

int test_and_clear_bit(int nr, unsigned long *addr);

int test_and_change_bit(int nr, unsigned long *addr);

int test_bit(int nr, unsigned long *addr);

• The kernel provides similar bit operations that are not atomic (prefixed with two
underscores)

• The bit operations are the only portable way to set bits

• On some processors, the non-atomic versions might be faster

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 123 / 355

128

Semaphores in Linux (2.6.x)

struct ... semaphore;

void sema_init(struct semaphore *sem, int val);

void init_MUTEX(struct semaphore *sem);

void init_MUTEX_LOCKED(struct semaphore *sem);

void down(struct semaphore *sem);

int down_interruptible(struct semaphore *sem);

int down_trylock(struct semaphore *sem);

void up(struct semaphore *sem);

• Linux kernel semaphores are counting semaphores

• init MUTEX(s) equals sema init(s, 1)

• init MUTEX LOCKED(s) equals sema init(s, 0)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 125 / 355

129

Part V

Deadlocks

130

Section 16: Deadlocks

16 Deadlocks

17 Resource Allocation Graphs

18 Deadlock Strategies

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 127 / 355

131

Deadlocks

semaphore s1 = 1, s2 = 1;

void p1() void p2()

{ {

down(&s1); down(&s2);

down(&s2); down(&s1);

critical_section(); critical_section();

up(&s2); up(&s1);

up(&s1); up(&s2);

} }

• Executing the functions p1 and p2 concurrently can lead to a deadlock when both
processes have executed the first down() operation

• Deadlocks also occur if processes do not release semaphores/locks

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 128 / 355

132

Deadlocks

class A class B

{ {

public synchronized a1(B b) public synchronized b1(A a)

{ {

b.b2(); a.a2();

} }

public synchronized a2(B b) public synchronized b2(A a)

{ {

} }

} }

• Deadlocks can also be created by careless use of higher-level synchronization
mechanisms

• Should the operating system not prevent deadlocks?

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 129 / 355

133

Necessary Deadlock Conditions

• Mutual exclusion:
Resources cannot be used simultaneously by several processes

• Hold and wait:
Processes apply for a resource while holding another resource

• No preemption:
Resources cannot be preempted, only the process itself can release resources

• Circular wait:
A circular list of processes exists where every process waits for the release of a
resource held by the next process

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 130 / 355

134

Section 17: Resource Allocation Graphs

16 Deadlocks

17 Resource Allocation Graphs

18 Deadlock Strategies

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 131 / 355

135

Resource-Allocation Graph (RAG)

P1 P3P2

R3R1

R2
R4

RAG = {V ,E}
V = P ∪ R
E = Ec ∪ Er ∪ Ea

P = {P1,P2, . . . ,Pn} (processes)
R = {R1,R2, . . . ,Rm} (resource types)
Ec = {Pi → Rj} (resource claims (future))
Er = {Pi → Rj} (resource requests (current))
Ea = {Ri → Pj} (resource assignments)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 132 / 355

136

RAG Properties

• Properties of a Resource-Allocation Graph:
• A cycle in the RAG is a necessary condition for a deadlock
• If each resource type has exactly one instance, then a cycle is also a sufficient

condition for a deadlock
• If each resource type has several instances, then a cycle is not a sufficient condition

for a deadlock

• Dashed claim arrows (Ec) can express that a future claim for an instance of a
resource is already known

• Information about future claims can help to avoid situations which can lead to
deadlocks

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 133 / 355

137

RAG Example #1

P1 P3P2

R3R1

R2
R4

• Cycle 1: P1 → R1 → P2 → R3 → P3 → R2 → P1

• Cycle 2: P2 → R3 → P3 → R2 → P2

• Processes P1, P2 and P3 are deadlocked

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 134 / 355

138

RAG Example #2

P1 P3

P2

P4R2

R1

• Cycle: P1 → R1 → P3 → R2 → P1

• Processes P1 and P3 are not deadlocked
• P4 may release its instance of R2, breaking the cycle

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 135 / 355

139

RAG Example #3

P1 P2 P3

R2

R1 R3

• P2 and P3 both request R3. To which process should the resource be assigned?

• Assign R3 to P2 to avoid a future deadlock situation

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 136 / 355

140

Section 18: Deadlock Strategies

16 Deadlocks

17 Resource Allocation Graphs

18 Deadlock Strategies

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 137 / 355

141

Deadlock Strategies

• Prevention:
The system is designed such that deadlocks can never occur

• Avoidance:
The system assigns resources so that deadlocks are avoided

• Detection and recovery :
The system detects deadlocks and recovers itself

• Ignorance:
The system does not care about deadlocks and the user has to take corrective
actions

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 138 / 355

142

Deadlock Prevention

• Ensure that at least one of the necessary conditions cannot hold

• Prevent mutual exclusion:
Some resources are intrinsically non-sharable

• Prevent hold and wait:
Low resource utilization and starvation possible

• Prevent no preemption:
Preemption can not be applied to some resources such as printers or tape drives

• Prevent circular wait:
Leads to low resource utilization and starvation if the imposed order does not
match process requirements

=⇒ Prevention is not feasible in the general case

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 139 / 355

143

Deadlock Avoidance

• Definitions:
• A state is safe if the system can allocate resources to each process (up to its

claimed maximum) and still avoid a deadlock
• A state is unsafe if the system cannot prevent processes from requesting resources

such that a deadlock occurs

• Assumption:
• For every process, the maximum resource claims are known a priori.

• Idea:
• Only grant resource requests that can not lead to a deadlock situation

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 140 / 355

144

Banker’s Algorithm

• There are n processes and m resource types

• Let i ∈ 1, . . . , n and j ∈ 1, . . .m

• Total [j]: total number of resources of type j

• Avail [j]: number of available resources of type j

• Alloc[i , j]: number of resources of type j allocated to process i

• Max [i , j]: maximum number of resources of type j claimed by process i to
complete eventually

• Need [i , j]: number of requested resources of type j by process i

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 141 / 355

145

Banker’s Algorithm

• Temporary variables:
• Work[j]: available resources when some processes finish and deallocate
• Finish[i]: boolean vector indicating processes able to finish

• Vector comparison:
• Let X and Y be vectors of length n
• X ≤ Y if and only if X [i] ≤ Y [i] for all i = 1, . . . , n

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 142 / 355

146

Safe-State Algorithm

1. Initialize:
Work ← Avail
∀i = 1, . . . , n : Finish[i]← false

2. Select:
Find a process i such that for j = 1, . . . ,m Finish[i] = false ∧ Need [i , j] ≤
Work[j]
If no such process i exists, go to step 4.

3. Update:

Work[j] ← Work[j] + Alloc[i , j] for j = 1, . . . ,m, Finish[i] ← true, go to step
2.

4. Finish:
Safe state if Finish[i] = true for i = 1, . . . , n

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 143 / 355

147

Resource-Request Algorithm

1. Check:
If Request[j] ≤ Need [j] for j = 1, . . . ,m, go to step 2. Otherwise raise an error.

2. Test:
If Request ≤ Avail , go to step 3. Otherwise, process i must wait until resources
are available

3. Update:

Avail [j]← Avail [j]− Request[j]
Alloc[i , j]← Alloc[i , j] + Request[j]
Need [i , j]← Need [i , j]− Request[j]

4. Decide:
If the resulting state is safe, the resource is allocated to process i . Otherwise,
process i must wait and the old state is restored

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 144 / 355

148

Banker’s Algorithm Example

• System description:
m = 4 resource types

n = 5 processes

Total = {6, 8, 10, 12}

Max =




3 1 2 5
3 2 5 7
2 6 3 1
5 4 9 2
1 3 8 9




Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 145 / 355

149

Banker’s Algorithm Example

• Can the system get into the state described by the following allocation matrix?

Alloc =




0 0 2 1
1 0 1 2
1 2 1 1
3 4 0 0
0 0 4 2




Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 146 / 355

150

Banker’s Algorithm Example

• Check whether the given state is safe:

Avail = (1, 2, 2, 6)

Need =




3 1 0 4
2 2 4 5
1 4 2 0
2 0 9 2
1 3 4 7




• The system may never reach this state!

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 147 / 355

151

Banker’s Algorithm Example

• Assume the system is in the state described by the following matrix:

Alloc =




1 0 2 1
1 1 2 5
1 2 3 1
1 1 1 1
1 0 2 2




• How should the system react if process 4 requests an instance of resource 4?

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 148 / 355

152

Banker’s Algorithm Example

• Assume the request can be granted:

Alloc =




1 0 2 1
1 1 2 5
1 2 3 1
1 1 1 2
1 0 2 2




Need =




2 1 0 4
2 1 3 2
1 4 0 0
4 3 8 0
0 3 6 7




• Is it still possible to satisfy the maximum claims?

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 149 / 355

153

Banker’s Algorithm Example

• Maximum claims can be satisfied as shown below:
Avail Action

(1, 4, 0, 1) termination of process 3
(2, 6, 3, 2) termination of process 2
(3, 7, 5, 7) termination of process 1
(4, 7, 7, 8) termination of process 5

(5, 7, 9, 10) termination of process 4
(6, 8, 10, 12) stop

• The new state is safe and the request can be granted.

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 150 / 355

154

Deadlock Detection

• Idea:
• Assign resources without checking for unsafe states
• Periodically run an algorithm to detect deadlocks
• Once a deadlock has been detected, use an algorithm to recover from the deadlock

• Recovery:
• Abort one or more deadlocked processes
• Preempt resources until the deadlock cycle is broken

• Issues:
• Criterias for selecting a victim?
• How to avoid starvation?

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 151 / 355

155

Detection Algorithm

1. Initialize:
Work ← Avail
∀i = 1, . . . , n : Finish[i]← false

2. Select:
Find a process i such that for j = 1, . . . ,m Finish[i] = false ∧ Request[i , j] ≤
Work[j]
If no such process i exists, go to step 4.

3. Update:

Work[j] ← Work[j] + Alloc[i , j] for j = 1, . . . ,m, Finish[i] ← true, go to step
2.

4. Finish:
Deadlock if Finish[i] = false for some i , 1 ≤ i ≤ n

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 152 / 355

156

Part VI

Scheduling

157

Section 19: CPU Scheduling

19 CPU Scheduling

20 CPU Scheduling Strategies

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 154 / 355

158

CPU Scheduling

• A scheduler selects from among the processes in memory that are ready to execute,
and allocates CPU to one of them.

• Fairness: Every process gets a fair amount of CPU time

• Efficiency : CPUs should be busy whenever there is a process ready to run

• Response Time: The response time for interactive applications should be minimized

• Wait Time: The time it takes to execute a given process should be minimized

• Throughput: The number of processes completed per time interval should be
maximized

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 155 / 355

159

Preemptive Scheduling

• A preemptive scheduler can interrupt a running process and assign the CPU to
another process

• A non-preemptive scheduler waits for the process to give up the CPU once the
CPU has been assigned to the process

• Non-preemptive schedulers cannot guarantee fairness

• Preemptive schedulers are harder to design

• Preemptive schedulers might preempt the CPU at times where the preemption is
costly (e.g., in the middle of a critical section)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 156 / 355

160

Deterministic vs. Probabilistic

• A deterministic scheduler knows the execution times of the processes and optimizes
the CPU assignment to optimize system behavior (e.g., maximize throughput)

• A probabilistic scheduler describes process behavior with certain probability
distributions (e.g., process arrival rate distribution) and optimizes the overall
system behavior based on these probabilistic assumptions

• Deterministic schedulers are relatively easy to analyze

• Finding optimal schedules is a complex problem

• Probabilistic schedulers must be analyzed using stochastic models (queuing models)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 157 / 355

161

Deterministic Scheduling

• A schedule S for a set of processors P = {P1,P2, . . . ,Pm} and a set of tasks
T = {T1,T2, . . . ,Tn} with the execution times t = {t1, t2, . . . tn} and a set D of
dependencies between tasks is a temporal assignment of the tasks to the processors.

