
Operating Systems 2022

Jürgen Schönwälder

February 20, 2023

https://cnds.jacobs-university.de/courses/os-2022/

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 1 / 373

https://cnds.jacobs-university.de/courses/os-2022/

Objectives

• Understand how an operating systems manages to turn a collection of independent
hardware components into a useful abstraction

• Understand concurrency issues and be able to solve synchronization problems

• Knowledge about basic resource management algorithms

• Understand how memory management systems work and how they may impact the
performance of systems

• Knowledge of inter-process communication mechanisms (signals, pipes, sockets)

• Understand trade-offs in the design of file systems

• Understand virtualization and container technology

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 2 / 373

Intended Learning Outcomes

• explain the differences between processes, threads, application programs, libraries, and operating system kernels;

• describe well-known mutual exclusion and coordination problems;

• use semaphores to achieve mutual exclusion and solve coordination problems;

• use mutual exclusion locks and condition variables to solve synchronization and coordination problems;

• illustrate how deadlocks can be avoided, detected, and resolved;

• summarize the different mechanisms to realize virtual memory and their trade-offs;

• solve basic inter-process communication problems using signals and pipes;

• use socket inter-process communication primitives;

• multiplex I/O activities using suitable system calls and libraries;

• describe file system programming interfaces and the design of file systems at the operating system kernel level;

• explain how memory mapping can improve I/O performance;

• restate the functionality of a linker and the difference between static linking and dynamic linking;

• outline how different device types are supported by Unix-like kernels;

• discuss virtualization mechanisms such as containers or virtual machines.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 3 / 373

Topics and Timeline

I Introduction 1 week
II Hardware 0.5 weeks
III Processes and Threads 0.5 weeks
IV Synchronization 2 weeks
V Deadlocks 0.5 weeks
VI Scheduling 0.5 weeks
VII Linking 0.5 weeks
VIII Memory Management 1.5 weeks
IX Inter-Process Communication 3 weeks
X File Systems 1 week
XI Input/Output and Devices 1 week
XII Virtual Machines 1 week
XIII Distributed Systems 1 week

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 4 / 373

Assessment

• Module achievement (during the semester):
• 50% of 10 (weekly) assignments correctly solved
• 2 additional (weekly) assignments can be used to makeup points
• Students without module achievement are not allowed to sit for the exam
• Submit homework solutions regularly from the beginning

• Written examination (December 2022 and/or January 2023):
• Duration: 120 min (closed book)
• Scope: All intended learning outcomes of the module

• You can audit the module. To earn an audit, you have to pass a short oral
interview about key concepts introduced in this module at the end of the semester.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 5 / 373

Assignments

• We will post weekly homework assignments

• Assignments reinforce what has been discussed in class

• Assignments will be small individual assignments (but may take time to solve)

• Solving assignments will prepare you for the written examination

• Solutions must be submitted individually via Moodle

• Teaching assistants will review the assignments

• Assignments tell you whether you understood the material

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 6 / 373

Study Groups

• I strongly suggest to form study groups.

• It helps to discuss questions and the course materials in study groups, in particular
when you are getting stuck.

• Discussions in a study group can help to understand what is demanded by a
problem.

• Study group members may try different approaches to solve a problem and you can
benefit from that.

• However, note that submissions must be individual solutions.

• It is OK to sketch a possible solution in a study group, then work out the details of
the solution yourself.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 7 / 373

Deadlines

• Deadlines will be strict (don’t bother to ask for extensions)

• Make sure you submit the right document. We grade what was submitted, not
what could have been submitted.

• Submit early — avoid last minute changes or software/hardware problems.

• Official excuses by the student records office will extend the deadlines, but not
more than the time covered by the excuse.

• A word on medical excuses: Use them when you are ill. Do not use them as a tool
to gain more time.

• You want to be taken serious if you are seriously ill. Misuse of excuses can lead to a
situation where you are not taken too serious when you deserve to be taken serious.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 8 / 373

Reading Material

• A. Silberschatz, P.B. Galvin, B. Peter, G. Gagne: ”Applied Operating System
Concepts”, John Wiley, 2000

• A.S. Tanenbaum, H. Bos: ”Modern Operating Systems”, Prentice Hall, 4th
edition, Pearson, 2015

• W. Stallings: ”Operating Systems: Internals and Design Principles”, 8th edition,
Pearson, 2014

• R. Love: ”Linux Kernel Development”, 3rd edition, Addison Wesley, 2010

• R. Love: ”Linux System Programming: Talking Directly to the Kernel and C
Library”, 2nd edition, O’Reilly, 2013

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 9 / 373

Part 1: Introduction

1 Definition, Requirements and Services

2 Fundamental Concepts

3 Types of Operating Systems

4 Operating System Architectures

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 10 / 373

Section 1: Definition, Requirements and Services

1 Definition, Requirements and Services

2 Fundamental Concepts

3 Types of Operating Systems

4 Operating System Architectures

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 11 / 373

What is an Operating System?

• An operating system is similar to a government. . . Like a government, the operating
system performs no useful function by itself. (A. Silberschatz, P. Galvin)

• The most fundamental of all systems programs is the operating system, which
controls all the computer’s resources and provides the basis upon which the
application programs can be written. (A.S. Tanenbaum)

• An operating system (OS) is system software that manages computer hardware and
software resources and provides common services for computer programs.
(Wikipedia, 2018-08-16)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 12 / 373

Hardware vs. System vs. Application

System Libraries

Operating System Kernel

Integrated circuits

Microprogramms

Machine language

Memory Devices

system calls

Hardware

System
Software

library calls

interrupts

Shells, Editors, Utilities, Compiler, Linker, ...

Browser, Databases, Office Software, Games, ...
Software
Application

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 13 / 373

General Requirements

• An operating system
• should be efficient and introduce little overhead;
• should be robust against malfunctioning application programs;
• should protect data and programs against unauthorized access;
• should protect data and programs against hardware failures;
• should manage resources in a way that avoids shortages or overload conditions.

• Some of these requirements can be contradictory.

• Hence, trade-off decisions must be made while designing an operating system.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 14 / 373

Services for Application Programs

• Loading of programs, cleanup after program execution

• Management of the execution of multiple programs

• High-level input/output operations (write(), read(), . . .)

• Logical file systems (open(), close(), mkdir(), unlink(), . . .)

• Control of peripheral devices (keyboard, display, pointer, camera, . . .)

• Interprocess communication primitives (signals, pipes, . . .)

• Support of basic communication protocols (TCP/IP)

• Checkpoint and restart primitives

• . . .

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 15 / 373

Services for System Operation

• User identification and authentication

• Access control mechanisms

• Support for cryptographic operations and the management of keys

• Control functions (e.g., forced abort of processes)

• Testing and repair functions (e.g., file systems checks)

• Monitoring functions (observation of system behavior)

• Logging functions (collection of event logs)

• Accounting functions (collection of usage statistics)

• System generation and system backup functions

• Software management functions

• . . .

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 16 / 373

Section 2: Fundamental Concepts

1 Definition, Requirements and Services

2 Fundamental Concepts

3 Types of Operating Systems

4 Operating System Architectures

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 17 / 373

User Mode

In user mode,

• the processor executes machine instructions of (user space) processes;

• the instruction set of the processor is restricted to the so called unprivileged
instruction set;

• the set of accessible registers is restricted to the so called unprivileged register set;

• the memory addresses used by a process are typically mapped to physical memory
addresses by a memory management unit;

• direct access to hardware components is protected by using hardware protection
where possible;

• direct access to the state of other concurrently running processes is restricted.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 18 / 373

System Mode

In system mode,

• the processor executes machine instructions of the operating system kernel;

• all instructions of the processor can be used, the so called privileged instruction set;

• all registers are accessible, the so called privileged register set;

• direct access to physical memory addresses and the memory address mapping
tables is enabled;

• direct access to the hardware components of the system is enabled;

• the direct manipulation of the state of processes is possible.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 19 / 373

Entering the Operating System Kernel

• System calls (supervisor calls, software traps)
• Synchronous to the running process
• Parameter transfer via registers, the call stack or a parameter block

• Hardware traps
• Synchronous to a running process (devision by zero)
• Forwarded to a process by the operating system

• Hardware interrupts
• Asynchronous to the running processes
• Call of an interrupt handler via an interrupt vector

• Software interrupts
• Asynchronous to the running processes

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 20 / 373

Concurrency versus Parallelism

Definition (concurrency)

An application or a system making progress on more than one task at the same time is
using concurrency and is called concurrent.

Definition (parallelism)

An application or a system executing more than one task at the same time is using
parallelism and is called parallel.

• Concurrency does not require parallel execution.

• Example: A web server running on a single CPU handling multiple clients.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 21 / 373

Separation of Mechanisms and Policies

• An important design principle is the separation of policy from mechanism.

• Mechanisms determine how to do something.

• Policies decide what will be done.

• The separation of policy and mechanism is important for flexibility, especially since
policies are likely to change.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 22 / 373

Section 3: Types of Operating Systems

1 Definition, Requirements and Services

2 Fundamental Concepts

3 Types of Operating Systems

4 Operating System Architectures

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 23 / 373

Batch Processing Operating Systems

• Characteristics:
• Batch jobs are processed sequentially from a job queue
• Job inputs and outputs are saved in files or printed
• No interaction with the user during the execution of a batch program

• Batch processing operating systems were the early form of operating systems.

• Batch processing functions still exist today, for example to execute jobs on super
computers.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 24 / 373

General Purpose Operating Systems

• Characteristics:
• Multiple programs execute simultaneously (multi-programming, multi-tasking)
• Multiple users can use the system simultaneously (multi-user)
• Processor time is shared between the running processes (time-sharing)
• Input/output devices operate concurrently with the processors
• Network support but no or very limited transparency

• Examples:
• Linux, BSD, Solaris, . . .
• Windows, MacOS, . . .

