
Operating Systems Module: CO-562
Jacobs University Bremen Date: 2021-09-16
Dr. Jürgen Schönwälder Due: 2021-09-23

OS 2021 Problem Sheet #2

Problem 2.1: memory segments (2 points)

Look at the following program and write down what is stored in the text segment, the data segment,
the heap segment, and the stack segment.

1 #include <stdlib.h>

2 #include <string.h>

3 #include <stdio.h>

4

5 char *strdup(const char *s)

6 {

7 char *p = NULL;

8 size_t len;

9

10 if (s) {

11 len = strlen(s);

12 p = malloc(len+1);

13 if (p) {

14 strcpy(p, s);

15 }

16 }

17 return p;

18 }

19

20 int main()

21 {

22 static char m[] = "Hello World!";

23 char *p = strdup(m);

24 if (!p) return EXIT_FAILURE;

25 return (puts(p) == EOF);

26 }

Problem 2.2: xargs - execute a programs with constructed argument lists (8 points)

Write a C program called xargs, which is a simplified version of the Unix xargs utility. Your program
reads lines from the standard input and constructs argument lists for a command to be executed. If
more lines are available than can fit on the argument list, then additional commands are executed
with the arguments that did not fit on the first command line. Your program continues constructing
argument lists and executing commands until the end of the standard input has been reached.
The command to execute is specified as part of the xargs arguments or if none are given, then
/bin/echo is used. Your program should support the following options:

-n the (maximum) number of input lines added to the constructed argument lists

-t show the argument list (on stderr) before the command is executed

If you want to challenge yourself, then you implement the following additional option:

-j the (maximum) number of processes (jobs) executed concurrently (default is 1, which means
processes are executed sequentially)

By implementing this option correctly, you may earn up to two bonus points.



Some examples executions:

$ echo "hello world" | xargs

hello world

$ seq 0 10 | xargs

0 1 2 3 4 5 6 7 8 9 10

$ seq 0 10 | xargs -t

/bin/echo 0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

$ seq 0 10 | xargs -n 3

0 1 2

3 4 5

6 7 8

9 10

$ seq 0 10 | xargs -n 3 -t

/bin/echo 0 1 2

0 1 2

/bin/echo 3 4 5

3 4 5

/bin/echo 6 7 8

6 7 8

/bin/echo 9 10

9 10

$ seq 1 4 | xargs -t -n 1 printf "foo-%02d\n"

printf foo-%02d\n 1

foo-01

printf foo-%02d\n 2

foo-02

printf foo-%02d\n 3

foo-03

printf foo-%02d\n 4

foo-04

Make sure your program properly handles all possible runtime errors and that it returns an error
status to its parent process (usually the shell) in case a runtime error occurred.

Your program must use the fork(), execvp(), and waitpid() system calls. Use the getopt()

function of the C library for the command line option parsing. You may want to use the getline()

library function for reading the lines from standard input.