• A precedence graph G = (T ,E) is a directed acyclic graph which defines
dependencies between tasks. The vertices of the graph are the tasks T . An edge
from Ti to Tj indicates that task Tj may not be started before task Ti is complete.

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 158 / 355

162

Deterministic Scheduling Example

• T = {T1,T2,T3,T4,T5,T6}, n = 6

• t1 = t4 = 1, t2 = t3 = t5 = 2, t6 = 3

• G = (T ,E)

• E = {(T1,T3), (T2,T3), (T3,T5), (T4,T5), (T4,T6)}
• P = {P1,P2},m = 2

T1T1 T2

T5 T6

T4

T3

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 159 / 355

163

Gantt Diagrams

• Schedules are often visualized using Gantt diagrams:

��
��
��
��

��
��
��
��

P2

P1 T1 T4 T5T3

T2 T6

0 1 2 3 4 5 6

• Let e = {e1, e2, . . . , en} denote the termination time of the task ti ∈ T in the
schedule S . The length of the schedule t(S) and the average wait time e are
defined as follows:

t(S) = max
1≤i≤n

{ei} e =
1

n

n∑

i=1

ei

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 160 / 355

164

Section 20: CPU Scheduling Strategies

19 CPU Scheduling

20 CPU Scheduling Strategies

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 161 / 355

165

First-Come, First-Served (FCFS)

• Assumptions:
• No preemption of running processes
• Arrival and execution times of processes are known

• Principle:
• Processors are assigned to processes on a first come first served basis (under

observation of any precedences)

• Properties:
• Straightforward to implement
• Average wait time can become quite large

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 162 / 355

166

Longest Processing Time First (LPTF)

• Assumptions:
• No preemption of running processes
• Execution times of processes are known

• Principle:
• Processors are assigned to processes with the longest execution time first
• Shorter processes are kept to fill “gaps” later

• Properties:
• For the length t(SL) of an LPTF schedule SL and the length t(SO) of an optimal

schedule SO , the following holds:

t(SL) ≤ (
4

3
− 1

3m
) · t(SO)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 163 / 355

167

Shortest Job First (SJF)

• Assumptions:
• No preemption of running processes
• Execution times of processes are known

• Principle:
• Processors are assigned to processes with the shortest execution time first

• Properties:
• The SJF algorithm produces schedules with the minimum average waiting time for a

given set of processes and non-preemptive scheduling

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 164 / 355

168

Shortest Remaining Time First (SRTF)

• Assumptions:
• Preemption of running processes
• Execution times of the processes are known

• Principle:
• Processors are assigned to processes with the shortest remaining execution time first
• New arriving processes with a shorter execution time than the currently running

processes will preempt running processes

• Properties:
• The SRTF algorithm produces schedules with the minimum average waiting time

for a given set of processes and preemptive scheduling

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 165 / 355

169

Round Robin (RR)

• Assumptions:
• Preemption of running processes
• Execution times or the processes are unknown

• Principle:
• Processes are assigned to processors using a FCFS queue
• After a small unit of time (time slice), the running processes are preempted and

added to the end of the FCFS queue

• Properties:
• time slice →∞: FCFS scheduling
• time slice → 0: processor sharing (idealistic)
• Choosing a “good” time slice is important

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 166 / 355

170

Round Robin Variations

• Use separate queues for each processor
• keep processes assigned to the same processor

• Use a short-term queue and a long-term queue
• limit the number of processes that compete for the processor on a short time period

• Different time slices for different types of processes
• degrade impact of processor-bound processes on interactive processes

• Adapt time slices dynamically
• can improve response time for interactive processes

=⇒ Tradeoff between responsiveness and throughput

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 167 / 355

171

Multilevel Queue Scheduling

• Principle:
• Multiple queues for processes with different priorities
• Processes are permanently assigned to a queue
• Each queue has its own scheduling algorithm
• Additional scheduling between the queues necessary

• Properties:
• Overall queue scheduling important (static vs. dynamic partitioning)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 168 / 355

172

Multilevel Feedback Queue Scheduling

• Principle:
• Multiple queues for processes with different priorities
• Processes can move between queues
• Each queue has its own scheduling algorithm

• Properties:
• Very general and configurable scheduling algorithm
• Queue up/down grade critical for overall performance

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 169 / 355

173

Real-time Scheduling

• Hard real-time systems must complete a critical task within a guaranteed amount
of time
• Scheduler needs to know exactly how long each operating system function takes to

execute
• Processes are only admitted if the completion of the process in time can be

guaranteed

• Soft real-time systems require that critical tasks always receive priority over less
critical tasks
• Priority inversion can occur if high priority soft real-time processes have to wait for

lower priority processes in the kernel
• One solution is to give processes a high priority until they are done with the

resource needed by the high priority process (priority inheritance)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 170 / 355

174

Earliest Deadline First (EDF)

• Assumptions:
• Deadlines for the real-time processes are known
• Execution times of operating system functions are known

• Principle:
• The process with the earliest deadline is always executed first

• Properties:
• Scheduling algorithm for hard real-time systems
• Can be implemented by assigning the highest priority to the process with the first

deadline
• If processes have the same deadline, other criterias can be considered to schedule

the processes

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 171 / 355

175

Linux Scheduler System Calls (2.6.x)

#include <unistd.h>

int nice(int inc);

#include <sched.h>

int sched_setscheduler(pid_t pid, int policy, const struct sched_param *p);

int sched_getscheduler(pid_t pid);

int sched_setparam(pid_t pid, const struct sched_param *p);

int sched_getparam(pid_t pid, struct sched_param *p);

int sched_get_priority_max(int policy);

int sched_get_priority_min(int policy);

int sched_rr_get_interval(pid_t pid, struct timespec *tp);

int sched_setaffinity(pid_t pid, unsigned int len, unsigned long *mask);

int sched_getaffinity(pid_t pid, unsigned int len, unsigned long *mask);

int sched_yield(void);

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 172 / 355

176

Parallel Computing Libraries

• OpenMP
• Parallel computer API for shared memory systems. The OpenMP API is operating

system independent and provides high-level compiler contructs (via C pragmas) for
managing threads.

• OpenCL / OpenCL C
• Parallel programming of heterogenous plattforms consisting of CPUs, GPUs, and

DSPs. OpenCL provides access to GPUs for non graphical computing.

• Open MPI
• A message passing library for distributed parallel computing based on the

Message-Passing Interface standard (MPI)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 173 / 355

177

Part VII

Linking

178

Section 21: Linker

21 Linker

22 Libraries

23 Interpositioning

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 175 / 355

179

C Compilation Process

C preprocessor -> expanded C code (gcc -E hello.c)

v v

C compiler -> assembler code (gcc -S hello.c)

v v

assembler -> object code (gcc -c hello.c)

v v

linker -> executable (gcc hello.c)

• Compiling C source code is traditionally a four-stage process.

• Modern compilers often integrate stages for efficiency reasons.

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 176 / 355

180

Reasons for using a Linker

• Modularity
• Programs can be we written as a collection of small files
• Building a collection of easily reusable functions

• Efficiency
• Separate compilation of a subset of small files saves time on large projects
• Smaller executables by linking only functions that are actually used

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 177 / 355

181

What does a Linker do?

• Symbol resolution
• Programs define and reference symbols (variables or functions)
• Symbol definitions and references are stored in object files
• Linker associates each symbol reference with exactly one symbol definition

• Relocation
• Merge separate code and data sections into combined sections
• Relocate symbols from relative locations to their final absolute locations
• Update all references to these symbols to reflect their new positions

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 178 / 355

182

Object Code File Types

• Relocatable object files (.o files)
• Contains code and data in a form that can be combined with other relocatable

object files

• Executable object files
• Contains code and data in a form that can be loaded directly into memory

• Shared object files (.so files)
• Special type of relocatable object file that can be loaded into memory and linked

dynamically at either load time or run-time

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 179 / 355

183

Executable and Linkable Format

• Standard unified binary format for all object files

• ELF header provides basic information (word size, endianess, machine architecture,
. . .)

• Program header table describes zero or more segments used at runtime

• Section header table provides information about zero or more sections

• Separate sections for .text, .rodata, .data, .bss, .symtab, .rel.text,
.rel.data, .debug and many more

• The readelf tool can be used to read ELF format

• The tool objdump can process ELF formatted object files

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 180 / 355

184

Linker Symbols

• Global symbols
• Symbols defined by a module that can be referenced by other modules

• External symbols
• Global symbols that are referenced by a module but defined by some other module

• Local symbols
• Symbols that are defined and referenced exclusively by a single module

• Tools:
• The traditional tool nm displays the (symbol table) of object files in a traditional

format
• The newer tool objdump -t does the same for ELF object files

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 181 / 355

185

Strong and Weak Symbols and Linker Rules

• Strong Symbols
• Functions and initialized global variables

• Weak Symbols
• Uninitialized global variables

• Linker Rules:
• Rule 1: Multiple strong symbols are not allowed
• Rule 2: Given a strong symbol and multiple weak symbols, choose the strong symbol
• Rule 3: If there are multiple weak symbols, pick an arbitrary one

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 182 / 355

186

Linker Puzzles

• Link time error due to two definitions of p1:

a.c: int x; p1() {}

b.c: p1() {}

• Reference to the same uninitialized variable x:

a.c: int x; p1() {}

b.c: int x; p2() {}

• Reference to the same initialized variable x:

a.c: int x=1; p1() {}

b.c: int x; p2() {}

• Writes to the double x likely overwrite y:

a.c: int x; int y; p1() {}

b.c: double x; p2() {}

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 183 / 355

187

Section 22: Libraries

21 Linker

22 Libraries

23 Interpositioning

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 184 / 355

188

Static Libraries

• Collect related relocatable object files into a single file with an index (called an
archive)

• Enhance linker so that it tries to resolve external references by looking for symbols
in one more more archives

• If an archive member file resolves a reference, link the archive member file into the
executable (which may produce additional references)

• The archive format allows for incremental updates

• Example:

ar -rs libfoo.a foo.o bar.o

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 185 / 355

189

Shared Libraries

• Static linking duplicates library code by copying it into executables

• Bug fixes in libraries require to re-link all executables

• Solution: Delay the linking until program start and then link against the most
recent matching versions of the required libraries

• At traditional link time, an executable file is prepared for dynamic linking (i.e.,
information is stored which shared libraries are needed) while the final linking takes
place when an executable is loaded into memory

• First nice side effect: Library code can be stored in memory shared by multiple
processes

• Second nice side effect: Programs can load additional code dynamically while the
program is running

• Caveat: Loading untrusted libraries can lead to real surprises

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 186 / 355

190

Section 23: Interpositioning

21 Linker

22 Libraries

23 Interpositioning

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 187 / 355

191

Interpositioning

• Intercept library calls for fun and profit

• Debugging: tracing memory allocations / leaks

• Profiling: study typical function arguments

• Sandboxing: emulate a restricted view on a filesystem

• Hardening: simulate failures to test program robustness

• Privacy: add encryption into I/O calls

• Hacking: give a program an illusion to run in a different context

• Spying: oops

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 188 / 355

Intercepting library calls can be a very powerful debugging and testing tool. But interpositioning can
also be a dangerous tool if used for malicious purposes.

192

Compile-time Interpositioning

• Change symbols at compile time to so that library calls can be intercepted

• Typically done in C using #define pre-processor substitutions, sometimes
contained in special header files

• This technique is restricted to situations where source code is available

• Example:

#define malloc(size) dbg_malloc(size, __FILE__, __LINE__)

#define free(ptr) dbg_free(ptr, __FILE__, __LINE__)

void *dbg_malloc(size_t size, char *file, int line);

void dbg_free(void *ptr, char *file, int line);

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 189 / 355

193

Link-time Interpositioning

• Tell the linker to change the way symbols are matched

• The GNU linker supports the option --wrap=symbol, which causes references to
symbol to be resolved to wrap symbol while the real symbol remains accessible
as real symbol.