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 25 / 373

Parallel Operating Systems

• Characteristics:
• Support for a very large number of tightly integrated processors
• Symmetrical

• Each processor has a full copy of the operating system
• Asymmetrical

• Only one processor carries the full operating system
• Other processors are operated by a small operating system stub to transfer code and

tasks

• Massively parallel systems are a niche market and hence parallel operating systems
are usually very specific to the hardware design and application area.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 26 / 373

Distributed Operating Systems

• Characteristics:
• Support for a medium number of loosely coupled processors
• Processors execute a small operating system kernel providing essential

communication services
• Other operating system services are distributed over available processors
• Services can be replicated in order to improve scalability and availability
• Distribution of tasks and data transparent to users (single system image)

• Examples:
• Amoeba (Vrije Universiteit Amsterdam)
• Plan 9 (Bell Labs, AT&T)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 27 / 373

Real-time Operating Systems

• Characteristics:
• Predictability
• Logical correctness of the offered services
• Timeliness of the offered services
• Services are to be delivered not too early, not too late
• Operating system executes processes to meet time constraints

• Examples:
• QNX
• VxWorks
• RTLinux, RTAI, Xenomai
• Windows CE

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 28 / 373

Embedded Operating Systems

• Characteristics:
• Usually real-time systems, sometimes hard real-time systems
• Very small memory footprint (even today!)
• No or limited user interaction
• 90-95 % of all processors are running embedded operating systems

• Examples:
• Embedded Linux, Embedded BSD
• Symbian OS, Windows Mobile, iPhone OS, BlackBerry OS, Palm OS
• Cisco IOS, JunOS, IronWare, Inferno
• Contiki, TinyOS, RIOT, Mbed OS, Tock

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 29 / 373

Evolution of Operating Systems

• 1st Generation (1945-1955): Vacuum Tubes
• Manual operation, no operating system
• Programs are entered via plugboards

• 2nd Generation (1955-1965): Transistors
• Batch systems automatically process job queues
• The job queue is stored on magnetic tapes

• 3rd Generation (1965-1980): Integrated Circuits
• Spooling (Simultaneous Peripheral Operation On Line)
• Multiprogramming and Time-sharing

• 4th Generation (1980-2000): VLSI
• Personal computer (CP/M, MS-DOS, Windows, Mac OS, Unix)
• Network operating systems (Unix)
• Distributed operating systems (Amoeba, Mach, V)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 30 / 373

Section 4: Operating System Architectures

1 Definition, Requirements and Services

2 Fundamental Concepts

3 Types of Operating Systems

4 Operating System Architectures

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 31 / 373

Operating System Architectures

Architecture

Hardware Hardware Hardware Hardware Hardware

Monolithic ModularLayered Microkernel Virtualization

HypervisorMicrokernel

OS OS

Multitasking

Memory

Driver

Console

I/O

System Calls

Filesystem

Driver

Networking

Filesystems Operating

System

System

Operating

Tasks Tasks Tasks Tasks TasksTasks

Architecture Architecture ArchitectureArchitecture

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 32 / 373

Kernel Modules / Extensions

• Implement large portions of the kernel like device drivers, file systems, networking
protocols etc. as loadable kernel modules

• During the boot process, load the modules appropriate for the detected hardware
and necessary for the intended purpose of the system

• A single software distribution can support many different hardware configurations
while keeping the (loaded) kernel size small

• Potential security risks since kernel modules must be trusted (some modern kernels
only load signed kernel modules)

• On high security systems, consider disabling kernel modules and instead building
custom kernel images

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 33 / 373

Selected Relevant Standards

Organization Standard Year

ANSI/ISO C Language (ISO/IEC 9899:1999) 1999
ANSI/ISO C Language (ISO/IEC 9899:2011) 2011
ANSI/ISO C Language (ISO/IEC 9899:2018) 2018

IEEE Portable Operating System Interface (POSIX:2001) 2001
IEEE Portable Operating System Interface (POSIX:2008) 2008
IEEE Portable Operating System Interface (POSIX:2017) 2017

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 34 / 373

POSIX P1003.1 Standard

Name Title

P1003.1a System Interface Extensions
P1003.1b Real Time Extensions
P1003.1c Threads
P1003.1d Additional Real Time Extensions
P1003.1j Advanced Real Time Extensions
P1003.1h Services for Reliable, Available, and Serviceable Systems
P1003.1g Protocol Independent Interfaces
P1003.1m Checkpoint/Restart
P1003.1p Resource Limits
P1003.1q Trace

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 35 / 373

Some Useful Linux System Utilities

Command Description

strace trace system calls and signals
ltrace trace library calls (and system calls)
time run programs and summarize system resource usage
readelf display information about ELF files
objdump display information from object files
nm list symbols from object files
ldd print shared object dependencies
stat display file or file system status
xxd make a hexdump or do the reverse

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 36 / 373

Part 2: Hardware

5 Computer Architecture and Processors

6 Memory, Caching, Segments, Stacks

7 Devices and Interrupts

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 37 / 373

Section 5: Computer Architecture and Processors

5 Computer Architecture and Processors

6 Memory, Caching, Segments, Stacks

7 Devices and Interrupts

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 38 / 373

Computer Architecture (von Neumann)

Registers

Sequencer

ALU

In
te

rf
ac

e

Memory Memory I/O Device I/O Device

Control

Address

Data

.

• Today’s common computer architecture uses busses to connect memory and I/O
systems to the central processing unit (CPU)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 39 / 373

CPU Registers and Instruction Sets

• Typical CPU registers:
• Processor status register
• Instruction register (current instruction)
• Program counter (current or next instruction)
• Stack pointer (top of stack)
• Special privileged registers
• Dedicated registers
• Universal registers

• Non-privileged instruction set:
• General purpose set of CPU instructions

• Privileged instruction set:
• Access to special resources such as privileged registers or memory management units
• Subsumes the non-privileged instruction set

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 40 / 373

Section 6: Memory, Caching, Segments, Stacks

5 Computer Architecture and Processors

6 Memory, Caching, Segments, Stacks

7 Devices and Interrupts

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 41 / 373

Memory Sizes and Access Times

> 128 GiB Disks (SSD or HDD)

Main Memory

Level 2 Cache

Level 1 Cache

~ 1 MiB

~ 128 KiB

< 1 KiB

~ 1−4 ms

~ 8 ns

~ 4 ns

~ 1−2 ns

< 1 ns

Memory Size Access Time

CPU Registers

> 1 GiB

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 42 / 373

Caching

• Caching is a general technique to speed up memory access by introducing smaller
and faster memories which keep a copy of frequently / soon needed data

• Cache hit: A memory access which can be served from the cache memory

• Cache miss: A memory access which cannot be served from the cache and requires
access to slower memory

• Cache write through: A memory update which updates the cache entry as well as
the slower memory cell

• Delayed write: A memory update which updates the cache entry while the slower
memory cell is updated at a later point in time

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 43 / 373

Locality

• Cache performance relies on:
• Spatial locality :

Nearby memory cells are likely to be accessed soon
• Temporal locality :

Recently addressed memory cells are likely to be accessed again soon

• Iterative languages generate linear sequences of instructions (spatial locality)

• Functional / declarative languages extensively use recursion (temporal locality)

• CPU time is in general often spend in small loops/iterations (spatial and temporal
locality)

• Data structures are organized in compact formats (spatial locality)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 44 / 373

Memory Segments

Segment Description

text machine instructions of the program
data static and global variables and constants, may be further

devided into initialized and uninitialized data
heap dynamically allocated data structures
stack automatically allocated local variables, management of

function calls (parameters, results, return addresses, au-
tomatic variables)

• Memory used by a program is usually partitioned into different segments that serve
different purposes and may have different access rights

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 45 / 373

Stack Frames

• Every function call adds a
stack frame to the stack

• Every function return removes
a stack frame from the stack

• Stack frame layout is
processor specific (here Intel
x86)

return address (4 byte)

function(int a, int b, int c)

{

 char buffer1[40];

 char buffer2[48];

}

stack segment

text segment

heap segment

buffer2 (48 bytes)

data segment

buffer1 (40 bytes)

a (4 byte)

b (4 byte)

c (4 byte)

frame pointer (4 byte)

void

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 46 / 373

Example

static int foo(int a)

{

static int b = 5;

int c;

c = a * b;

b += b;

return c;

}

int main(int argc, char *argv[])

{

return foo(foo(1));

}

• What is returned by main()?

• Which memory segments store the variables?

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 47 / 373

Stack Smashing Attacks

#include <string.h>

static void foo(char *bar)

{

char c[12];

strcpy(c, bar); // no bounds checking

}

int main(int argc, char *argv[])

{

for (int i = 1; i < argc; i++) foo(argv[i]);

return 0;

}

• Overwriting a function return address on the stack

• Returning into a ’landing area’ (typically sequences of NOPs)

• Landing area is followed by shell code (code to start a shell)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 48 / 373

Section 7: Devices and Interrupts

5 Computer Architecture and Processors

6 Memory, Caching, Segments, Stacks

7 Devices and Interrupts

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 49 / 373

Basic I/O Programming

• Status driven: the processor polls an I/O device for information
• Simple but inefficient use of processor cycles

• Interrupt driven: the I/O device issues an interrupt when data is available or an
I/O operation has been completed
• Program controlled : Interrupts are handled by the processor directly
• Program initiated : Interrupts are handled by a DMA-controller and no processing is

performed by the processor (but the DMA transfer might steal some memory access
cycles, potentially slowing down the processor)

• Channel program controlled : Interrupts are handled by a dedicated channel device,
which is usually itself a micro-processor

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 50 / 373

Interrupts

• Interrupts can be triggered by hardware and by software

• Interrupt control:
• grouping of interrupts
• encoding of interrupts
• prioritizing interrupts
• enabling / disabling of interrupt sources

• Interrupt identification:
• interrupt vectors, interrupt states

• Context switching:
• mechanisms for CPU state saving and restoring

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 51 / 373

Interrupt Service Routines

• Minimal hardware support (supplied by the CPU)
• Save essential CPU registers
• Jump to the vectorized interrupt service routine
• Restore essential CPU registers on return

• Minimal wrapper (supplied by the operating system)
• Save remaining CPU registers
• Save stack-frame
• Execute interrupt service code
• Restore stack-frame
• Restore CPU registers

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 52 / 373

Part 3: Processes and Threads

8 Processes

9 Threads

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 53 / 373

Section 8: Processes

8 Processes

9 Threads

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 54 / 373

Process Definition

Definition (process)

A process is an instance of a program under execution. A process uses/owns resources
(e.g., CPU, memory, files) and is characterized by the following:

1. A sequence of machine instructions (control flow) determining the behavior of the
running program

2. The current internal state of the running program defined by the content of the
registers of the processors, the stack, the heap, and the data segments

3. The external state of the process defined by the state of other resources used by
the running program (e.g., open files, open network connections, running timers,
state of devices)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 55 / 373

Processes: State Machine View

• new : just created, not yet admitted

• ready : ready to run, waiting for CPU

• running : executing, holds a CPU

• blocked : not ready to run, waiting for a resource

• terminated : just finished, not yet removed

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 56 / 373

Processes: Queueing Model View

I/O

event

CPU

time slice expired

I/O operation
I/O queue

wait for event

run queue

• Processes are enqueued if they wait for resources or events

• Dequeuing strategies can have strong performance impact

• Queueing models can be used for performance analysis and prediction

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 57 / 373

Process Control Block

• Processes are internally represented by a data structure
called a process control block (PCB)
• Process identification
• Process state
• Saved registers during context switches
• Scheduling information (priority)
• Assigned memory regions
• Open files or network connections
• Accounting information
• Pointers to other PCBs

• PCBs are often enqueued at a certain state or condition

process id

process state

saved registers

open files

memory info

scheduling info

pointers

accounting info

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 58 / 373

Process Lists

P1 P2 P3

head

tail

• PCBs are often organized in doubly-linked lists or tables

• PCBs can be queued easily and efficiently using pointer operations

• Run queue length of the CPUs is a good load indicator

• The system load is often defined as the exponentially smoothed average of the run
queue length over 1, 5 and 15 minutes

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 59 / 373

Process Creation

time

P2

P1

P3

fork()

exec()

• The fork() system call creates a new child process
• which is an exact copy of the parent process,
• except that the result of the system call differs

• The exec() system call replaces the current process image with a new image.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 60 / 373

Process Creation: fork()

fork()
text

stack

data

heap

text

data

heap

stack stack

heap

data

text

pcb (task) t1 (parent)

u
s

e
r

s
p

a
c

e
k

e
rn

e
l

s
p

a
c

e

resources

(mostly unshared)

thread

pcb (task) t1

u
s

e
r

s
p

a
c

e
k

e
rn

e
l

s
p

a
c

e

resources

process p1

resources

pcb (task) t2 (child)

thread

process p1

thread

process p2

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 61 / 373

Process Image Replacement: exec()

exec()
text

stack

heap

data

stack

text

data

heap

(reset)

(some reset, some unchanged)

thread

pcb (task) t1

u
s

e
r

s
p

a
c

e
k

e
rn

e
l

s
p

a
c

e

resources

thread

pcb (task) t1

u
s

e
r

s
p

a
c

e
k

e
rn

e
l

s
p

a
c

e

resources

process p1 process p1

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 62 / 373

Process Termination

time

P2

P1

P3

fork() wait()

exec() exit()

• Processes can terminate themself by calling exit()

• The wait() system call suspends execution until a child terminates (or a signal
arrives)

• Terminating processes return a numeric status code

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 63 / 373

Process Trees

getty

init

update bash inetd cron

make

emacs

• The first process is created when the system is initialized

• All other processes are created using fork(), which leads to a process tree

• PCBs often contain pointers to parent PCBs

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 64 / 373

POSIX API (fork, exec)

#include <unistd.h>

extern char **environ;

pid_t getpid(void);

pid_t getppid(void);

pid_t fork(void);

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg, ..., char * const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

int execve(const char *path, char *const argv [], char *const envp[]);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 65 / 373

POSIX API (exit, wait)

#include <stdlib.h>

#include <unistd.h>

void exit(int status);

int atexit(void (*function)(void));

void _exit(int status);

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

#include <sys/time.h>

#include <sys/resource.h>

#include <sys/wait.h>

pid_t wait3(int *status, int options, struct rusage *rusage);

pid_t wait4(pid_t pid, int *status, int options, struct rusage *rusage);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 66 / 373

Sketch of a Command Interpreter

while (1) {

show_prompt(); /* display prompt */

read_command(); /* read and parse command */

pid = fork(); /* create new process */

if (pid < 0) { /* continue if fork() failed */

perror("fork");

continue;

}

if (pid != 0) { /* parent process */

waitpid(pid, &status, 0); /* wait for child to terminate */

} else { /* child process */

execvp(args[0], args, 0); /* execute command */

perror("execvp"); /* only reach on exec failure */

_exit(1); /* exit without any cleanups */

}

}

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 67 / 373

Context Switch

• Save the state of the running process/thread

• Reload the state of the next running
process/thread

• Context switch overhead is an important
operating system performance metric

• Switching processes can be expensive if memory
must be reloaded

• Preferable to continue a process or thread on
the same CPU

restore state from P2’s PCB

save state into P2’s PCB

reload state from P1’s PCB

ru
n

n
in

g

ru
n

n
in

g
ru

n
n

in
g

w
ai

ti
n

g

w
aitin

g
w

aitin
g

P1 P2

save state into P1’s PCB

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 68 / 373

Section 9: Threads

8 Processes

9 Threads

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 69 / 373

Threads

• Threads are individual control flows, typically within a process (or within a kernel)

• Every thread has its own private stack (so that function calls can be managed for
each thread separately)

• Multiple threads share the same address space and other resources
• Fast communication between threads
• Fast context switching between threads
• Often used for very scalable server programs
• Multiple CPUs can be used by a single process
• Threads require synchronization (see later)

• Some operating systems provide thread support in the kernel while others
implement threads in user space

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 70 / 373

Thread Creation: pthread create

pthread_create()
text

data

heap

stack

text

data

heap

stack

stack

pcb (task) t1

u
s

e
r

s
p

a
c

e
k

e
rn

e
l

s
p

a
c

e

resources

(mostly shared)

thread

pcb (task) t1

u
s

e
r

s
p

a
c

e
k

e
rn

e
l

s
p

a
c

e

resources

process p1

resources

pcb (task) t2

thread thread

process p1

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 71 / 373

POSIX API (pthreads)

#include <pthread.h>

typedef ... pthread_t;

typedef ... pthread_attr_t;

int pthread_create(pthread_t *thread, pthread_attr_t *attr,

void * (*start) (void *), void *arg);

void pthread_exit(void *retval);

int pthread_cancel(pthread_t thread);

int pthread_join(pthread_t thread, void **retvalp);

int pthread_cleanup_push(void (*func)(void *), void *arg)

int pthread_cleanup_pop(int execute)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 72 / 373

Processes and Threads in the Linux Kernel

• Linux internally treats processes and threads as so called tasks

• Linux distinguishes three different types of tasks:

1. idle tasks (also called idle threads)
2. kernel tasks (also called kernel threads)
3. user tasks

• Tasks are in one of the states running, interruptible, uninterruptible, stopped,
zombie, or dead

• A special clone() system call is used to create processes and threads

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 73 / 373

Processes and Threads in the Linux Kernel

• Linux tasks (processes) are represented by a struct task struct defined in
<linux/sched.h>

• Tasks are organized in a circular, doubly-linked list with an additional hashtable,
hashed by process id (pid)

• Non-modifying access to the task list requires the usage of the tasklist lock for
READ

• Modifying access to the task list requires the usage the tasklist lock for WRITE

• System calls are identified by a number

• The sys call table contains pointers to functions implementing the system calls

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 74 / 373

Part 4: Synchronization

10 Race Conditions and Critical Sections

11 Synchronization Mechanisms

12 Semaphores

13 Critical Regions, Condition Variables, Messages

14 Synchronization Pattern

15 Synchronization in C

16 Synchronization in Java and Go

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 75 / 373

Section 10: Race Conditions and Critical Sections

10 Race Conditions and Critical Sections

11 Synchronization Mechanisms

12 Semaphores

13 Critical Regions, Condition Variables, Messages

14 Synchronization Pattern

15 Synchronization in C

16 Synchronization in Java and Go

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 76 / 373

Race Conditions

Definition (race condition)

A race condition is a situation where the result produced by concurrent processes (or
threads) accessing and manipulating shared resources (e.g., shared variables) depends
unexpectedly on the order of the execution of the processes (or threads).

• Protection against race conditions is a very important issue within operating
system kernels, but equally important in many application programs

• Protection against race conditions is difficult to test (execution order usually
depends on many factors that are hard to control)

• High-level programming constructs move the generation of correct low-level race
protection into the compiler

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 77 / 373

Bounded-Buffer Problem (incorrect naive solution)

const int N;

shared item_t buffer[N];

shared int in = 0, out = 0, count = 0;

void producer() void consumer() {

{ {

produce(&item); while (count == 0) sleep(1);

while (count == N) sleep(1); item = buffer[out];

buffer[in] = item; out = (out + 1) % N;

in = (in + 1) % N; count = count - 1;

count = count + 1; consume(item);

} }

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 78 / 373

Bounded-Buffer Problem (race condition)

• Pseudo machine code for count = count + 1 and count = count - 1:

P1: load reg_a,count C1: load reg_b,count

P2: incr reg_a C2: decr reg_b

P3: store reg_a,count C3: store reg_b,count

• Lets assume count has the value 5. What happens to count in the following
execution sequences?

a) P1, P2, P3, C1, C2, C3 leads to the value 5
b) P1, P2, C1, C2, P3, C3 leads to the value 4
c) P1, P2, C1, C2, C3, P3 leads to the value 6

• Every situation, in which multiple processes (threads) manipulate shared resources,
can lead to race conditions

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 79 / 373

Critical Sections

Definition (critical section)

A critical section is a code segment that can only be executed by one process at a time.
The execution of critical sections by multiple processes is mutually exclusive.

exit section

entry section

critical section

uncritical section

uncritical section

exit section

entry section

critical section

uncritical section

uncritical section

exit section

entry section

critical section

uncritical section

uncritical section

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 80 / 373

Critical-Section Problem

• Entry and exit sections must protect critical sections

• The critical-section problem is to design a protocol that the processes can use to
cooperate

• A solution must satisfy the following requirements:

1. Mutual Exclusion: No two processes may be simultaneously inside the same critical
section.

2. Progress: No process outside its critical sections may block other processes.
3. Bounded-Waiting : No process should have to wait forever to enter its critical

section.