• The GNU compiler allows to pass linker options using the -Wl option.

• Example:

/* gcc -Wl,--wrap=malloc -Wl,--wrap=free */

void * __wrap_malloc (size_t c)

{

printf("malloc called with %zu\n", c);

return __real_malloc (c);

}

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 190 / 355

194

Load-time Interpositioning

• The dynamic linker can be used to pre-load shared libraries

• This may be controlled via setting the LD PRELOAD environment variable

• Example:

LD_PRELOAD=./libmymalloc.so vim

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 191 / 355

/*

* datehack/datehack.c --

*

* gcc -Wall -fPIC -DPIC -c datehack.c

* ld -shared -o datehack.so datehack.o -ldl (Linux)

* ld -dylib -o datehack.dylib datehack.o -ldl (MacOS)

*

* LD_PRELOAD=./datehack.so date (Linux)

* DYLD_INSERT_LIBRARIES=./datehack.dylib date (MacOS)

*

* See fakeroot <http://freecode.com/projects/fakeroot> for a project

* making use of LD_PRELOAD for good reasons.

*

* http://hackerboss.com/overriding-system-functions-for-fun-and-profit/

*/

#define _GNU_SOURCE

#include <time.h>

#include <dlfcn.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>

struct tm *(*orig_localtime)(const time_t *timep);

int (*orig_clock_gettime)(clockid_t clk_id, struct timespec *tp);

struct tm *localtime(const time_t *timep)

{

time_t t = *timep - 60 * 60 * 24;

return orig_localtime(&t);

}

int clock_gettime(clockid_t clk_id, struct timespec *tp)

{

int rc = orig_clock_gettime(clk_id, tp);

if (tp) {

195

tp->tv_sec -= 60 * 60 * 24;

}

return rc;

}

void

_init(void)

{

orig_localtime = dlsym(RTLD_NEXT, "localtime");

if (! orig_localtime) {

abort();

}

orig_clock_gettime = dlsym(RTLD_NEXT, "clock_gettime");

if (! orig_clock_gettime) {

abort();

}

}

196

Part VIII

Memory Management

Every process needs memory to store machine instructions and to store data. The operating system
kernel is in charge to assign memory to processes. Since main memory is finite, the operating sys-
tem kernel needs to handle competing requests such that good performance can be achieved while
establishing some degree of fairness.

Memory sizes have grown significantly over the last couple years and compared to 20 years ago, we
have plenty of memory at our disposal today. But our applications are also consuming more memory
and hence memory management has still a great impact on the overall performance of a system.

As we will see towards the end of this part, memory management and CPU scheduling can become
most effective if they work hand in hand.

197

Section 24: Memory Systems and Translation of Memory

Addresses

24 Memory Systems and Translation of Memory Addresses

25 Segmentation

26 Paging

27 Virtual Memory

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 193 / 355

198

Memory Systems

Disks

Main Memory

Level 2 Cache

Level 1 Cache

> 60 GB

> 256 MB

> 64 KB

< 8 ms

< 8 ns

< 4 ns

< 1−2 ns

> 512 KB

CPU

> 1 KB < 1 ns

Memory Size Access Time

Registers

• In the following, we will focus on the main memory

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 194 / 355

199

Main Memory

• Properties:
• An ordered set of words or bytes
• Each word or byte is accessible via a unique address
• CPUs and I/O devices access the main memory
• Running programs are (at least partially) loaded into main memory
• CPUs usually can only access data in main memory directly (everything goes

through main memory)

• Memory management of an operating system
• allocates and releases memory regions
• decides which process is loaded into main memory
• controls and supervises main memory usage

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 195 / 355

200

Translation of Memory Addresses

source code object modulecompiler

symbolic names absolute/relative addresses

• Compiler translates symbolic addresses (variable / function names) into absolute or
relative addresses

libraries

static/dynamic

object modules executable

static/dynamic

linker

relative addresses

• Linker binds multiple object modules (with relative addresses) and referenced
libraries into an executable

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 196 / 355

201

Translation of Memory Addresses

executable address space

dynamic

runtime linker

libraries

shared / dynamic

logical / physical

• Runtime linker binds executable with dynamic (shared) libraries at program startup
time

address spacemapping

logical physical

address space

• Hardware memory management unit (MMU) maps the logical address space into
the physical address space

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 197 / 355

202

Memory Management Tasks

• Dynamic memory allocation for processes

• Creation and maintenance of memory regions shared by multiple processes (shared
memory)

• Protection against erroneous / unauthorized access

• Mapping of logical addresses to physical addresses

processor
logical address

relocation

register

+
physical address

main

memory

memory management unit

346 14346

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 198 / 355

203

Memory Partitioning

operating system
(RAM)

operating system
(ROM)

device driver
(ROM)

operating system
(RAM)

operating system
(RAM)

user
programs

user
programs

user
programs

partition 1

partition 2

partition 3

0x00

0xff..

• Memory space is often divided into several regions or partitions, some of them
serve special purposes
• Partitioning enables the OS to hold multiple processes in memory (as long as they

fit)
• Static partitioning is not very flexible (but might be good enough for embedded

systems)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 199 / 355

204

Swapping Principle

operating system
(ROM)

user
programs

main memory secondary memory

P1

P2

• Address space of a process is moved to a big (but slow) secondary storage system

• Swapped-out processes should not be considered runable by the scheduler

• Often used to handle (temporary) memory shortages

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 200 / 355

205

Section 25: Segmentation

24 Memory Systems and Translation of Memory Addresses

25 Segmentation

26 Paging

27 Virtual Memory

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 201 / 355

206

Segmentation

• Main memory is partitioned by the operating system into memory segments of
variable length
• Different segments can have different access rights
• Segments may be shared between processes
• Segments may grow or shrink
• Applications may choose to only hold the currently required segments in memory

(sometimes called overlays)

• Addition and removal of segments will over time lead to small unusable holes
(external fragmentation)

• Positioning strategy for new segments influences efficiency and longer term behavior

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 202 / 355

207

External Fragmentation

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

400k

1000k

2000k

2300k

OS

P1

P3

200k

400k

1000k

2000k

2300k

OS

P1

P2

P3

200k

1000k

400k

1000k

2000k

2300k

OS

P1

P3

200k

1700k

300k

P4

400k

1000k

2000k

2300k

OS

600k

P3

200k

1700k

300k

P4

400k

1000k

2000k

2300k

OS

P3

200k

1700k

300k

P4

200k
800k

P5

• In the general case, there is more than one suitable hole to hold a new segment —
which one to choose?

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 203 / 355

208

Positioning Strategies

• best fit:
• Allocate the smallest hole that is big enough
• Large holes remain intact, many small holes

• worst fit:
• Allocate the largest hole
• Holes tend to become equal in size

• first fit:
• Allocate the first hole from the top that is big enough
• Simple and relatively efficient due to limited search

• next fit:
• Allocate the next big enough hole from where the previous next fit search ended
• Hole sizes are more evenly distributed

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 204 / 355

209

Positioning Strategies

• buddy system:
• Holes always have a size of 2i bytes (internal fragmentation)
• Holes are maintained in k lists such that holes of size 2i are maintained in list i
• Holes in list i can be efficiently merged to a hole of size 2i+1 managed by list i + 1
• Holes in list i can be efficiently split into two holes of size 2i−1 managed by list i − 1
• Buddy systems are fast because only small lists have to be searched
• Internal fragmentation can be costly
• Used by user-space memory allocators (malloc())

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 205 / 355

210

Buddy System Example

• Consider the processes A, B , C and D with the memory requests 70k , 35k , 80k
and 60k :

1024

512512

512

512

512

512

512

512

1024

256

256

256

128

128

128

128

128

128

128

128

128

64

64

64

A

B

C

A

D

B

D

C

64

A

A

A

BB

B

B

B

C

C

C

C

C

D

D

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 206 / 355

211

Segmentation Analysis

• fifty percent rule:
Let n be the number of segments and h the number of holes. For large n and h
and a system in equilibrium:

h ≈ n

2
• unused memory rule:

Let s be the average segment size and ks the average hole size for some k > 0.
With a total memory of m bytes, the n/2 holes occupy m − ns bytes:

(n/2) · ks = m − ns ⇐⇒ m = ns(1 + k/2)

The fraction f of memory occupied by holes is:

f =
nks/2

m
=

nks/2

ns(1 + k/2)
=

k

k + 2

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 207 / 355

212

Segmentation Analysis

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.5 1 1.5 2

f

k

fraction f of unsused memory as a function of k

f(k)

=⇒ As long as the average hole size is a significant fraction of the average process size,
a substantial amount of memory will be wasted

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 208 / 355

213

Compaction

• Moving segments in memory allows to turn small holes into larger holes (and is
usually quite expensive)
• Finding a good compaction strategy is not easy

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

OS

P1

P2

0k

300k

500k
600k

1200k

2100k

OS

P1

P2

0k

300k

500k
600k

1200k

2100k

P3

P4

800k

1000k
P3

P4

OS

P1

P2

0k

300k

500k
600k

1500k

1900k

2100k

OS

400k

P1

P2

300k

P4

200k

0k

300k

500k
600k

1000k

1200k

1500k

1900k

2100k

P3

P4

P3

900k

900k900k

200k moved400k moved600k movedinitial stituation

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 209 / 355

214

Section 26: Paging

24 Memory Systems and Translation of Memory Addresses

25 Segmentation

26 Paging

27 Virtual Memory

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 210 / 355

215

Paging Idea

• General Idea:
• Physical memory is organized in frames of fixed size
• Logical memory is organized in pages of the same fixed size
• Page numbers are mapped to frame numbers using a (very fast) page table

mapping mechanism
• Pages of a logical address space can be scattered over the physical memory

• Motivation:
• Avoid external fragmentation and compaction
• Allow fixed size pages to be moved into / out of physical memory

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 211 / 355

216

Paging Model and Hardware

physical memory

f d

page table

f

p

dp

address
logical

physical
address

logical memory

frame

page

• A logical address is a tuple (p, d) where p is an index into the page table and d is
an offset within page p
• A physical address is a tuple (f , d) where f is the frame number and d is an offset

within frame f
Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 212 / 355

217

Paging Properties

• Address translation must be very fast (in some cases, multiple translations are
necessary for a single machine instruction)

• Page tables can become quite large (a 32 bit address space with a page size of
4096 bytes requires a page table with 1 million entries)

• Additional information in the page table:
• Protection bits (read/write/execute)
• Dirty bit (set if page was modified)

• Not all pages of a logical address space must be resident in physical memory to
execute the process

• Access to pages not in physical memory causes a page fault which must be handled
by the operating system

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 213 / 355

218

Handling Page Faults

1. MMU detects a page fault and raises an interrupt

2. Operating system saves the registers of the process

3. Mark the process blocked (waiting for page)

4. Determination of the address causing the page fault

5. Verify that the logical address usage is valid

6. Select a free frame (or a used frame if no free frame)

7. Write used frame to secondary storage (if modified)

8. Load page from secondary storage into the free frame

9. Update the page table in the MMU

10. Restore the instruction pointer and the registers

11. Mark the process runnable and call the scheduler

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 214 / 355

219

Paging Characteristics

• Limited internal fragmentation (last page)

• Page faults are costly due to slow I/O operations

• Try to ensure that the “essential” pages of a process are always in memory

• Try to select used frames (victims) which will not be used in the future

• During page faults, other processes can execute

• What happens if the other processes also cause page faults?