• General solutions are not allowed to make assumptions about execution speeds or
the number of CPUs present in a system.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 81 / 373

Section 11: Synchronization Mechanisms

10 Race Conditions and Critical Sections

11 Synchronization Mechanisms

12 Semaphores

13 Critical Regions, Condition Variables, Messages

14 Synchronization Pattern

15 Synchronization in C

16 Synchronization in Java and Go

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 82 / 373

Disabling Interrupts

disable_interrupts();

critical_section();

enable_interrupts();

• The simplest solution is to disable all interrupts during the critical section

• Nothing can interrupt the execution of the critical section

• Can usually not be used in user-space

• Problematic on systems with multiple processors or cores

• Not usable if interrupts are needed in the critical section

• Very efficient and sometimes used in some special cases

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 83 / 373

Strict Alternation

/* process 0 */ /* process 1 */

uncritical_section(); uncritical_section();

while (turn != 0) sleep(1); while (turn != 1) sleep(1);

criticial_section(); critical_section()

turn = 1; turn = 0;

uncritical_section(); uncritical_section();

• Two processes share a variable called turn, which holds the values 0 and 1

• Strict alternation ensures mutual exclusion

• Can be extended to handle alternation between N processes

• Fails to satisfy the progress requirement, solution enforces strict alternation

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 84 / 373

Peterson’s Algorithm

uncritical_section();

interested[i] = true;

turn = j;

while (interested[j] && turn == j) sleep(1);

criticial_section();

interested[i] = false;

uncritical_section();

• Two processes i and j share a variable turn (which holds a process identifier) and
a boolean array interested, indexed by process identifiers

• Modifications of turn (and interested) are protected by a loop to handle
concurrency issues

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 85 / 373

Spin-Locks

enter: tsl register, flag ; copy shared variable flag to

; register and set flag to 1

cmp register, #0 ; was flag 0?

jnz enter ; if not 0, lock was set, try again

ret ; critical region entered

leave: move flag, #0 ; clear lock by storing 0 in flag

ret ; critical region left

• Spin-locks cause the processor to spin while waiting for the lock (busy waiting)

• They are sometimes used to synchronize shared-memory multi-processor cores

• They require atomic test-and-set machine instructions on shared memory cells

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 86 / 373

Spin-Locks Critique

• Busy waiting wastes processor cycles

• Busy waiting can lead to priority inversion:
• Consider processes with high and low priority
• Processes with high priority are preferred over processes with lower priority by the

scheduler
• Once a low priority process enters a critical section, processes with high priority will

be slowed down more or less to the low priority
• Depending on the scheduler, complete starvation is possible

• Goal: Find alternatives that do not require busy waiting

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 87 / 373

Section 12: Semaphores

10 Race Conditions and Critical Sections

11 Synchronization Mechanisms

12 Semaphores

13 Critical Regions, Condition Variables, Messages

14 Synchronization Pattern

15 Synchronization in C

16 Synchronization in Java and Go

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 88 / 373

Semaphores

Definition (semaphore)

A semaphore is a protected integer variable, which can only be manipulated by the
atomic operations up() and down():

down(s) {

s = s - 1;

if (s < 0) queue_this_process_and_block();

}

up(s) {

s = s + 1;

if (s <= 0) dequeue_and_wakeup_a_process();

}

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 89 / 373

Critical Sections with Semaphores

semaphore mutex = 1;

uncritical_section(); uncritical_section();

down(&mutex); down(&mutex);

critical_section(); critical_section();

up(&mutex); up(&mutex);

uncritical_section(); uncritical_section();

• Rule of thumb: Every access to a shared data object must be protected by a mutex

semaphore for the shared data object as shown above

• However, some synchronization and coordination problems require more creative
usage of semaphores

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 90 / 373

Bounded-Buffer with Semaphores

const int N; shared int in = 0, out = 0, count = 0;

shared item_t buffer[N]; semaphore mutex = 1, empty = N, full = 0;

void producer() void consumer()

{ {

produce(&item); down(&full);

down(&empty); down(&mutex);

down(&mutex); item = buffer[out];

buffer[in] = item; out = (out + 1) % N;

in = (in + 1) % N; up(&mutex);

up(&mutex); up(&empty);

up(&full); consume(item);

} }

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 91 / 373

Readers / Writers Problem

• A data object is to be shared among several concurrent processes

• Multiple processes (the readers) should be able to read the shared data object
simultaneously

• Processes that modify the shared data object (the writers) may only do so if no
other process (reader or writer) accesses the shared data object

• Several variations exist, mainly distinguishing whether either reader or writers gain
preferred access

=⇒ Starvation can occur in many solutions and is not taken into account here

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 92 / 373

Readers / Writers with Semaphores

shared object data; shared int readcount = 0;

semaphore mutex = 1, writer = 1;

void reader() void writer()

{ {

down(&mutex); down(&writer);

if (++readcount == 1) down(&writer); write_shared_object(&data);

up(&mutex); up(&writer);

read_shared_object(&data); }

down(&mutex);

if (--readcount == 0) up(&writer);

up(&mutex);

}

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 93 / 373

Dining Philosophers

• Philosophers sitting on a round table
either think or eat

• Philosophers do not keep forks while
thinking

• A philosopher needs two forks (left and
right) to eat

• A philosopher can only pick up one
fork at a time

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 94 / 373

Dining Philosophers with Semaphores

const int N; /* number of philosophers */

shared int state[N]; /* thinking (default), hungry or eating */

semaphore mutex = 1; /* mutex semaphore to protect state */

semaphore s[N] = 0; /* semaphore for each philosopher */

void philosopher(int i) void test(int i)

{ {

while (true) { if (state[i] == hungry

think(i); && state[(i-1)%N] != eating

take_forks(i); && state[(i+1)%N] != eating) {

eat(i); state[i] = eating;

put_forks(i); up(&s[i]);

} }

} }

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 95 / 373

Dining Philosophers with Semaphores

void take_forks(int i) void put_forks(int i)

{ {

down(&mutex); down(&mutex);

state[i] = hungry; state[i] = thinking;

test(i); test((i-1)%N);

up(&mutex); test((i+1)%N);

down(&s[i]); up(&mutex);

} }

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 96 / 373

Binary Semaphores

• Binary semaphores are semaphores that only take the two values 0 and 1.
• Counting semaphores can be implemented by means of binary semaphores:

shared int c;

binary_semaphore mutex = 1, wait = 0, barrier = 1;

void down() void up()

{ {

down(&barrier); down(&mutex);

down(&mutex); c = c + 1;

c = c - 1; if (c <= 0) {

if (c < 0) { up(&wait);

up(&mutex); }

down(&wait); up(&mutex);

} else { }

up(&mutex);

}

up(&barrier);

}

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 97 / 373

Section 13: Critical Regions, Condition Variables, Messages

10 Race Conditions and Critical Sections

11 Synchronization Mechanisms

12 Semaphores

13 Critical Regions, Condition Variables, Messages

14 Synchronization Pattern

15 Synchronization in C

16 Synchronization in Java and Go

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 98 / 373

Critical Regions

shared struct buffer {

item_t pool[N]; int count; int in; int out;

}

region buffer when (count < N) region buffer when (count > 0)

{ {

pool[in] = item; item = pool[out];

in = (in + 1) % N; out = (out + 1) % N;

count = count + 1; count = count - 1;

} }

• Simple programming errors (omissions, permutations) with semaphores usually lead
to difficult to debug synchronization errors

• By introducing language constructs, the number of errors can be reduced

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 99 / 373

Monitors

• Idea: Encapsulate the shared data object and the synchronization access methods
into a monitor

• Processes can call the procedures provided by the monitor

• Processes can not access monitor internal data directly

• A monitor ensures that only one process is active in the monitor at every given
point in time

• Monitors are special programming language constructs

• Compilers generate proper synchronization code

• Monitors were developed well before object-oriented languages became popular

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 100 / 373

Condition Variables

• Condition variables are special monitor variables that can be used to solve more
complex coordination and synchronization problems

• Condition variables support the two operations wait() and signal():
• The wait() operation blocks the calling process on the condition variable c until

another process invokes signal() on c. Another process may enter the monitor
while a process is waiting to be signaled.

• The signal() operation unblocks a process waiting on the condition variable c.
The calling process must leave the monitor before the signaled process continues.

• Condition variables are not counters. A signal() on c is ignored if no processes is
waiting on c

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 101 / 373

Bounded-Buffer with Monitors

monitor BoundedBuffer

{

condition full, empty;

int count = 0;

item_t buffer[N];

void enter(item_t item) item_t remove()

{ {

if (count == N) wait(&full); if (count == 0) wait(&empty);

buffer[in] = item; item = buffer[out];

in = (in + 1) % N; out = (out + 1) % N;

count = count + 1; count = count - 1;

if (count == 1) signal(&empty); if (count == N-1) signal(&full);

} return item;

}

}

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 102 / 373

Messages

• Exchange of messages can be used for synchronization

• Two primitive operations:

send(destination, message)

recv(source, message)

• Blocking message systems block processes in these primitives if the peer is not
ready for a rendevous

• Storing message systems maintain messages in special mailboxes called message
queues. Processes only block if the remote mailbox is full during a send() or the
local mailbox is empty during a recv()

• Some programming languages (e.g., go) use message queues as the primary
abstraction for synchronization (e.g., go routines and channels)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 103 / 373

Messages

• Message systems support the synchronization of processes that do not have shared
memory

• Message systems can be implemented in user space and without special compiler
support

• Message systems usually require that
• messages are not lost during transmission
• messages are not duplicated during transmission
• addresses are unique
• processes do not send arbitrary messages to each other

• Message systems are often slower than shared memory mechanisms

• POSIX message queues provide synchronization between threads or processes

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 104 / 373

Bounded-Buffer with Messages

void init() { for (i = 0; i < N; i++) { send(&producer, &m); } }

void producer() void consumer()

{ {

produce(&item); recv(&producer, &m);

recv(&consumer, &m); unpack(&m, &item)

pack(&m, item); send(&producer, &m);

send(&consumer, &m) consume(item);

} }

• Messages are used as tokens which control the exchange of items

• Consumers initially generate and send a number of tokens to the producers

• Mailboxes are used as temporary storage space and must be large enough to hold
all tokens / messages

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 105 / 373

Equivalence of Mechanisms

• Are there synchronization problems which can be solved only with a subset of the
mechanisms?

• Or are all the mechanisms equivalent?

• Constructive proof technique:
• Two mechanisms A and B are equivalent if A can emulate B and B can emulate A
• In both proof directions, construct an emulation (does not have to be efficient - just

correct ;-)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 106 / 373

Section 14: Synchronization Pattern

10 Race Conditions and Critical Sections

11 Synchronization Mechanisms

12 Semaphores

13 Critical Regions, Condition Variables, Messages

14 Synchronization Pattern

15 Synchronization in C

16 Synchronization in Java and Go

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 107 / 373

Semaphore Pattern: Mutual Exclusion

A critical section may only be executed by a single thread.

semaphore_t s = 1;

thread()

{

/* do something */

down(&s);

/* critical section */

up(&s);

/* do something */

}

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 108 / 373

Semaphore Pattern: Multiplex

A section may be executed concurrently with a certain fixed limit of N concurrent
threads. (This is a generalization of the mutual exclusion pattern, which is essentially
multiplex with N = 1.)

semaphore_t s = N;

thread()

{

/* do something */

down(&s);

/* multiplex section */

up(&s);

/* do something */

}

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 109 / 373

Semaphore Pattern: Signaling

A thread waits until some other thread signals a certain condition.

semaphore_t s = 0;

waiting_thread() signaling_thread()

{ {

/* do something */ /* do something */

down(&s); up(&s);

/* do something */ /* do something */

} }

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 110 / 373

Semaphore Pattern: Rendezvous

Two threads wait until they both have reached a certain state (the rendezvous point)
and afterwards they proceed independently again. (This can be seen as using the
signaling pattern twice.)

semaphore_t s1 = 0, s2 = 0;

thread_A() thread_B()

{ {

/* do something */ /* do something */

up(&s2); up(&s1);

down(&s1); down(&s2);

/* do something */ /* do something */

}

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 111 / 373

Semaphore Pattern: Simple Barrier

A barrier requires that all threads reach the barrier before they can proceed.
(Generalization of the rendevous pattern to N threads.)

shared int count = 0;

semaphore_t mutex = 1, turnstile = 0;

thread()

{

/* do something */

down(&mutex);

count++;

if (count == N) {

for (int j = 0; j < N; j++) {

up(&turnstile); /* let N threads pass through the turnstile */

}

count = 0;

}

up(&mutex);

down(&turnstile); /* block until opened by the Nth thread */

/* do something */

}

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 112 / 373

Semaphore Pattern: Double Barrier

This solution allows threads to do something while passing through the barrier, which is
sometimes needed.

shared int count = 0;

semaphore_t mutex = 1, turnstile1 = 0, turnstile2 = 1;

{

/* do something */

down(&mutex);

count++;

if (count == N) {

down(&turnstile2); /* close turnstile2 (which was left open) */

up(&turnstile1); /* open turnstile1 for one thread */

}

up(&mutex);

down(&turnstile1); /* block until opened by the last thread */

up(&turnstile1); /* every thread lets another thread pass */

/* do something controlled by a barrier */

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 113 / 373

Semaphore Pattern: Double Barrier (cont.)