• In the extreme case, the system is busy swapping pages into memory and does not
do any other useful work (thrashing)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 215 / 355

220

Multilevel Paging

p1 p2 d

outer page table

second level page table

p1

p2

physical memory

d

two−level 32−bit paging architecture

• Paging can be applied to page tables as well

• SPARC 32-bit architecture supports three-level paging

• Motorola 32-bit architecture (68030) supports four-level paging

• Caching essential to alleviate delays introduced by multiple memory lookups

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 216 / 355

221

Inverted Page Tables

physical memory

i d

inverted page table

dp

address
logical

physical
address

logical memory of process pid

frame

page

isearch

pid

pid p

• The inverted page table has one entry for each frame
• Page table size determined by size of physical memory
• Entries contain page address and process identification
• The non-inverted page table is stored in paged memory
• Lookups require to search the inverted page table

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 217 / 355

222

Combined Segmentation and Paging

• Segmentation and paging have different strengths and weaknesses

• Combined segmentation and paging allows to take advantage of the different
strengths

• Some architectures supported paged segments or even paged segment tables

• MMUs supporting segmentation and paging leave it to the operating systems
designer to decide which strategy is used

• Note that fancy memory management schemes do not work for real-time systems...

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 218 / 355

223

Section 27: Virtual Memory

24 Memory Systems and Translation of Memory Addresses

25 Segmentation

26 Paging

27 Virtual Memory

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 219 / 355

224

Virtual Memory

• Virtual memory is a technique that allows the execution of processes that may not
fit completely in memory

• Motivation:
• Support virtual address spaces that are much larger than the physical address space

available
• Programmers are less bound by memory constraints
• Only small portions of an address space are typically used at runtime
• More programs can be in memory if only the essential data resides in memory
• Faster context switches if resident data is small

• Most virtual memory systems are based on paging, but virtual memory systems
based on segmentation are feasible

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 220 / 355

225

Loading Strategies

• Loading strategies determine when pages are loaded into memory:
• swapping :

Load complete address spaces (does not work for virtual memory)
• demand paging :

Load pages when they are accessed the first time
• pre-paging :

Load pages likely to be accessed in the future
• page clustering :

Load larger clusters of pages to optimize I/O

• Most systems use demand paging, sometimes combined with pre-paging

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 221 / 355

226

Replacement Strategies

• Replacement strategies determine which pages are moved to secondary storage in
order to free frames
• Local strategies assign a fixed number of frames to a process (page faults only

affect the process itself)
• Global strategies assign frames dynamically to all processes (page faults may affect

other processes)
• Paging can be described using reference strings:

w = r [1]r [2] . . . r [t] . . . sequence of page accesses
r [t] page accessed at time t
s = s[0]s[1] . . . s[t] . . . sequence of loaded pages
s[t] set of pages loaded at time t
x [t] pages paged in at time t
y [t] pages paged out at time t

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 222 / 355

227

Replacement Strategies

• First in first out (FIFO):
Replace the page which is the longest time in memory
• Second chance (SC):

Like FIFO, except that pages are skipped which have been used since the last page
fault
• Least frequently used (LFU):

Replace the page which has been used least frequently
• Least recently used (LRU):

Replace the page which has not been used for the longest period of time (in the
past)
• Belady’s optimal algorithm (BO):

Replace the page which will not be used for the longest period of time (in the
future)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 223 / 355

228

Belady’s Anomaly

• Increasing memory size should decrease page fault rate
• Consider w = 123412512345, FIFO replacement strategy and the memory sizes

m = 3 and m = 4:
s[0] = {} s[0] = {}

s[1] = {1} * s[1] = {1} *

s[2] = {1 2} * s[2] = {1 2} *

s[3] = {1 2 3} * s[3] = {1 2 3} *

s[4] = {2 3 4} * s[4] = {1 2 3 4} *

s[5] = {3 4 1} * s[5] = {1 2 3 4}

s[6] = {4 1 2} * s[6] = {1 2 3 4}

s[7] = {1 2 5} * s[7] = {2 3 4 5} *

s[8] = {1 2 5} s[8] = {3 4 5 1} *

s[9] = {1 2 5} s[9] = {4 5 1 2} *

s[10] = {2 5 3} * s[10] = {5 1 2 3} *

s[11] = {5 3 4} * s[11] = {1 2 3 4} *

s[12] = {5 3 4} s[12] = {2 3 4 5} *

• 9 page faults for m = 3, 10 page faults for m = 4

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 224 / 355

229

Stack Algorithms

• Every reference string w can be associated with a sequence of stacks such that the
pages in memory are represented by the first m elements of the stack

• A stack algorithm is a replacement algorithm with the following properties:

1. The last used page is on the top
2. Pages which are not used never move up
3. Pages below the used page do not move

• Let Sm(w) be the memory state reached by the reference string w and the memory
size m

• For every stack algorithm, the following holds true:

Sm(w) ⊆ Sm+1(w)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 225 / 355

230

LRU Algorithm

• LRU is a stack algorithm (while FIFO is not)

• LRU with counters:
• CPU increments a counter for every memory access
• Page table entries have a counter that is updated with the CPU’s counter on every

memory access
• Page with the smallest counter is the LRU page

• LRU with a stack:
• Keep a stack of page numbers
• Whenever a page is used, move its page number on the top of the stack
• Page number at the bottom identifies LRU page

• In general difficult to implement at CPU/MMU speed

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 226 / 355

231

Memory Management and Scheduling

• Interaction of memory management and scheduling:
• Processes should not get the CPU if the probability for page faults is high
• Processes must not remain in main memory if they are waiting for an event which is

unlikely to occur in the near future

• How to estimate the probability of future page faults?

• Does the approach work for all programs equally well?

• Fairness?

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 227 / 355

232

Locality

• Locality describes the property of programs to use only a small subset of the
memory pages during a certain part of the computation

• Programs are typically composed of several localities, which may overlap

• Reasons for locality:
• Structured and object-oriented programming (functions, small loops, local variables)
• Recursive programming (functional / declarative programs)

• Some applications (e.g., data bases or mathematical software handling large
matrices) show only limited locality

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 228 / 355

233

Working-Set Model

• The Working-Set Wp(t,T) of a process p at time t with parameter T is the set of
pages which were accessed in the time interval [t − T , t)

• A memory management system follows the working-set model if the following
conditions are satisfied:
• Processes are only marked runnable if their full working-set is in main memory
• Pages which belong to the working-set of a running process are not removed from

memory

• Example (T = 10):

w = . . . 2615777751623412344434344413234443444 . . .

W (t1) = {1, 2, 5, 6, 7} W (t2) = {3, 4}

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 229 / 355

234

Working-Set Properties

• The performance of the working-set model depends on the parameter T :
• If T is too small, many page faults are possible and thrashing can occur
• If T is too big, unused pages might stay in memory and other processes might be

prevented from becoming runnable

• Determination of the working-set:
• Mark page table entries whenever they are used
• Periodically read and reset these marker bits to estimate the working-set

• Adaptation of the parameter T :
• Increase / decrease T depending on page fault rate

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 230 / 355

235

POSIX API (mmap, munmap, msync, mlock, munlock)

#include <sys/mman.h>

#define PROT_EXEC ... /* memory is executable */

#define PROT_READ ... /* memory is readable */

#define PROT_WRITE ... /* memory is writable */

#define PROT_NONE ... /* no access */

#define MAP_SHARED ... /* memory may be shared between processes */

#define MAP_PRIVATE ... /* memory is private to the process */

#define MAP_ANONYMOUS ... /* memory is not tied to a file descriptor */

void* mmap(void *start, size_t length, int prot, int flags, int fd, off_t offset);

int munmap(void *start, size_t length);

int msync(void *start, size_t length, int flags);

int mprotect(const void *addr, size_t len, int prot);

int mlock(const void *addr, size_t len);

int munlock(const void *addr, size_t len);

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 231 / 355

236

Part IX

Inter-Process Communication

237

Inter-Process Communication

• An operating system has to provide inter-process communication primitives in the
form of system calls and APIs

• Signals:
• Software equivalent of hardware interrupts
• Signals interrupt the normal control flow, but they do not carry any data (except

the signal number)

• Pipes:
• Uni-directional channel between two processes
• One process writes, the other process reads data

• Sockets:
• General purpose communication endpoints
• Multiple processes, global (Internet) communication

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 233 / 355

238

Section 28: Signals

28 Signals

29 Pipes

30 Sockets

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 234 / 355

239

Signals

• Signals are a very basic IPC mechanism

• Basic signals are part of the standard C library
• Signals for runtime exceptions (division by zero)
• Signals created by external events
• Signals explicitly created by the program itself

• Signals are either
• synchronous or
• asynchronous to the program execution

• POSIX signals are more general and powerful

• If in doubt, use POSIX signals to make code portable

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 235 / 355

240

C Library Signal API

#include <signal.h>

typedef ... sig_atomic_t;

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum, sighandler_t handler);

int raise(int signum);

#define SIGABRT ... /* abnormal termination */

#define SIGFPE ... /* floating-point exception */

#define SIGILL ... /* illegal instruction */

#define SIGINT ... /* interactive interrupt */

#define SIGSEGV ... /* segmentation violation */

#define SIGTERM ... /* termination request */

#define SIG_IGN ... /* handler to ignore the signal */

#define SIG_DFL ... /* default handler for the signal */

#define SIG_ERR ... /* handler returned on error situations */

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 236 / 355

241

POSIX Signal Delivery

delivered

pending

blocked ignored

• Signals start in the state pending and are usually delivered to the process

• Signals can be blocked by processes

• Blocked signals are delivered when unblocked

• Signals can be ignored if they are not needed

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 237 / 355

242

Posix Signal API

#include <signal.h>

typedef void (*sighandler_t)(int);

typedef ... sigset_t;

typedef ... siginfo_t;

#define SIG_DFL ... /* default handler for the signal */

#define SIG_IGN ... /* handler to ignore the signal */

#define SA_NOCLDSTOP ... /* do not create SIGCHLD signals */

#define SA_ONSTACK ... /* use an alternative stack */

#define SA_RESTART ... /* restart interrupted system calls */

struct sigaction {

sighandler_t sa_handler; /* handler function */

void (*sa_sigaction)(int, siginfo_t *, void *); /* handler function */

sigset_t sa_mask; /* signals to block while executing handler */

int sa_flags; /* flags to control behavior */

};

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 238 / 355

243

Posix Signal API

int sigaction(int signum, const struct sigaction *action,

struct sigaction *oldaction);

int kill(pid_t pid, int signum);

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signum);

int sigdelset(sigset_t *set, int signum);

int sigismember(const sigset_t *set, int signum);

#define SIG_BLOCK ...

#define SIG_UNBLOCK ...

#define SIG_SETMASK ...

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

int sigpending(sigset_t *set);

int sigsuspend(const sigset_t *mask);

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 239 / 355

244

Posix Signal API

• The function sigaction() registers a function to be executed when a specific
signal has been received

• During the execution of a signal function, the triggering signal and any signals
specified in the signal mask are blocked

• The function kill() sends a signal to a process or process group:
• If pid > 0, the signal is sent to process pid.
• If pid == 0, the signal is sent to every process in the process group of the current

process
• If pid == -1, the signal is sent to every process except for process 1 (init)
• If pid < -1, the signal is sent to every process in the process group -pid

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 240 / 355

245

Properties of POSIX Signals

• Implementations can merge multiple identical signals

• Signals can not be counted reliably

• Signals do not carry any data / information except the signal number

• Signal functions are typically very short since the real processing of the signalled
event is usually deferred to a later point in time of the execution when the state of
the program is known to be consistent

• Variables modified by signals must be signal atomic

• fork() inherits signal functions, exec() resets signal functions (for security
reasons and because the process gets a new memory image)

• Threads in general share the signal actions, but every thread may have its own
signal mask

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 241 / 355

246

Signal Example #1

#include <signal.h>

volatile sig_atomic_t keep_going = 1;

static void

catch_signal(int signum)

{

keep_going = 0; /* defer the handling of the signal */

}

int

main(void)

{

signal(SIGINT, catch_signal);

while (keep_going) {

/* ... do something ... */

}

/* ... cleanup ... */

return 0;

}

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 242 / 355

247

Signal Example #2

volatile sig_atomic_t fatal_error_in_progress = 0;

static void

fatal_error_signal(int signum)

{

if (fatal_error_in_progress) {

raise(signum);

return;

}

fatal_error_in_progress = 1;

/* ... cleanup ... */

signal(signum, SIG_DFL); /* install the default handler */

raise(signum); /* and let it do its job */

}

• Template for catching fatal error signals
• Cleanup before raising the signal again with the default handler installed (which

will terminate the process)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 243 / 355

The following example demonstrates how the sleep(3) library function can be implemented using a
timer signal.

/*

* sleep/sleep.c --

*

* This little example demonstrates how to use the POSIX signal

* functions to wait reliably for a signal.

*/

#define _POSIX_C_SOURCE 2

#include <stdlib.h>

#include <signal.h>

#include <unistd.h>

static volatile sig_atomic_t wake_up = 0;

static void

catch_alarm(int sig)

{

wake_up = 1;

}

unsigned int

sleep(unsigned int seconds)

{

struct sigaction sa, old_sa;

sigset_t mask, old_mask;

sa.sa_handler = catch_alarm;

sigemptyset(&sa.sa_mask);

sa.sa_flags = 0;

/*

* Be nice and save the original signal handler so that it can be

* restored when we are done.

*/

248

sigaction(SIGALRM, &sa, &old_sa);

/*

* After resetting wake_up, ask the system to send us a SIGALRM at

* an appropriate time.

*/

wake_up = 0;

alarm(seconds);

/*

* First block the signal SIGALRM. After safely checking wake_up,

* suspend until a signal arrives. Note that sigsuspend may return

* on other signals. If wake_up is finally true, cleanup by

* unblocking the blocked signals.

*/

sigemptyset(&mask);

sigaddset(&mask, SIGALRM);

sigprocmask(SIG_BLOCK, &mask, &old_mask);

/*

* No SIGALRM will be delievered here since this signal is

* blocked. This means we have a safe region here until we

* suspend below...

*/

while (! wake_up) {

/*

* Wait for SIGALRM (assumed to be unblocked in old_mask).

* While waiting, some other signals may get delivered...

*/

sigsuspend(&old_mask);

}

/*

* Cleanup by restoring the original state.

*/

sigprocmask(SIG_UNBLOCK, &mask, NULL);

sigaction(SIGALRM, &old_sa, NULL);

return 0;

}

249

Section 29: Pipes

28 Signals

29 Pipes

30 Sockets

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 244 / 355

250

Processes, File Descriptors, Open Files, . . .

vnode / inode table

file descriptor

tables

process A process Cprocess B

stdin

stdout

stderr

0

1

2

foo

(maintains file offsets)

open file table

bar

foo

(maintains file metadata)

per process

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 245 / 355

251

Pipes at the Shell Command Line

head −10sort −k 5 −n −rls −l
stdin stdin stdinstdoutstdout

stderr stderr

shell

stdout

stderr

list the 10 largest files in the

current directory

ls -l | sort -k 5 -n -r | head -10

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 246 / 355

252

POSIX Pipes

#include <unistd.h>

int pipe(int filedes[2]);

int dup(int oldfd);

int dup2(int oldfd, int newfd);

#include <stdio.h>

FILE *popen(const char *command, const char *type);

int pclose(FILE *stream);

• Pipes can be used to send the output produced by one process as input to another
process

• popen() and pclose() are wrappers to open a pipe to a child process executing
the given command

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 247 / 355

253

Pipe Example: paging some text

static int

page(char *pager, char *text)

{

ssize_t len, cnt;

int status, pid, fd[2];

status = pipe(fd);

if (status == -1) {

perror("pipe");

return EXIT_FAILURE;

}

pid = fork();

if (pid == -1) {

perror("fork");

return EXIT_FAILURE;

}

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 248 / 355

254

Pipe Example

if (pid == 0) {

close(fd[1]);

status = dup2(fd[0], STDIN_FILENO);

if (status == -1) {

perror("dup2");

return EXIT_FAILURE;

}

close(fd[0]);

execl(pager, pager, NULL);

perror("execl");

_exit(EXIT_FAILURE);

} else {

close(fd[0]);

status = dup2(fd[1], STDOUT_FILENO);

if (status == -1) {

perror("dup2");

return EXIT_FAILURE;

}

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 249 / 355

255

Pipe Example

close(fd[1]);

for (len = strlen(text); len; len -= cnt, text += cnt) {

cnt = write(STDOUT_FILENO, text, len);

if (cnt == -1) {

perror("write");

return EXIT_FAILURE;

}

}

close(1);

do {

if (waitpid(pid, &status, 0) == -1) {

perror("waitpid");

exit(EXIT_FAILURE);

}

} while (!WIFEXITED(status) && !WIFSIGNALED(status));

}

return EXIT_SUCCESS;

}

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 250 / 355

256

Named Pipes

• Pipes can only exist between processes which have a common parent process who
created the pipe
• Named pipes are file system objects and arbitrary processes can read from or write

to a named pipe
• Named pipes are created using the mkfifo() function
• A simple example:

$ mkfifo pipe

$ ls > pipe &

$ less < pipe

• An interesting example:

$ mkfifo pipe1 pipe2

$ echo -n x | cat - pipe1 > pipe2 &

$ cat < pipe2 > pipe1

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 251 / 355

257

Python Example

#!/usr/bin/env python

import os, sys

r, w = os.pipe()

pid = os.fork()

if pid:

os.close(w)

r = os.fdopen(r) # turn r into a file object

txt = r.read()

os.waitpid(pid, 0) # make sure the child process gets cleaned up

else:

os.close(r)

w = os.fdopen(w, ’w’)

w.write("here’s some text from the child")

w.close()

print "child: closing"

sys.exit(0)

print "parent: got it; text =", txt

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 252 / 355

258

Section 30: Sockets

28 Signals

29 Pipes

30 Sockets

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 253 / 355

259

Sockets

• Sockets are abstract communication endpoints with a rather small number of
associated function calls

• The socket API consists of
• address formats for various network protocol families
• functions to create, name, connect, destroy sockets
• functions to send and receive data
• functions to convert human readable names to addresses and vice versa
• functions to multiplex I/O on several sockets

• Sockets are the de-facto standard communication API provided by operating
systems

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 254 / 355

260

Socket Types

• Stream sockets (SOCK STREAM) represent bidirectional communication endpoints
providing reliable byte stream service

• Datagram sockets (SOCK DGRAM) represent bidirectional communication endpoints
providing unreliable connectionless message service

• Reliable delivered message sockets (SOCK RDM) are bidirectional communication
endpoints providing reliable connectionless message service

• Sequenced packet sockets (SOCK SEQPACKET) are bidirectional communication
endpoints providing reliable connection-oriented message service

• Raw sockets (SOCK RAW) represent communication endpoints which can
send/receive (raw) interface layer datagrams

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 255 / 355

261

Generic Socket Addresses

#include <sys/socket.h>

struct sockaddr {

uint8_t sa_len /* address length (BSD) */

sa_family_t sa_family; /* address family */

char sa_data[...]; /* data of some size */

};

struct sockaddr_storage {

uint8_t ss_len; /* address length (BSD) */

sa_family_t ss_family; /* address family */

char padding[...]; /* padding of some size */

};

• A struct sockaddr represents an abstract address, typically casted to a struct for
a concrete address format

• A struct sockaddr storage provides storage space

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 256 / 355

262

IPv4 Socket Addresses

#include <sys/socket.h>

#include <netinet/in.h>

typedef ... sa_family_t;

typedef ... in_port_t;

struct in_addr {

uint8_t s_addr[4]; /* IPv4 address */

};

struct sockaddr_in {

uint8_t sin_len; /* address length (BSD) */

sa_family_t sin_family; /* address family */

in_port_t sin_port; /* transport layer port */

struct in_addr sin_addr; /* IPv4 address */

};

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 257 / 355

263

IPv6 Socket Addresses

#include <sys/socket.h>

#include <netinet/in.h>

typedef ... sa_family_t;

typedef ... in_port_t;

struct in6_addr {

uint8_t s6_addr[16]; /* IPv6 address */

};

struct sockaddr_in6 {

uint8_t sin6_len; /* address length (BSD) */

sa_family_t sin6_family; /* address family */

in_port_t sin6_port; /* transport layer port */

uint32_t sin6_flowinfo; /* flow information */

struct in6_addr sin6_addr; /* IPv6 address */

uint32_t sin6_scope_id; /* scope identifier */

};

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 258 / 355

264

Connection-Less Communication

data

data

close()

socket()

recvfrom()

sendto()

sendto()

recvfrom()

socket()

bind()

bind()

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 259 / 355

265

Connection-Oriented Communication

bind()

listen()

accept()

data

connect()

write()

read()
data

connection release

read()

write()

close() close()

socket()

socket()

connection setup

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 260 / 355

266

Socket API Summary

#include <sys/types.h>

#include <sys/socket.h>

#include <unistd.h>

#define SOCK_STREAM ...

#define SOCK_DGRAM ...

#define SOCK_RAW ...

#define SOCK_RDM ...

#define SOCK_SEQPACKET ...

#define AF_LOCAL ...

#define AF_INET ...

#define AF_INET6 ...

#define PF_LOCAL ...

#define PF_INET ...

#define PF_INET6 ...

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 261 / 355

267

Socket API Summary

int socket(int domain, int type, int protocol);

int bind(int socket, struct sockaddr *addr,

socklen_t addrlen);

int connect(int socket, struct sockaddr *addr,

socklen_t addrlen);

int listen(int socket, int backlog);

int accept(int socket, struct sockaddr *addr,

socklen_t *addrlen);

ssize_t write(int socket, void *buf, size_t count);

int send(int socket, void *msg, size_t len, int flags);

int sendto(int socket, void *msg, size_t len, int flags,

struct sockaddr *addr, socklen_t addrlen);

ssize_t read(int socket, void *buf, size_t count);

int recv(int socket, void *buf, size_t len, int flags);

int recvfrom(int socket, void *buf, size_t len, int flags,

struct sockaddr *addr, socklen_t *addrlen);

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 262 / 355

268

Socket API Summary

int shutdown(int socket, int how);

int close(int socket);

int getsockopt(int socket, int level, int optname,

void *optval, socklen_t *optlen);

int setsockopt(int socket, int level, int optname,

void *optval, socklen_t optlen);

int getsockname(int socket, struct sockaddr *addr,

socklen_t *addrlen);

int getpeername(int socket, struct sockaddr *addr,

socklen_t *addrlen);

• All API functions operate on abstract socket addresses

• Not all functions make equally sense for all socket types

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 263 / 355

269

Mapping Names to Addresses

#include <sys/types.h>

#include <sys/socket.h>

#include <netdb.h>

#define AI_PASSIVE ...

#define AI_CANONNAME ...

#define AI_NUMERICHOST ...

struct addrinfo {

int ai_flags;

int ai_family;

int ai_socktype;

int ai_protocol;

size_t ai_addrlen;

struct sockaddr *ai_addr;

char *ai_canonname;

struct addrinfo *ai_next;

};

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 264 / 355

270

Mapping Names to Addresses

int getaddrinfo(const char *node,

const char *service,

const struct addrinfo *hints,

struct addrinfo **res);

void freeaddrinfo(struct addrinfo *res);

const char *gai_strerror(int errcode);

• Many books still document the old name and address mapping functions
• gethostbyname()
• gethostbyaddr()
• getservbyname()
• getservbyaddr()

which are IPv4 specific and should not be used anymore

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 265 / 355

271

Mapping Addresses to Names

#include <sys/types.h>

#include <sys/socket.h>

#include <netdb.h>

#define NI_NOFQDN ...

#define NI_NUMERICHOST ...

#define NI_NAMEREQD ...

#define NI_NUMERICSERV ...

#define NI_NUMERICSCOPE ...