/* do something controlled by a barrier */

down(&mutex);

count--;

if (count == 0) {

down(&turnstile1); /* close turnstile1 again */

up(&turnstile2); /* open turnstile2 for one thread */

}

up(&mutex);

down(&turnstile2); /* block until opened by the last thread */

up(&turnstile2); /* every thread lets another thread pass */

/* (turnstile2 is left open) */

/* do something */

}

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 114 / 373

Section 15: Synchronization in C

10 Race Conditions and Critical Sections

11 Synchronization Mechanisms

12 Semaphores

13 Critical Regions, Condition Variables, Messages

14 Synchronization Pattern

15 Synchronization in C

16 Synchronization in Java and Go

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 115 / 373

POSIX Mutex Locks

#include <pthread.h>

typedef ... pthread_mutex_t;

typedef ... pthread_mutexattr_t;

int pthread_mutex_init(pthread_mutex_t *mutex, pthread_mutexattr_t *mutexattr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_timedlock(pthread_mutex_t *mutex, struct timespec *abstime);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 116 / 373

POSIX Condition Variables

#include <pthread.h>

typedef ... pthread_cond_t;

typedef ... pthread_condattr_t;

int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *condattr);

int pthread_cond_destroy(pthread_cond_t *cond);

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,

struct timespec *abstime);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 117 / 373

POSIX Read-Write Locks

#include <pthread.h>

typedef ... pthread_rwlock_t;

typedef ... pthread_rwlockattr_t;

int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,

const pthread_rwlockattr_t *attr);

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_timedrdlock(pthread_rwlock_t *rwlock, struct timespec *atime);

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_timedwrlock(pthread_rwlock_t *rwlock, struct timespec *atime);

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 118 / 373

POSIX Barriers

#include <pthread.h>

typedef ... pthread_barrier_t;

typedef ... pthread_barrierattr_t;

int pthread_barrier_init(pthread_barrier_t *barrier,

pthread_barrierattr_t *barrierattr,

unsigned count);

int pthread_barrier_destroy(pthread_barrier_t *barrier);

int pthread_barrier_wait(pthread_barrier_t *barrier);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 119 / 373

POSIX Semaphores

#include <semaphore.h>

typedef ... sem_t;

int sem_init(sem_t *sem, int pshared, unsigned int value);

int sem_destroy(sem_t *sem);

int sem_wait(sem_t *sem);

int sem_trywait(sem_t *sem);

int sem_post(sem_t *sem);

int sem_getvalue(sem_t *sem, int *sval);

sem_t* sem_open(const char *name, int oflag);

sem_t* sem_open(const char *name, int oflag, mode_t mode, unsigned int value);

int int sem_close(sem_t *sem);

int sem_unlink(const char *name);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 120 / 373

POSIX Message Queues

#include <mqueue.h>

typedef ... mqd_t;

mqd_t mq_open(const char *name, int oflag);

mqd_t mq_open(const char *name, int oflag, mode_t mode, struct mq_attr *attr);

int mq_getattr(mqd_t mqdes, struct mq_attr *attr);

int mq_setattr(mqd_t mqdes, const struct mq_attr *newattr, struct mq_attr *oldattr);

int mq_close(mqd_t mqdes);

int mq_unlink(const char *name);

• Message queues can be used to exchange messages between threads and processes
running on the same system efficiently

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 121 / 373

POSIX Message Queues

#include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr, size_t msg_len,

unsigned int msg_prio);

int mq_timedsend(mqd_t mqdes, const char *msg_ptr, size_t msg_len,

unsigned int msg_prio, const struct timespec *atimeout);

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len,

unsigned int *msg_prio);

ssize_t mq_timedreceive(mqd_t mqdes, char *msg_ptr, size_t msg_len,

unsigned int *msg_prio, const struct timespec *atimeout);

int mq_notify(mqd_t mqdes, const struct sigevent *sevp);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 122 / 373

Atomic Operations in the Linux Kernel

struct ... atomic_t;

int atomic_read(atomic_t *v);

void atomic_set(atomic_t *v, int i);

void atomic_add(int i, atomic_t *v);

void atomic_sub(int i, atomic_t *v);

void atomic_inc(atomic_t *v);

void atomic_dec(atomic_t *v);

int atomic_add_negative(int i, atomic_t *v);

int atomic_sub_and_test(int i, atomic_t *v);

int atomic_inc_and_test(atomic_t *v)

int atomic_dec_and_test(atomic_t *v);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 123 / 373

Atomic Operations in the Linux Kernel

void set_bit(int nr, unsigned long *addr);

void clear_bit(int nr, unsigned long *addr);

void change_bit(int nr, unsigned long *addr);

int test_and_set_bit(int nr, unsigned long *addr);

int test_and_clear_bit(int nr, unsigned long *addr);

int test_and_change_bit(int nr, unsigned long *addr);

int test_bit(int nr, unsigned long *addr);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 124 / 373

Spin Locks in the Linux Kernel

typedef ... spinlock_t;

void spin_lock_init(spinlock_t *l);

void spin_lock(spinlock_t *l);

void spin_unlock(spinlock_t *l);

void spin_unlock_wait(spinlock_t *l);

int spin_trylock(spinlock_t *l)

int spin_is_locked(spinlock_t *l);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 125 / 373

Read-Write Locks in the Linux Kernel

typedef ... rwlock_t;

void rwlock_init(rwlock_t *rw);

void read_lock(rwlock_t *rw);

void read_unlock(rwlock_t *rw);

void write_lock(rwlock_t *rw);

void write_unlock(rwlock_t *rw);

int write_trylock(rwlock_t *rw);

int rwlock_is_locked(rwlock_t *rw);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 126 / 373

Semaphores in the Linux Kernel

struct ... semaphore;

void sema_init(struct semaphore *sem, int val);

void init_MUTEX(struct semaphore *sem);

void init_MUTEX_LOCKED(struct semaphore *sem);

void down(struct semaphore *sem);

int down_interruptible(struct semaphore *sem);

int down_trylock(struct semaphore *sem);

void up(struct semaphore *sem);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 127 / 373

Section 16: Synchronization in Java and Go

10 Race Conditions and Critical Sections

11 Synchronization Mechanisms

12 Semaphores

13 Critical Regions, Condition Variables, Messages

14 Synchronization Pattern

15 Synchronization in C

16 Synchronization in Java and Go

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 128 / 373

Synchronization in Java

• Java supports mutual exclusion of code blocks by declaring them synchronized:

synchronized(expr) {

// ’expr’ must evaluate to an Object

}

• Java supports mutual exclusion of critical sections of an object by marking methods
as synchronized, which is in fact just syntactic sugar:

synchronized void foo() { /* body */ }

void foo() { synchronized(this) { /* body */ } }

• Additional wait(), notify() and notifyAll() methods can be used to
coordinate critical sections

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 129 / 373

Synchronization in Go

• Light-weight “goroutines” that are mapped to an operating system level thread
pool

• Channels provide message queues between goroutines

• Philosophy: Do not communicate by sharing memory; instead, share memory by
communicating

• Inspired by Hoare’s work on Communicating Sequential Processes (CSP)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 130 / 373

Part 5: Deadlocks

17 Deadlocks

18 Resource Allocation Graphs

19 Deadlock Strategies

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 131 / 373

Section 17: Deadlocks

17 Deadlocks

18 Resource Allocation Graphs

19 Deadlock Strategies

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 132 / 373

Deadlocks

semaphore s1 = 1, s2 = 1;

void p1() void p2()

{ {

down(&s1); down(&s2);

down(&s2); down(&s1);

critical_section(); critical_section();

up(&s2); up(&s1);

up(&s1); up(&s2);

} }

• Executing the functions p1 and p2 concurrently can result in a deadlock when both
processes have executed the first down() operation

• Deadlocks also occur if processes do not release semaphores/locks

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 133 / 373

Deadlocks

class A class B

{ {

public synchronized a1(B b) public synchronized b1(A a)

{ {

b.b2(); a.a2();

} }

public synchronized a2(B b) public synchronized b2(A a)

{ {

} }

} }

• Deadlocks can also be created by careless use of higher-level synchronization
mechanisms

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 134 / 373

Necessary Deadlock Conditions

Definition (necessary deadlock conditions)

A deadlock on a resource can arise if and only if all of the following conditions hold
simultaneously:

• Mutual exclusion:
Resources cannot be used simultaneously by several processes

• Hold and wait:
Processes apply for a resource while holding another resource

• No preemption:
Resources cannot be preempted, only the process itself can release resources

• Circular wait:
A circular list of processes exists where every process waits for the release of a
resource held by the next process

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 135 / 373

Section 18: Resource Allocation Graphs

17 Deadlocks

18 Resource Allocation Graphs

19 Deadlock Strategies

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 136 / 373

Resource-Allocation Graph (RAG)

Definition (resource-allocation graph)

A resource-allocation graph is a directed graph RAG = (V ,E). The vertices V are
partitioned into a set of processes Pi , a set of resource types Ti , and a set of resource
instances Ri . Resource instances belong to a resource type. The set of edges E is
partitioned into a set of resource assignments Ea, a set of resource requests Er , and a
set of future resource claims Ec .

• A directed edge e ∈ Ea from a resource instance Ri to a process Pi indicates that
the instance Ri has been assigned to Pi .

• A directed edge e ∈ Er from a process Pi to a resource type Ti indicates that Pi is
requesting a resource of type Ti .

• A directed edge e ∈ Ec from a process Pi to a resource type Ti indicates that Pi

will be requesting a resource of type Ti in the future.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 137 / 373

Resource-Allocation Graph (RAG)

T4

P1 P3P2

T3T1

T2

RAG = {V ,E}
V = P ∪ T ∪ R

E = Ea ∪ Er ∪ Ec

P = {P1,P2, . . . ,Pn}
T = {T1,T2, . . . ,Tm}
R = {R1,R2, . . . ,Rm}
Ea = {Rj → Pi}
Er = {Pi → Tj}
Ec = {Pi → Tj}

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 138 / 373

RAG Properties

• Properties of a Resource-Allocation Graph:
• A cycle in the RAG is a necessary condition for a deadlock
• If each resource type has exactly one instance, then a cycle is also a sufficient

condition for a deadlock
• If resource types have multiple instances, then a cycle is not a sufficient condition

for a deadlock

• Dashed claim arrows (Ec) can express that a future claim for an instance of a
resource is already known

• Information about future claims can help to avoid situations which can lead to
deadlocks

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 139 / 373

RAG Example #1

T4

P1 P3P2

T3T1

T2

• Cycle 1:
P1 → T1 → P2 → T3 →
P3 → T2 → P1

• Cycle 2:
P2 → T3 → P3 → T2 → P2

• {P1,P2,P3} are deadlocked

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 140 / 373

RAG Example #2

T1

P1 P3

P2

P4T2

• Cycle:
P1 → T1 → P3 → T2 → P1

• {P1,P3} are not deadlocked

• P4 may break the cycle by
releasing its instance of T2

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 141 / 373

RAG Example #3

T3

P1 P2 P3

T2

T1

• P2 and P3 both request T3

• To which process should the
resource be assigned?

• Assigning an instance of T3 to
P2 avoids a future deadlock

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 142 / 373

Section 19: Deadlock Strategies

17 Deadlocks

18 Resource Allocation Graphs

19 Deadlock Strategies

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 143 / 373

Deadlock Strategies

• Prevention:
The system is designed such that deadlocks can never occur

• Avoidance:
The system assigns resources so that deadlocks are avoided

• Detection and recovery :
The system detects deadlocks and recovers itself

• Ignorance:
The system does not care about deadlocks and the user has to take corrective
actions

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 144 / 373

Deadlock Prevention

• Idea: Ensure that at least one of the necessary conditions cannot hold

1. Prevent mutual exclusion:
Some resources are intrinsically non-sharable

2. Prevent hold and wait:
Low resource utilization and starvation possible

3. Prevent no preemption:
Preemption can not be applied to some resources such as printers or tape drives

4. Prevent circular wait:
Leads to low resource utilization and starvation if the imposed order does not match
process requirements

• Deadlock prevention is only feasible in special cases

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 145 / 373

Deadlock Avoidance

Definition (safe state)

A resource allocation state is safe if the system can allocate resources to each process
(up to its claimed maximum) and still avoid a deadlock.

Definition (unsafe state)

A resource allocation state is unsafe if the system cannot prevent processes from
requesting resources such that a deadlock can occur.

• Note: An unsafe state does not necessarily lead to a deadlock.

• Assumption: For every process, the maximum resource claims are known a priori.

• Idea: Only grant resource requests that can not lead to a deadlock situation.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 146 / 373

Banker’s Algorithm Notation

Symbol Description Name

n ∈ N number of processes
m ∈ N number of resource types
t ∈ Nm total number of resource instances total
a ∈ Nm number of available resource instances avail
M ∈ Nn×m mi ,j maximum claim of type j by process i max
A ∈ Nn×m ai ,j resources of type j allocated to process i alloc
N ∈ Nn×m ni ,j maximum needed resources of type j by process i need
R set of processes that can get their needed resources ready

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 147 / 373

Safe-State Algorithm

1: function isSafe(total ,max , alloc)
2: loop
3: need ← max − alloc ▷ Needed resources
4: avail ← total − colsum(alloc) ▷ Currently available resources
5: ready ← filter(need , avail) ▷ Processes that can get their resources
6: if ready ≡ ∅ then
7: return (alloc ≡ ∅) ▷ Safe if alloc is empty
8: end if
9: proc ← select(ready) ▷ Select a process that is ready
10: alloc ← remove(alloc, proc) ▷ Remove process from alloc
11: max ← remove(max , proc) ▷ Remove process from max
12: end loop
13: end function

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 148 / 373

Resource-Request Algorithm

1: function resquestResources(total ,max , alloc, request)
2: need ← max − alloc ▷ Needed resources
3: avail ← total − colsum(alloc) ▷ Currently available resources
4: if request > need then
5: error illegal ▷ Request exceeds available resources
6: end if
7: if request ≤ avail then
8: alloc ′ ← alloc + request ▷ Pretend to grant the request
9: if isSafe(total ,max , alloc ′) then ▷ Check whether the new state is safe
10: return True ▷ Grant the resource request since its safe
11: end if
12: end if
13: return False ▷ Request not granted at this point in time
14: end function

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 149 / 373

Deadlock Detection

• Idea:
• Assign resources without checking for unsafe states
• Periodically run an algorithm to detect deadlocks
• Once a deadlock has been detected, use an algorithm to recover from the deadlock

• Recovery:
• Abort one or more deadlocked processes
• Preempt resources until the deadlock cycle is broken

• Issues:
• Criterias for selecting a victim?
• How to avoid starvation?

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 150 / 373

Deadlock-Detection Algorithm

1: function isDeadlocked(total , need , alloc)
2: loop
3: avail ← total − colsum(alloc) ▷ Currently available resources
4: ready ← filter(need , avail) ▷ Processes that can get their resources
5: if ready ≡ ∅ then
6: return (alloc ̸≡ ∅) ▷ Deadlocked if alloc is not empty
7: end if
8: proc ← select(ready) ▷ Select a process that is ready
9: alloc ← remove(alloc, proc) ▷ Remove process from alloc
10: end loop
11: end function

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 151 / 373

Wait-For Graph (WFG)

Definition (wait-for graph)

A wait-for graph is a directed graph WFG = (V ,E). The vertices V represent processes
and an edge e = (Pi ,Pj) ∈ E indicates that process Pi is waiting for process Pj .

• A cycle in a wait-for graph indicates a deadlock

• Resource allocation graphs (RAGs), where every resource type has only a single
instance, can be easily transformed into wait-for graphs (WFGs)

• Constructing and maintaining WFG graphs is relatively expensive

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 152 / 373

Distributed Deadlock Detection

• Path-pushing algorithms detect distributed deadlocks by maintaining a global
WFG. Nodes push paths to a central deadlock detector or their neighbors.

• Edge-chasing algorithms verify the presence of a cycle in a distributed graph
structure by propagating special messages (called probes) along the edges of the
graph.

• Diffusion computation algorithms detect deadlocks by diffusing the computation via
an echo algorithm. They superimpose the detection on a distributed computation.

• Global state detection algorithms detect snapshots by analyzing a consistent
snapshot of a distributed system.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 153 / 373

Part 6: Scheduling

20 Scheduler

21 Scheduling Strategies

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 154 / 373

Section 20: Scheduler

20 Scheduler

21 Scheduling Strategies

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 155 / 373

Scheduler and CPU Scheduler

Definition (scheduler)

A scheduler (or a scheduling discipline) is an algorithm that distributes resources to
parties, which simultaneously and asynchronously request them.

Definition (cpu scheduler)

A CPU scheduler is a scheduler, which distributes CPU time to processes (or threads)
that are ready to execute.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 156 / 373

Scheduler Goals

Goal Description

Fairness Every process receives a fair amount of the resources available
Efficiency Keep resources busy whenever there are processes ready to run
Response Time Minimize the response time for interactive applications
Wait Time Minimize the time spend waiting instead of executing
Turnaround Time Minimize the time from process creation until termination
Throughput Maximize the number of processes completed over a time interval
Scalability Low overhead of the scheduler itself

• Some of these goals are conflicting, hence trade-off decisions must be taken
• Perfect is the enemy of the good
• Taking good (not perfect) scheduling decisions quickly is often the way to go

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 157 / 373

Fair-Share Scheduler

Definition (fair-share scheduler)

A fair-share scheduler is a scheduler that aims to distribute resources fairly between users
of a system as opposed to equal distribution among the parties requesting resources.

• Fair-share scheduling avoids that users “game the system” by splitting work over
many processes in order to obtain overall a higher CPU share than other users.

• Fair-share scheduling is also important for managing network resources since
otherwise users may start many concurrent network connections in order to obtain
a larger share of the available network bandwidth.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 158 / 373

Preemptive vs. Non-preemptive

Definition (preemptive scheduler)

A preemptive scheduler can interrupt a running process or thread and assign the
assigned resources (e.g., CPU time) to another process.

Definition (non-preemptive scheduler)

A non-preemptive scheduler waits for the process or thread to yield resources (e.g., the
CPU) once they have been assigned to the process or thread.

• Non-preemptive schedulers cannot guarantee fairness

• Preemptive schedulers are harder to design

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 159 / 373

Deterministic vs. Probabilistic

Definition (deterministic scheduler)

A deterministic scheduler knows the resource requests of the processes and threads and
optimizes the resource assignment to optimize system behavior (e.g., maximize
throughput).

Definition (probabilistic scheduler)

A probabilistic scheduler describes process and thread behavior using certain probability
distributions (e.g., process arrival rate distribution, service time distribution) and
optimizes the overall system behavior based on these probabilistic assumptions.

• Deterministic schedulers are relatively easy to analyze

• Probabilistic schedulers must be analyzed using stochastic models (queuing models)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 160 / 373

Metrics of a Schedule

Metric Description

ai Arrival time of process i
ei End time or completion time of process i
ti Turnaround time of process i , obviously ti = ei − ai
ci Compute or execution time of process i
wi Waiting time of pocess i , obviously wi = ti − ci

t̄ Average turnaround time, t̄ = 1
n

∑
i ti

w̄ Average waiting time, w̄ = 1
n

∑
i wi

L Length of a schedule, obviously L = maxi ei

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 161 / 373

Deterministic Scheduling

• A deterministic schedule S for a set of processors P = {P1,P2, . . . ,Pm} and a set
of tasks T = {T1,T2, . . . ,Tn} with the execution times c = {c1, c2, . . . cn} and a
set D of dependencies between tasks is a temporal assignment of the tasks to the
processors.