#define NI_DGRAM ...

int getnameinfo(const struct sockaddr *sa,

socklen_t salen,

char *host, size_t hostlen,

char *serv, size_t servlen,

int flags);

const char *gai_strerror(int errcode);

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 266 / 355

272

Multiplexing (select)

#include <sys/select.h>

typedef ... fd_set;

FD_ZERO(fd_set *set);

FD_SET(int fd, fd_set *set);

FD_CLR(int fd, fd_set *set);

FD_ISSET(int fd, fd_set *set);

int select(int n, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

int pselect(int n, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timespec *timeout,

sigset_t sigmask);

• select() works with arbitrary file descriptors

• select() frequently used to implement the main loop of event-driven programs

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 267 / 355

273

Part X

File Systems

We are used to store our data in named files. We have files for text documents, for calculation sheets,
for source code, for program code, for images, for music, for videos, and many other digital objects. In
order to deal with a large amount of files, we can organize files that relate to each other into directories
(or folders). Finding a good organization of files is often surprisingly difficult and usually the organization
of files takes time to develop.

The operating system kernel provides us with the abstraction of a hierarchical file system where data
objects can be named and easily be found by a human. The operating system kernel allows us to
create new files, to change files, to rename files, to delete files, and to associate permissions with file
system objects. We are so used to these operations that we often forget that the underlying storage
components (e.g., hard-drives or flash-drives), only provide us with numbered data blocks of fixed size,
something that is barely useful for humans to work with.

Since file systems are fundamental for the storage of data, it is crucial that file systems are robust (we
do not want to loose data) and efficient.

274

Section 31: General File System Concepts

31 General File System Concepts

32 File System Programming Interface

33 File System Implementation

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 269 / 355

275

File Types

• Files are persistent containers for the storage of data

• Unstructured files:
• Container for a sequence of bytes
• Applications interpret the contents of the byte sequence
• File name extensions are often used to identify the type of contents (.txt, .c,
.pdf)

• Structured files:
• Sequential files
• Index-sequential files
• B-tree files

=⇒ Only some operating systems support structured files

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 270 / 355

276

Special Files

• Files representing devices:
• Represent devices as files (/dev/mouse)
• Distinction between block and character device files
• Special operations to manipulate devices (ioctl)

• Files representing processes:
• Represent processes (and more) as files (/proc)
• Simple interface between kernel and system utilities

• Files representing communication endpoints:
• Named pipes and fifos
• Internet connection (/net/tcp) (Plan 9)

• Files representing graphical user interface windows:
• Plan 9 represents all windows of a GUI as files

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 271 / 355

277

Directories

• Hierarchical name spaces
• Files are the leaves of the hierarchy
• Directories are the nodes spanning the hierarchy

• Names of files and directories on one level of the hierarchy usually have to be
unique (beware of uppercase/lowercase and character sets)

• Absolute names formed through concatenation of directory and file names

• Directories may be realized
• as special file system objects or
• as regular files with special contents

=⇒ Small and embedded operating systems sometimes only support flat file name
spaces

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 272 / 355

278

Unix Directory Structure

..

2

4 5

76

8 9

..

..

bin

etc

ls vi

usr vmunix

.

.

. .

..

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 273 / 355

279

Mounting

• Mounting is the process of importing a directory (usually residing on some other
storage system) into the existing file system name space

• Enables logical name spaces that span multiple devices

• Mounted file systems can be different

• Mounted directories may reside on remote systems

=⇒ More details on networked and distributed file systems are provided in a distributed
systems course

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 274 / 355

280

Mounting

..

2

12

4

76

8 9

.. bin

etc

ls vi

.

. .
..

filesystem A
5

vmunix

.

usr

..
.

mount
filesystem B

..

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 275 / 355

281

Links

• Access a single file or directory under different names

• Two common types of links:
• Hard links register a file under two different names
• Soft links store the path (pointer) of the real file

• Links usually turn hierarchical name spaces into directed graphs. What about
cycles in the graph?

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 276 / 355

282

File Usage Pattern

• File usage patterns heavily depend on the applications and the environment

• Typical file usage pattern of “normal” users:
• Many small files (less than 10K)
• Reading is more dominant than writing
• Access is most of the time sequential and not random
• Most files are short lived
• Sharing of files is relatively rare
• Processes usually use only a few files
• Distinct file classes

• Totally different usage patterns for e.g. databases

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 277 / 355

283

Section 32: File System Programming Interface

31 General File System Concepts

32 File System Programming Interface

33 File System Implementation

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 278 / 355

284

Standard File System Operations

#include <stdlib.h>

int rename(const char *oldpath, const char *newpath);

#include <unistd.h>

ssize_t write(int fd, const void *buf, size_t count);

ssize_t read(int fd, void *buf, size_t count);

int close(int fd);

int link(const char *oldpath, const char *newpath);

int unlink(const char *pathname);

int access(const char *pathname, int mode);

int symlink(const char *oldpath, const char *newpath);

int readlink(const char *path, char *buf, size_t bufsiz);

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 279 / 355

Most of the C functions are C or POSIX standards and quite portable across operating systems.

285

Standard File System Operations

#include <sys/types.h>

#include <sys/stat.h>

int open(const char *pathname, int flags);

int open(const char *pathname, int flags, mode_t mode);

int creat(const char *pathname, mode_t mode);

int mkfifo(const char *pathname, mode_t mode);

int stat(const char *file_name, struct stat *buf);

int fstat(int filedes, struct stat *buf);

int lstat(const char *file_name, struct stat *buf);

int chmod(const char *path, mode_t mode);

int fchmod(int fildes, mode_t mode);

#include <unistd.h>

int chown(const char *path, uid_t owner, gid_t group);

int fchown(int fd, uid_t owner, gid_t group);

int lchown(const char *path, uid_t owner, gid_t group);

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 280 / 355

286

Standard Directory Operations

#include <sys/stat.h>

#include <sys/types.h>

int mkdir(const char *pathname, mode_t mode);

int rmdir(const char *pathname);

int chdir(const char *path);

int fchdir(int fd);

#include <dirent.h>

DIR *opendir(const char *name);

struct dirent *readdir(DIR *dir);

void rewinddir(DIR *dir);

int closedir(DIR *dir);

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 281 / 355

287

Memory Mapped Files

#include <sys/mman.h>

void* mmap(void *start, size_t length, int prot, int flags,

int fd, off_t offset);

int munmap(void *start, size_t length);

int msync(void *start, size_t length, int flags);

int mprotect(const void *addr, size_t len, int prot);

int mlock(const void *addr, size_t len);

int munlock(const void *addr, size_t len);

• Direct mapping of regular files into virtual memory

• Enables extremely fast input/output and data sharing

• Mapped files can be protected and locked (regions)

• Changes made in memory are written to files during unmap() or msync() calls

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 282 / 355

288

File System Events

• Modern applications like to monitor file systems for changes.

• There are many system specific APIs, such as
• inotify on Linux,
• kqueue on *BSD,
• File System Events on MacOS,
• ReadDirectoryChangesW on Microsoft Windows.

• The APIs differ significantly in their functionality and whether they scale up to
monitor large filesystem spaces.

• There are first attempts to build wrapper libraries that encapsulate system specific
APIs (see for example libfswatch).

• A simple command line tool is fswatch.

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 283 / 355

289

Section 33: File System Implementation

31 General File System Concepts

32 File System Programming Interface

33 File System Implementation

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 284 / 355

290

Block Allocation Methods

• Contiguous allocation:
• Files stored as a contiguous block of data on the disk
• Fast data transfers, simple to implement
• File sizes often not known in advance
• Fragmentation on disk

• Linked list allocation:
• Every data block of a file contains a pointer (number) to the next data block
• No fragmentation on disk
• Reasonable sequential access, slow random access
• Unnatural data block size (due to the space needed for the index)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 285 / 355

291

Block Allocation Methods

• Linked list allocation using an index :
• The linked list is maintained in an index array outside of the data blocks
• Index tables remain in main memory for fast access
• Random access is reasonably faster
• Significant memory usage by large index tables
• Entire data blocks are available for data

• Allocation using index nodes (inodes):
• Small index nodes (inodes) store pointers to the first few disk blocks plus pointers

to
• an inode with data pointers (single indirect)
• an inode with pointers to inodes (double indirect)
• an inode with pointers to inodes with pointers to inodes (triple indirect)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 286 / 355

292

Block Allocation Methods

• Linked list allocation example:

3 6 12 5 9 11 7 1 14

start of file "foo" start of file "bar"

• Indexed linked list allocation example:

0 2 31 4 5 7 8 9 11 126 10 13 14 15

6 12 59 −1 7114 −1

start of file "foo" start of file "bar"

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 287 / 355

293

Block Allocation Methods

• Index node (inode) allocation example:

..

...

...

...

• Used on many Unix file systems (4.4 BSD and others)
Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 288 / 355

294

Free-Space Management

• Free block lists:
• Manage free blocks in a linked free list
• Efficient if there are only few free blocks

• Free block bitmaps:
• Use a single bit for every block to indicate whether it is in use or not
• Bitmap can be held in memory to make allocations and deallocations very fast
• Sometimes useful to keep redundant bitmaps in order to recover from errors

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 289 / 355

295

Virtual File Systems (VFS)

• Provide an abstract (virtual) file system interface

• Common functions (e.g., caching) can be implemented on the virtual file system
interface

• Simplifies support for many different file systems

• A virtual file system interface is often realized as a collection of function pointers

• Example Linux (<linux/fs.h>)
• struct super operations
• struct inode operations
• struct file operations

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 290 / 355

296

Processes and Files

operating system kernel space

open file
table

vnode inode

disk
control block

process
tor table

file descrip−

control block
process

tor table
file descrip−

control block
process

tor table
file descrip−

• Every process control block maintains a pointer to the file descriptor table

• File descriptor table entries point to an entry in the open file table

• Open file table entries point to virtual inodes (vnodes)

• The vnode points to the inode (if it is a local file)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 291 / 355

297

Part XI

Input/Output and Devices

298

Section 34: Goals and Design Considerations

34 Goals and Design Considerations

35 Storage Devices and RAIDs

36 Storage Virtualization

37 Terminal Devices

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 293 / 355

299

Design Considerations

• Device Independence
• User space applications should work with as many similar devices as possible

without requiring any changes
• Some user space applications may want to exploit specific device characteristics
• Be as generic as possible while allowing applications to explore specific features of

certain devices

• Efficiency
• Efficiency is of great concern since many applications are I/O bound and not CPU

bound

• Error Reporting
• I/O operations have a high error probability and proper reporting of errors to

applications and system administrators is crucial

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 294 / 355

300

Efficiency: Buffering Schemes

• Data is passed without any buffering from user space to the device (unbuffered I/O)

• Data is buffered in user space before it is passed to the device

• Data is buffered in user space and then again in kernel space before it is passed to
the device

• Data is buffered multiple times in order to improve efficiency or to avoid side
effects (e.g., flickering in graphics systems)

• Circular buffers can help to decouple data producer and data consumer without
copying data

• Vectored I/O (scatter/gather I/O), uses a single function call to write data from
multiple buffers to a single data stream or to read data from a data stream to
multiple buffers

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 295 / 355

301

Efficiency: I/O Programming Styles

• programmed input/output:
The CPU does everything (copying data to/from the I/O device) and blocks until
I/O is complete

• interrupt-driven input/output:
Interrupts drive the I/O process, the CPU can do other things while the device is
busy

• direct-memory-access input/output:
A DMA controller moves data in/out of memory and notifies the CPU when I/O is
complete, the CPU does not need to process any interrupts during the I/O process

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 296 / 355

302

Error Reporting

• Provide a consistent and meaningful (!) way to report errors and exceptions to
applications (and to system administrators)

• This is particularly important since I/O systems tend to be error prone compared to
other parts of a computer

• On POSIX systems, system calls report errors via special return values and a
(thread) global variable errno (errno stores the last error code and does not get
cleared when a system call completes without an error)

• Runtime errors that do not relate to a specific system call are reported to a logging
facility, usually via syslog on Unix systems

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 297 / 355

303

Representation of Devices

• Block devices represent devices where the natural unit of work is a fixed length
data block (e.g., disks)