• A precedence graph G = (T ,E) is a directed acyclic graph which defines
dependencies between tasks. The vertices of the graph are the tasks T . An edge
from Ti to Tj indicates that task Tj may not be started before task Ti is complete.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 162 / 373

Deterministic Scheduling Example

T1
[c1 = 1]

T3
[c3 = 2]

T2
[c2 = 2]

T5
[c5 = 2]

T4
[c4 = 1]

T6
[c6 = 3]

T = {T1,T2,T3,T4,T5,T6}
n = 6

c = (c1, c2, c3, c4, c5, c5) = (1, 2, 2, 1, 2, 3)

G = (T ,E)

E = {(T1,T3), (T2,T3), (T3,T5),

(T4,T5), (T4,T6)}
P = {P1,P2}
m = 2

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 163 / 373

Gantt Diagrams

T3

1 2 3 4 5 6 0 1 2 3 4 5 6

T4

T1 T2

T6

T3

T5

P1

P2

0 1 2 3 4 5 6

P2

P1 T4 T5T3T1

T2 T6

T1

T5

P1

P2

P3 T4

T2

T6

0

• Both schedules for m = 2 processors have the same length and the same average
turnaround and waiting times.

• The schedule for m = 3 processors has the same length but different average
turnaround and waiting times.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 164 / 373

Section 21: Scheduling Strategies

20 Scheduler

21 Scheduling Strategies

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 165 / 373

First-Come, First-Served (FCFS)

• Assumptions:
• No preemption of running processes
• Arrival times of processes are known

• Principle:
• Processors are assigned to processes on a first come first served basis (under

observation of any precedences)

• Properties:
• Straightforward to implement
• Average waiting time can become quite large

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 166 / 373

Longest Processing Time First (LPTF)

• Assumptions:
• No preemption of running processes
• Execution times of processes are known

• Principle:
• Processors are assigned to processes with the longest execution time first
• Shorter processes are kept to fill “gaps” later

• Properties:
• LPTF schedules are good approximations for optimal schedules in respect to the

schedule length. For the length LL of an LPTF schedule and the length LO of an
optimal schedule with m processors, the following holds:

LL ≤
(
4

3
− 1

3m

)
· LO

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 167 / 373

Shortest Processing Time First (SPTF)

• Assumptions:
• No preemption of running processes
• Execution times of processes are known

• Principle:
• Processors are assigned to processes with the shortest execution time first

• Properties:
• The SPTF algorithm produces schedules with the minimum average waiting time

for a given set of processes and non-preemptive scheduling
• Also known as Shortst Job First (SJF)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 168 / 373

Shortest Remaining Time First (SRTF)

• Assumptions:
• Preemption of running processes
• Execution times of the processes are known

• Principle:
• Processors are assigned to processes with the shortest remaining execution time first
• New arriving processes with a shorter execution time than the currently running

processes will preempt running processes

• Properties:
• The SRTF algorithm produces schedules with the minimum average waiting time

for a given set of processes and preemptive scheduling

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 169 / 373

Round Robin (RR)

• Assumptions:
• Preemption of running processes
• Execution times or the processes are unknown

• Principle:
• Processes are assigned to processors using a FCFS queue
• After a small unit of time (time slice), the running processes are preempted and

added to the end of the FCFS queue

• Properties:
• time slice →∞: FCFS scheduling
• time slice → 0: processor sharing (idealistic)
• Choosing a “good” time slice is important

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 170 / 373

Round Robin Variations

• Use separate queues for each processor
• keep processes assigned to the same processor

• Use a short-term queue and a long-term queue
• limit the number of processes that compete for the processor on a short time period

• Different time slices for different types of processes
• degrade impact of processor-bound processes on interactive processes

• Adapt time slices dynamically
• can improve response time for interactive processes

=⇒ Tradeoff between responsiveness and throughput

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 171 / 373

Multilevel Queue Scheduling

• Principle:
• Multiple queues for processes with different priorities
• Processes are permanently assigned to a queue
• Each queue has its own scheduling algorithm
• Additional scheduling between the queues necessary

• Properties:
• Overall queue scheduling important (static vs. dynamic partitioning)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 172 / 373

Multilevel Feedback Queue Scheduling

• Principle:
• Multiple queues for processes with different priorities
• Processes can move between queues
• Each queue has its own scheduling algorithm

• Properties:
• Very general and configurable scheduling algorithm
• Queue up/down grade critical for overall performance

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 173 / 373

Real-time Scheduling

• Hard real-time systems must complete a critical task within a guaranteed amount
of time
• Scheduler needs to know exactly how long each operating system function takes to

execute
• Processes are only admitted if the completion of the process in time can be

guaranteed

• Soft real-time systems require that critical tasks always receive priority over less
critical tasks
• Priority inversion can occur if high priority soft real-time processes have to wait for

lower priority processes in the kernel
• One solution is to give processes a high priority until they are done with the

resource needed by the high priority process (priority inheritance)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 174 / 373

Earliest Deadline First (EDF)

• Assumptions:
• Deadlines for the real-time processes are known
• Execution times of operating system functions are known

• Principle:
• The process with the earliest deadline is always executed first

• Properties:
• Scheduling algorithm for hard real-time systems
• Can be implemented by assigning the highest priority to the process with the first

deadline
• If processes have the same deadline, other criterias can be considered to schedule

the processes

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 175 / 373

Linux Scheduler System Calls

#include <unistd.h>

int nice(int inc);

#include <sched.h>

int sched_setscheduler(pid_t pid, int policy, const struct sched_param *p);

int sched_getscheduler(pid_t pid);

int sched_setparam(pid_t pid, const struct sched_param *p);

int sched_getparam(pid_t pid, struct sched_param *p);

int sched_get_priority_max(int policy);

int sched_get_priority_min(int policy);

int sched_rr_get_interval(pid_t pid, struct timespec *tp);

int sched_setaffinity(pid_t pid, unsigned int len, unsigned long *mask);

int sched_getaffinity(pid_t pid, unsigned int len, unsigned long *mask);

int sched_yield(void);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 176 / 373

Part 7: Linking

22 Linker

23 Libraries

24 Interpositioning

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 177 / 373

Section 22: Linker

22 Linker

23 Libraries

24 Interpositioning

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 178 / 373

Stages of the C Compilation Process

source code -> cpp -> expanded code (gcc -E hello.c)

v

.------------------------’

v

expanded code -> cc -> assembler code (gcc -S hello.c)

v

.------------------------’

v

assembler code -> as -> object code (gcc -c hello.c)

v

.------------------------’

v

object code -> ld -> executable (gcc hello.c)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 179 / 373

Reasons for using a Linker

• Modularity
• Programs can be we written as a collection of small files
• Creating collections of easily reusable functions

• Efficiency
• Separate compilation of a subset of small files saves time on large projects
• Smaller executables by linking only functions that are actually used

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 180 / 373

What does a Linker do?

• Symbol resolution
• Programs define and reference symbols (variables or functions)
• Symbol definitions and references are stored in object files
• Linker associate each symbol reference with exactly one symbol definition

• Relocation
• Merge separate code and data sections into combined sections
• Relocate symbols from relative locations to their final absolute locations
• Update all references to these symbols to reflect their new positions

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 181 / 373

Object Code File Types

• Relocatable object files (.o files)
• Contains code and data in a form that can be combined with other relocatable

object files

• Executable object files
• Contains code and data in a form that can be loaded directly into memory

• Shared object files (.so files)
• Special type of relocatable object file that can be loaded into memory and linked

dynamically at either executable load time or at run-time

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 182 / 373

Executable and Linkable Format

• Standard unified binary format for all object files

• ELF header provides basic information (word size, endianess, machine architecture,
structure of the ELF file, . . .)

• Program header table describes zero or more segments used at runtime

• Section header table provides information about zero or more sections

• Separate sections for .text, .rodata, .data, .bss, .symtab, .rel.text,
.rel.data, .debug and many more

• The readelf tool can be used to read ELF format

• The tool objdump can process ELF formatted object files

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 183 / 373

Linker Symbols

• Global symbols
• Symbols defined by a module that can be referenced by other modules

• External symbols
• Global symbols that are referenced by a module but defined by some other module

• Local symbols
• Symbols that are defined and referenced exclusively by a single module

• Tools:
• The tool nm displays the (symbol table) of object files in a traditional format
• The newer tool objdump -t does the same for ELF object files

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 184 / 373

Strong and Weak Symbols and Linker Rules

• Strong Symbols
• Functions and initialized global variables

• Weak Symbols
• Uninitialized global variables

• Linker Rule #1
• Multiple strong symbols with the same name are not allowed

• Linker Rule #2
• Given a strong symbol and multiple weak symbols with the same name, choose the

strong symbol

• Linker Rule #3
• If there are multiple weak symbols with the same name, pick an arbitrary one

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 185 / 373

Linker Puzzles

• Link time error due to two definitions of p1:

a.c: int x; p1() {}

b.c: p1() {}

• Reference to the same uninitialized variable x:

a.c: int x; p1() {}

b.c: int x; p2() {}

• Reference to the same initialized variable x:

a.c: int x=1; p1() {}

b.c: int x; p2() {}

• Writes to the double x likely overwrites y:

a.c: int x; int y; p1() {}

b.c: double x; p2() {}

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 186 / 373

Section 23: Libraries

22 Linker

23 Libraries

24 Interpositioning

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 187 / 373

Static Libraries

• Collect related relocatable object files into a single file with an index (called an
archive)

• Enhance the linker so that it tries to resolve external references by looking for
symbols in one more more archives

• If an archive member file resolves a reference, link the archive member file into the
executable (which may produce additional references)

• The archive format allows for incremental updates

• Example:

ar -rs libfoo.a foo.o bar.o

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 188 / 373

Shared Libraries

• Idea: Delay the linking until program start and then link against the most recent
matching versions of the required libraries

• At traditional link time, an executable file is prepared for dynamic linking (i.e.,
information is stored indicating which shared libraries are needed) while the final
linking takes place when an executable is loaded into memory

• Benefits:

1. Smaller executables since common code is not copied into executables
2. Shared libraries can be updated without relinking all executables
3. Library machine code and data can be stored in shared memory
4. Programs can load additional object code dynamically at runtime

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 189 / 373

Dynamic Linking Loader API

#include <dlfcn.h>

#define ... RTLD_LAZY /* resolve symbols lazily when needed */

#define ... RTLD_NOW /* resolve all symbols at load time */

#define ... RTLD_GLOBAL /* make symbols globally available */

#define ... RTLD_LOCAL /* keel symbols local to the library */

void *dlopen(const char *filename, int flag);

char *dlerror(void);

void *dlsym(void *handle, const char *symbol);

int dlclose(void *handle);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 190 / 373

Section 24: Interpositioning

22 Linker

23 Libraries

24 Interpositioning

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 191 / 373

Interpositioning

• Intercepting library calls can be useful for many reasons
• Debugging : tracing memory allocations / leaks
• Profiling : study typical function arguments
• Sandboxing : emulate a restricted view on a file system
• Hardening : simulate failures to test program robustness
• Privacy : add encryption into I/O calls
• Hacking : give a program an illusion to run in a different context
• Spying : oops

• Library call interpositioning can be done at compile-time, link-time and load-time.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 192 / 373

Compile-time Interpositioning

• Change symbols at compile time so that library calls can be intercepted

• Typically done in C using #define pre-processor substitutions, sometimes
contained in special header files

• This technique is restricted to situations where source code is available

• Example:

#define malloc(size) dbg_malloc(size, __FILE__, __LINE__)

#define free(ptr) dbg_free(ptr, __FILE__, __LINE__)

void *dbg_malloc(size_t size, char *file, int line);

void dbg_free(void *ptr, char *file, int line);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 193 / 373

Link-time Interpositioning

• Tell the linker to change the way symbols are matched

• The GNU linker supports the option --wrap=symbol, which causes references to
symbol to be resolved to wrap symbol while the real symbol remains accessible
as real symbol.