• Character devices represent devices where the natural unit of work is a character or
a byte

• On Unix systems, devices are represented as special objects in the file system
(usually mounted on /dev)

• Devices are identified by their type and their major and minor device number: the
major number is used by the kernel to identify the responsible driver and the minor
number to identify the device instance

• The ioctl() system call can be used by user-space applications to invoke device
specific operations

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 298 / 355

304

Section 35: Storage Devices and RAIDs

34 Goals and Design Considerations

35 Storage Devices and RAIDs

36 Storage Virtualization

37 Terminal Devices

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 299 / 355

305

Storage Media

• Magnetic disks (floppy disks, hard disks):
• Data storage on rotating magnetic disks
• Division into tracks, sectors and cylinders
• Usually multiple (moving) read/write heads

• Solid state disks:
• Data stored in solid-state memory (no moving parts)
• Memory unit emulates hard disk interface

• Optical disks (CD, DVD, Blu-ray):
• Read-only vs. recordable vs. rewritable
• Very robust and relatively cheap
• Division into tracks, sectors and cylinders

• Magnetic tapes (or tesa tapes):
• Used mainly for backups and archival purposes
• Not further considered in this lecture

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 300 / 355

306

RAID

• Redundant Array of Inexpensive Disks (1988)

• Observation:
• CPU speed grows exponentially
• Main memory sizes grow exponentially
• I/O performance increases slowly

• Solution:
• Use lots of cheap disks to replace expensive disks
• Redundant information to handle high failure rate

• Common on almost all small to medium size file servers

• Can be implemented in hardware or software

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 301 / 355

307

RAID Level 0 (Striping)

• Striped disk array where the data is broken down into blocks and each block is
written to a different disk drive

• I/O performance is greatly improved by spreading the I/O load across many
channels and drives

• Best performance is achieved when data is striped across multiple controllers with
only one drive per controller

• No parity calculation overhead is involved

• Very simple design

• Easy to implement

• Failure of just one drive will result in all data in an array being lost

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 302 / 355

308

RAID Level 1 (Mirroring)

• Twice the read transaction rate of single disks

• Same write transaction rate as single disks

• 100% redundancy of data means no rebuild is necessary in case of a disk failure

• Transfer rate per block is equal to that of a single disk

• Can sustain multiple simultaneous drive failures

• Simplest RAID storage subsystem design

• High disk overhead and thus relatively inefficient

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 303 / 355

309

RAID Level 2 (Striping + ECC)

• Write data to data disks

• Write error correcting codes (ECC) to ECC disks

• Read and correct data on the fly

• High data transfer rates possible

• The higher the data transfer rate required, the better the ratio of data disks to
ECC disks

• Relatively simple controller design

• High ratio of ECC disks to data disks

• Entry level cost very high

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 304 / 355

310

RAID Level 3 (Striping + Parity)

• The data block is subdivided (”striped”) and written on the data disks

• Stripe parity is generated on writes, recorded on the parity disk and checked on
reads

• High read and write data transfer rate

• Low ratio of ECC (parity) disks to data disks

• Transaction rate equal to that of a single disk drive at best

• Controller design is fairly complex

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 305 / 355

311

RAID Level 4 (Parity)

• Data blocks are written onto data disks

• Parity for disk blocks is generated on writes and recorded on the shared parity disk

• Parity is checked on reads

• High read data transaction rate

• Low ratio of ECC (parity) disks to data disks

• Data can be restored if a single disk fails

• If two disks fail simultaneously, all data is lost

• Block read transfer rate equal to that of a single disk

• Controller design is fairly complex

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 306 / 355

312

RAID Level 5 (Distributed Parity)

• Data blocks are written onto data disks

• Parity for blocks is generated on writes and recorded in a distributed location

• Parity is checked on reads

• High read data transaction rate

• Data can be restored if a single disk fails

• If two disks fail simultaneously, all data is lost

• Block read transfer rate equal to that of a single disk

• Controller design is more complex

• Widely used in practice

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 307 / 355

313

Section 36: Storage Virtualization

34 Goals and Design Considerations

35 Storage Devices and RAIDs

36 Storage Virtualization

37 Terminal Devices

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 308 / 355

314

Logical Volume Management

• Physical Volume: A physical volume is a disk raw partition as seen by the
operating system (hard disk partition, raid array, storage area network partition)

• Volume Group: A volume group pools several physical volumes into one logical unit

• Logical Volume: A logical volume resides in a volume group and provides a block
device, which can be used to create a file system

=⇒ Separation of the logical storage layout from the physical storage layout

=⇒ Simplifies modification of logical volumes (create, remove, resize, snapshot)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 309 / 355

315

Logical Volume Management (Linux)

(e.g. virtual machine root filesystem)

PV

PV

PV

PV

PV

VG

PV

VG

LV

LV

LV

LV

LV

LV

...

...

(e.g. root filesystem)

(e.g. swap space)

PV = physical volume, VG = volume group, LV = logical volume

(e.g. home filesystem)

(e.g. virtual machine swap space)

(e.g. data filesystem)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 310 / 355

316

Networked Storage

• Storage Area Networks (SAN)
• A storage area network detaches block devices from computer systems through a

fast communication network
• Simplifies the sharing of storage between (frontend) computers
• Dedicated network protocols (Fibre Channel, iSCSI, . . .)
• Relative expensive technology

• Network Attached Storage (NAS)
• Access to a logical file system over the network
• Sharing of file systems between multiple computers over a network
• Many different protocols: NFS, SMB/CIFS, . . .

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 311 / 355

317

Section 37: Terminal Devices

34 Goals and Design Considerations

35 Storage Devices and RAIDs

36 Storage Virtualization

37 Terminal Devices

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 312 / 355

318

Traditional Character Terminal Devices

Terminal

Serial Line K
e

rn
e

l
U

s
e

rs
p

a
c

e

curses

e
d

it
o

r

termcap

tty

• Character terminals were connected via serial lines

• The device driver in the kernel represents the terminal to user space programs (via
a tty device file)

• Applications often use a library that knows about terminal capabilities to achieve
terminal device independence

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 313 / 355

319

Serial Communication (RS232)

• Data transfer via two lines (TX/RX) using different voltage levels

• A start bit is used to indicate the beginning of the serial transmission of a word

• Parity bits may be sent (even or odd parity) to detect transmission errors

• One or several stop bits may be used after each word to allow the receiver to
process the word

• Flow control can be implemented either using dedicated lines (RTS/CTS) or by
sending special characters (XON/XOFF)

• Common settings: 8 data bits, 1 stop bit, no parity

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 314 / 355

320

Terminal Characteristics

• Serial lines were traditionally used to connect terminals to a computer

• Terminals understand different sets of control sequences (escape sequences) to
control curser positioning or clearing of (parts of) the display

• Traditionally, terminals had different (often fixed) numbers of rows and columns
they could display

• Keyboard were attached to the terminal and terminals did send different key codes,
depending on the attached keyboard

• Teletypes were printers with an attached or builtin keyboard

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 315 / 355

321

Terminal Device

• Unix systems represent terminals as tty devices.

• In raw mode, no special processing is done and all characters received from the
terminal are directly passed on to the application

• In cooked mode, the device driver preprocesses characters received from the
terminal, generating signals for control character sequences and buffering input lines

• Terminal characteristics are described in the terminal capabilities (termcap,
terminfo) databases

• The TERM variables of the process environment selects the terminal and thus the
control sequences to send

• Network terminals use the same mechanism and are represented as pseudo tty
devices called ptys.

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 316 / 355

322

Portable and Efficient Terminal Control

• Curses is a terminal control library enabling the construction of text user interface
applications

• The curses API provides functions to position the cursor and to write at specific
positions in a virtual window

• The refreshing of the virtual window to the terminal is program controlled

• Based on the terminal capabilities, the curses library can find the most efficient
sequence of control codes to achieve the desired result

• The curses library also provides functions to switch between raw and cooked input
mode and to control function key mappings

• The ncurses implementation provides a library to create panels, menus, and input
forms.

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 317 / 355

323

Part XII

Virtual Machines

324

Section 38: Terminology

38 Terminology

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 319 / 355

325

Virtualization Concepts in Operating Systems

• Virtualization has already been seen several times in operating system components:
• virtual memory
• virtual file systems
• virtual block devices (LVM, RAID)
• virtual terminal devices (pseudo ttys)
• virtual network interfaces (not covered here)
• . . .

• What we are talking about now is running multiple operating systems on a single
computer concurrently.

• The basic idea is to virtualize the hardware, but we will see that there are
differences in what is actually virtualized.

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 320 / 355

326

Emulation

• Emulation of processor architectures on different platforms
• Transition between architectures (e.g., PPC ⇒ Intel)
• Faster development and testing of embedded software
• Development and testing of code for different target architectures
• Usage of software that cannot be ported to new platforms

• Examples:
• QEMU http://www.qemu.org/

• full system emulation and user mode (process) emulation
• support for many different processor architectures
• dynamic translation to native code

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 321 / 355

327

Hardware Virtualization

• Virtualization of the physical hardware (aka hardware virtualization)
• Running multiple operating systems concurrently
• Consolidation (replacing multiple physical machines by a single machine)
• Separation of concerns and improved robustness
• High-availability (live migration, tandem systems, . . .)

• Examples:
• VMware http://www.vmware.com/
• VirtualBox https://www.virtualbox.org/
• Parallels http://www.parallels.com/
• Linux KVM http://www.linux-kvm.org/
• . . .

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 322 / 355

328

User-Level Virtualization

• Virtualization of kernels in user space
• Simplify kernel development and debugging

• Examples:
• User-mode Linux http://user-mode-linux.sourceforge.net/

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 323 / 355

329

OS-Level Virtualization

• Multiple virtual operating system interfaces provided by a single operating system
• Efficient separation using different namespaces
• Robustness with minimal loss of performance
• Reduction of system administration complexity

• Examples:
• Linux Container
• Linux VServer
• BSD Jails
• Solaris Zones

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 324 / 355

330

Paravirtualization

• Small virtual machine monitor controlling guest operating systems, relying on the
help of guest operating systems
• Efficient solution
• Requiring OS support and/or hardware support

• Examples:
• Xen http://www.xenproject.org/

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 325 / 355

Paravirtualization tries to find a middle-ground between hardware virtualization and OS-level virtualiza-
tion. The Xen system [1] is a well documented paravirtualization system.

331

Part XIII

Distributed Systems

332

Section 39: Definition and Models

39 Definition and Models

40 Remote Procedure Calls

41 Distributed File Systems

42 Distributed Message Queues

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 327 / 355

333

What is a Distributed System?

• A distributed system is one in which the failure of a computer you didn’t even know
existed can render your own computer unusable. (Lesley Lamport, 1992)

• A distributed system is several computers doing something together. (M.D.
Schroeder, 1993)

• An interconnected collection of autonomous computers, processes, or processors.
(G. Tel, 2000)

• A distributed system is a collection of processors that do not share memory or a
clock. (A. Silberschatz, 1994)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 328 / 355

334

Why Distributed Systems?

• Information exchange

• Resource sharing

• Increased reliability through replication

• Increased performance through parallelization

• Simplification of design through specialization

• Cost reduction through open standards and interfaces

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 329 / 355

335

Challenges

General challenges for the design of distributed systems:

• Efficiency

• Scalability

• Security

• Fairness

• Robustness

• Transparency

• Openness

Special design challenges (increasingly important):

• Context-awareness and energy-awareness

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 330 / 355

336

Distributed vs. Centralized

• Lack of knowledge of global state
Nodes in a distributed system have access only to their own state and not to the
global state of the entire system

• Lack of a global time frame
The events constituting the execution of a centralized algorithm are totally ordered
by their temporal occurance. Such a natural total order does not exist for
distributed algorithms

• Non-determinism
The execution of a distributed system is usually non-deterministic due to speed
differences of system components

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 331 / 355

337

Client-Server Model

client

client

server

client

client

• Clients requests services from servers

• Synchronous: clients wait for the response before they proceed with their
computation

• Asynchronous: clients proceed with computations while the response is returned by
the server

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 332 / 355

338

Proxies

client server

client

proxy

server

• Proxies can increase scalability

• Proxies can increase availability

• Proxies can increase protection and security

• Proxies and help solving versioning issues

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 333 / 355

339

Peer-to-Peer Model

peer

peer

peer

peer

peer

• Every peer provides client and server functionality

• Avoids centralized components

• Able to establish new (overlay) topologies dynamically

• Requires control and coordination logic on each node

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 334 / 355

340

Mobile Code

place

place

place

place

place

• Executable code (mobile agent) travels autonomously through the network

• At each place, some computations are performed locally that can change the state
of the mobile agent

• A mobile agent must be able to find a good trajectory

• Security (protection of places, protection of agents) is a challenging problem

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 335 / 355

Andrzej Bieszczad proposed a taxonomy for mobile code [2], which was a hot topic of research at the
end of the 1990s:

• Applets: downloadable applications

• Servlets: uploadable services

• Extlets: uploadable or downloadable features

• Deglets: delegated tasks

• Netlets: autonomous tasks

• Piglets: malicious mobile code

Nowadays, we have a lot of mobile code on web pages, usually in the form of JavaScript.

341

Section 40: Remote Procedure Calls

39 Definition and Models

40 Remote Procedure Calls

41 Distributed File Systems

42 Distributed Message Queues

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 336 / 355

342

Remote Procedure Call Model

• Introduced by Birrel and
Nelson (1984)
• to provide communication

transparency and
• to overcome heterogeneity

• Stubs hide all communication
details

Access

Result

Client ServerClient
Stub

Server
Stub

Send
Access

Send
Result

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 337 / 355

The remote procedure model was described in a paper by A. Birrell and P. Nelson [3], which belongs to
one of the most cited papers in computer science. A few years later, a survey of remote procedure calls
appeared [5], documenting the popularity of this work back in the 1980s.

343

Stub Procedures

stubclient ipc ipc stub server

interface interface

invoke pack

unpack

send

recv

recv

send

unpack

packreturn return

invoke

work

• Client stubs provide a local interface which can be called like any other local
procedure

• Server stubs provide the server interface which calls the server’s implementation of
the procedure provided by a programmer and returns any results back to the client

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 338 / 355

344

Marshalling

• Marshalling is the technical term for transferring data structures used in remote
procedure calls from one address space to another

• Serialization of data structures for transport in messages

• Conversion of data structures from the data representation of the calling process to
that of the called process

• Pointers can be handled to some extend by introducing call-back handles, which
can be used to make an call-back RPCs from the server to the client in order to
retrieve the data pointed to

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 339 / 355

345

RPC Definition Languages

client stub
source source

server stub procedure
implementation

client
implementation

procedure definition

RPC compiler

header

compiler compiler compilercompiler

serverclient

RPC definition language

implementation languageimplementation language

• Formal language to define the type signature of remote procedures
• RPC compiler generates client / server stubs from the formal remote procedure

definition
Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 340 / 355

346

RPC Binding

• A client needs to locate and bind to a server in order to use RPCs

• This usually requires to lookup the transport endpoint for a suitable server in some
sort of name server:

1. The name server uses a well know transport address
2. A server registers with the name server when it starts up
3. A client first queries the name server to retrieve the transport address of the server
4. Once the transport address is known, the client can send RPC messages to the

correct transport endpoint

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 341 / 355

347

RPC Semantics

• May-be:

• Client does not retry failed requests

• At-least-once:
• Client retries failed requests, server re-executes the procedure

• At-most-once:
• Client may retry failed requests, server detects retransmitted requests and responds

with cached reply from the execution of the procedure

• Exactly-once:
• Client must retry failed requests, server detects retransmitted requests and responds

with cached reply from the execution of the procedure

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 342 / 355

348

Local vs. Remote Procedure Calls

• Client, server and the communication channel can fail independently and hence an
RPC may fail

• Extra code must be present on the client side to handle RPC failures gracefully

• Global variables and pointers can not be used directly with RPCs

• Passing of functions as arguments is close to impossible

• The time needed to call remote procedures is orders of magnitude higher than the
time needed for calling local procedures

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 343 / 355

349

Open Network Computing RPC

• Developed by Sun Microsystems (Sun RPC), originally published in 1987/1988

• Since 1995 controlled by the IETF (RFC 1790)

• ONC RPC encompasses:
• ONC RPC Language (RFC 5531)
• ONC XDR Encoding (RFC 4506)
• ONC RPC Protocol (RFC 5531)
• ONC RPC Binding (RFC 1833)

• Foundation of the Network File System (NFS) and widely implemented on Unix
systems

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 344 / 355

The Open Network Computing (ONC) Remote Procedure Call (RPC) is defined in RFC 5531 [6]. It uses
the external data representation (XDR) defined in RFC 4506 [4].

There are many other RPC systems these days, some use XML encoding, some use JavaScript en-
coding, yet others use newer binary encodings such as Google’s gRPC, which uses Google’s protocol
buffers for data encoding.

350

Section 41: Distributed File Systems

39 Definition and Models

40 Remote Procedure Calls

41 Distributed File Systems

42 Distributed Message Queues

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 345 / 355

351

Distributed File Systems

• A distributed file system is a part of a distributed system that provides a user with
a unified view of the files on the network

• Transparancy features (not necessarily all supported):
• Location transparency
• Access transparancy
• Replication transparency
• Failure transparency
• Mobility transparency
• Scaling transparency

• Recently: File sharing (copying) via peer-to-peer protocols

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 346 / 355

352

Design Issues

• Centralized vs. distributed data
• Consistency of global file system state
• If distributed, duplications (caching) or division

• Naming
• Tree vs. Directed Acyclic Graph (DAG) vs. Forest
• Symbolic links (file system pointers)

• File sharing semantics
• Unix (updates are immediately visible)
• Session (updates visible at end of session)
• Transaction (updates are bundled into transactions)
• Immutable (write once, change never)

• Stateless vs. stateful servers

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 347 / 355

353

Stateless vs. Stateful Servers

• Stateless Server:

+ Fault tolerance
+ No open/close needed (less setup time)
+ No data structures needed to keep state
+ No limits on open files
+ Client crashes do not impact the servers

• Stateful Server:

+ Shorter request messages
+ Better performance with buffering
+ Readahead possible
+ Idempotency is easier to achieve
+ File locking possible

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 348 / 355

354

Network File System Version 3

• Original Idea:
• Wrap the file system system calls into RPCs
• Stateless server, little transparency support
• Unix file system semantics
• Simple and straight-forward to implement
• Servers are dumb and clients are smart

• Stateless server

• Mount service for mounting/unmounting file systems

• Additional locking service (needs to be stateful)

• NFSv3 is defined in RFC 1813 (June 1995)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 349 / 355

355

Operating System Integration

NFS clientBSD FFS

VFS (cache)

TCP/UDP/IP TCP/UDP/IP BSD FFS

VFS (cache)NFS server

emacs

makecat

• Early implementations used user-space deamons
• NFS runs over UDP and TCP, currently TCP is preferred
• NFS uses a fixed port number (no portmapper involved)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 350 / 355

356

NFSv3 Example (Simplified!)

C: PORTMAP GETPORT mount # mount bayonne:/export/vol0 /mnt

S: PORTMAP GETPORT port

C: MOUNT /export/vol0

S: MOUNT FH=0x0222

C: PORTMAP GETPORT nfs # dd if=/mnt/home/data bs=32k \

S: PORTMAP GETPORT port # count=1 of=/dev/null

C: FSINFO FH=0x0222

S: FSINFO OK

C: GETATTR FH=0x0222

S: GETATTR OK

C: LOOKUP FH=0x0222 home

S: LOOKUP FH=0x0123

C: LOOKUP FH=0x0123 data

S: LOOKUP FH=0x4321

C: ACCESS FH=0x4321 read

S: ACCESS FH=0x4321 OK

C: READ FH=0x4321 at 0 for 32768

S: READ DATA (32768 bytes)

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 351 / 355

357

Related Work

• Distributed File Systems:
• Network File System Version 4 (NFSv4) (2003)
• Common Internet File System (CIFS) (2002)
• Andrew File System (AFS) (1983)
• . . .

• Distributed File Sharing:
• BitTorrent (2001)
• Gnutella (2000)
• Napster (1999)
• . . .

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 352 / 355

358

Section 42: Distributed Message Queues

39 Definition and Models

40 Remote Procedure Calls

41 Distributed File Systems

42 Distributed Message Queues

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 353 / 355

359

Typical Design Goals for Distributed Systems

• Distributed systems should be asynchronous (avoid blocking)

• Distributed systems should be designed to tolerate failures

• Distributed workflows should be adaptable at runtime (scaling up, scaling down)

• Distributed systems should be programming language agnostic

• Distributed systems should be deployable in a wide range of configurations (ranging
from all components on a single system to all components distributed over many
systems)

• Distributed systems should be designed to support program analysis and debugging

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 354 / 355

360

Message Passing and Message Queuing Frameworks

• Advanced Message Queuing Protocol (AMQ) is an open standard application layer
protocol for message-oriented middleware (core developed in 2004-2006)

• ZeroMQ (ØMQ) is an asynchronous messaging library for distributed and
concurrent applications. It provides message queues and it be used without a
dedicated message broker (core developed in 2007-2011, written in C++)

• nanomsg is a is a high-level socket library that provides several common
communication patterns that can be used over several transport mechanisms
(developed since 2011, written in C)

• MQTT . . .

Jürgen Schönwälder (Jacobs University Bremen) Operating Systems ’2018 November 26, 2018 355 / 355

361

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the Art of Virtualization. In Proceedings of the 19th ACM Symposium on Operating Systems
Principles, October 2003.

[2] A. Bieszczad, B. Pagurek, and T. White. Mobile Agents for Network Management . IEEE Communi-
cations Surveys, 1(1), 1998.

[3] A. Birrell and P. Nelson. Implementing Remote Procedure Calls. ACM Transactions on Computer
Systems, 2(1):39–59, 1984.

[4] M. Eisler. XDR: External Data Representation Standard. RFC 4506, May 2006.

[5] B. H. Tay and A. L. Ananda. A Survey of Remote Procedure Calls. Operating Systems Review,
24(3):68–79, July 1990.

[6] R. Thurlow. RPC: Remote Procedure Call Protocol Specification Version 2. RFC 5531, Sun Mi-
crosystems, May 2009.

362

	I Introduction
	Definition and Requirements / Services
	Types of Operating Systems
	Operating System Architectures

	II Hardware
	Common Computer Architecture
	I/O Systems and Interrupts
	Memory

	III Processes and Threads
	Fundamental Concepts
	Processes
	Threads

	IV Synchronization
	Race Conditions and Critical Sections
	Basic Synchronization Mechanisms
	Semaphores
	Semaphore Pattern
	Critical Regions, Condition Variables, Messages
	Synchronization in Java and Go and POSIX APIs

	V Deadlocks
	Deadlocks
	Resource Allocation Graphs
	Deadlock Strategies

	VI Scheduling
	CPU Scheduling
	CPU Scheduling Strategies

	VII Linking
	Linker
	Libraries
	Interpositioning

	VIII Memory Management
	Memory Systems and Translation of Memory Addresses
	Segmentation
	Paging
	Virtual Memory

	IX Inter-Process Communication
	Signals
	Pipes
	Sockets

	X File Systems
	General File System Concepts
	File System Programming Interface
	File System Implementation

	XI Input/Output and Devices
	Goals and Design Considerations
	Storage Devices and RAIDs
	Storage Virtualization
	Terminal Devices

	XII Virtual Machines
	Terminology

	XIII Distributed Systems
	Definition and Models
	Remote Procedure Calls
	Distributed File Systems
	Distributed Message Queues