• The GNU compiler allows to pass linker options using the -Wl option.

• Example:

/* gcc -Wl,--wrap=malloc -Wl,--wrap=free */

void * __wrap_malloc (size_t c)

{

printf("malloc called with %zu\n", c);

return __real_malloc (c);

}

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 194 / 373

Load-time Interpositioning

• The dynamic linker can be used to pre-load shared libraries

• This may be controlled by setting the LD PRELOAD (Linux) or
DYLD INSERT LIBRARIES (MacOS) environment variable

• Example:

LD_PRELOAD=./libmymalloc.so vim

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 195 / 373

POSIX API (dlopen, dlclose, dlsym, dlerror)

#include <dlfcn.h>

#define RTLD_LAZY ... /* resolve symbols lazyly */

#define RTLD_NOW ... /* resolve symbols now */

#define RTLD_GLOBAL ... /* enable global symbol resolution */

#define RTLD_LOCAL ... /* enable local symbol resolution */

void *dlopen(const char *filename, int flags);

int dlclose(void *handle);

#define RTLD_DEFAULT ... /* find first occurance of symbol */

#define RTLD_NEXT ... /* fin next occurance of symbol */

void *dlsym(void *handle, const char *symbol);

char *dlerror(void); /* obtain human readable error string */

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 196 / 373

Part 8: Memory

25 Translation of Memory Addresses

26 Segmentation

27 Paging

28 Virtual Memory

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 197 / 373

Section 25: Translation of Memory Addresses

25 Translation of Memory Addresses

26 Segmentation

27 Paging

28 Virtual Memory

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 198 / 373

Memory Sizes and Access Times

> 128 GiB Disks (SSD or HDD)

Main Memory

Level 2 Cache

Level 1 Cache

~ 1 MiB

~ 128 KiB

< 1 KiB

~ 1−4 ms

~ 8 ns

~ 4 ns

~ 1−2 ns

< 1 ns

Memory Size Access Time

CPU Registers

> 1 GiB

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 199 / 373

Main Memory

• Properties:
• An ordered set of words or bytes
• Each word or byte is accessible via a unique address
• CPUs and I/O devices access the main memory
• Running programs are (at least partially) loaded into main memory
• CPUs usually can only access data in main memory directly

(everything goes through main memory)

• Memory management of an operating system
• allocates and releases memory regions
• decides which process is loaded into main memory
• controls and supervises main memory usage

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 200 / 373

Translation of Memory Addresses

source code object modulecompiler

symbolic names absolute/relative addresses

• Compiler translates variable / function names into absolute or relative addresses

libraries

static/dynamic

object modules executable

static/dynamic

linker

relative addresses

• Linker binds multiple object modules and libraries into an executable

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 201 / 373

Translation of Memory Addresses

executable address space

dynamic

runtime linker

libraries

shared / dynamic

logical / physical

• Runtime linker loads dynamic (shared) libraries at program startup time

address spacemapping

logical physical

address space

• Memory management unit maps logical addresses to physical addresses

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 202 / 373

Memory Management Tasks

• Dynamic memory allocation for processes

• Creation and maintenance of memory regions shared by multiple processes (shared
memory)

• Protection against erroneous / unauthorized access

• Mapping of logical addresses to physical addresses

processor
logical address

relocation

register

+
physical address

main

memory

memory management unit

346 14346

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 203 / 373

Memory Partitioning

operating system
(RAM)

operating system
(ROM)

device driver
(ROM)

operating system
(RAM)

operating system
(RAM)

user
programs

user
programs

user
programs

partition 1

partition 2

partition 3

0x00

0xff..

• Memory space is often divided into several regions or partitions, some of them
serve special purposes

• Multiple processes can be held in memory (as long as they fit)

• Partitioning is not very flexible (but may be good enough for embedded systems)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 204 / 373

Swapping Principle

operating system
(ROM)

user
programs

main memory secondary memory

P1

P2

• Address space of a process is moved to a big (but slow) secondary storage system

• Swapped-out processes should not be considered runable by the scheduler

• Often used to handle (temporary) memory shortages

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 205 / 373

Section 26: Segmentation

25 Translation of Memory Addresses

26 Segmentation

27 Paging

28 Virtual Memory

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 206 / 373

Segmentation Overview

segments

cpp/cc/as

b.c

a.c

m.c

cpp/cc/as

cpp/cc/as

libc.a

m.o

b.o

a.o

ld
m

text files ELF files / archives

ELF file
− text
− rodata
− data
− ...

memory

m: text

m: rodata

memory (pid x)

m: data

m: stack

logical physical

m, m’: text

m, m’: rodata

m: data

m: stack

m’: text

m’: rodata

m’: data

m’: stack

memory (pid y)

logical

m’: data

m’: stack

segments

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 207 / 373

Segmentation

• Main memory is partitioned by the operating system into memory segments of
variable length
• Different segments can have different access rights
• Segments may be shared between processes
• Segments may grow or shrink
• Applications may choose to only hold the currently required segments in memory

(sometimes called overlays)

• Addition and removal of segments will over time lead to small unusable holes
(external fragmentation)

• Positioning strategy for new segments influences efficiency and longer term behavior

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 208 / 373

External Fragmentation

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

400k

1000k

2000k

2300k

OS

P1

P3

200k

400k

1000k

2000k

2300k

OS

P1

P2

P3

200k

1000k

400k

1000k

2000k

2300k

OS

P1

P3

200k

1700k

300k

P4

400k

1000k

2000k

2300k

OS

600k

P3

200k

1700k

300k

P4

400k

1000k

2000k

2300k

OS

P3

200k

1700k

300k

P4

200k
800k

P5

• In the general case, there is more than one suitable hole to hold a new segment —
which one to choose?

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 209 / 373

Positioning Strategies ({best, worst, first, next} fit)

• best fit:
• Allocate the smallest hole that is big enough
• Large holes remain intact, many small holes

• worst fit:
• Allocate the largest hole
• Holes tend to become equal in size

• first fit:
• Allocate the first hole from the top that is big enough
• Simple and relatively efficient due to limited search

• next fit:
• Allocate the next big enough hole from where the previous next fit search ended
• Hole sizes are more evenly distributed

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 210 / 373

Positioning Strategies (buddy system)

• Segments and holes always have a size of 2i bytes (internal fragmentation)

• Holes are maintained in k lists such that holes of size 2i are maintained in list i

• Holes in list i can be efficiently merged to a hole of size 2i+1 managed by list i + 1

• Holes in list i can be efficiently split into two holes of size 2i−1 managed by list i − 1

• Buddy systems are fast because only small lists have to be searched

• Internal fragmentation can be costly

• Sometimes used by user-space memory allocators (malloc())

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 211 / 373

Buddy System Example

• Consider the processes A, B , C and D with the memory requests 70k , 35k , 80k
and 60k :

1024

512512

512

512

512

512

512

512

1024

256

256

256

128

128

128

128

128

128

128

128

128

64

64

64

A

B

C

A

D

B

D

C

64

A

A

A

BB

B

B

B

C

C

C

C

C

D

D

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 212 / 373

Segmentation Analysis

• fifty percent rule:
Let n be the number of segments and h the number of holes. For large n and h
and a system in equilibrium:

h ≈ n

2
• unused memory rule:
Let s be the average segment size and ks the average hole size for some k > 0.
With a total memory of m bytes, the fraction f of memory occupied by holes is:

f =
k

k + 2

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 213 / 373

Segmentation Analysis

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.5 1 1.5 2

F
ra
c
tio
n

 o
f
m
e
m
o
ry

 o
c
c
u
p
ie
d

 b
y
 h
o
le
s
 (
f)

Average hole size relative to the average segment size (k)

f(k)

Fraction of unsused memory as a function of the relative hole size

=⇒ As long as the average hole size is a significant fraction of the average segment
size, a substantial amount of memory will be wasted

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 214 / 373

Compaction

• Moving segments in memory allows to turn small holes into larger holes (and is
usually quite expensive)
• Finding a good compaction strategy is not easy

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

OS

P1

P2

0k

300k

500k
600k

1200k

2100k

OS

P1

P2

0k

300k

500k
600k

1200k

2100k

P3

P4

800k

1000k
P3

P4

OS

P1

P2

0k

300k

500k
600k

1500k

1900k

2100k

OS

400k

P1

P2

300k

P4

200k

0k

300k

500k
600k

1000k

1200k

1500k

1900k

2100k

P3

P4

P3

900k

900k900k

200k moved400k moved600k movedinitial stituation

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 215 / 373

Section 27: Paging

25 Translation of Memory Addresses

26 Segmentation

27 Paging

28 Virtual Memory

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 216 / 373

Paging Overview

frames

cpp/cc/as

b.c

a.c

m.c

cpp/cc/as

cpp/cc/as

libc.a

m.o

b.o

a.o

ld
m

text files ELF files / archives

ELF file
− text
− rodata
− data
− ...

m: text

m: rodata

memory (pid x)

m: data

m: stack

logical physical

m’: text

m’: rodata

m’: data

m’: stack

memory (pid y)

logical

memory

pages

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 217 / 373

Paging Idea

• General Idea:
• Physical memory is organized in frames of fixed size
• Logical memory is organized in pages of the same fixed size
• Page numbers are mapped to frame numbers using a (very fast) page table

mapping mechanism
• Pages of a logical address space can be scattered over the physical memory

• Motivation:
• Avoid external fragmentation and compaction
• Allow fixed size pages to be moved into / out of physical memory

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 218 / 373

Paging Model and Hardware

physical memory

f d

page table

f

p

dp

address
logical

physical
address

logical memory

frame

page

• A logical address is a tuple (p, d) where p is an index into the page table and d is
an offset within page p
• A physical address is a tuple (f , d) where f is the frame number and d is an offset
within frame f

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 219 / 373

Paging Properties

• Address translation must be very fast (in some cases, multiple translations are
necessary for a single machine instruction)

• Page tables can become quite large (a 32 bit address space with a page size of
4096 bytes requires a page table with 1 million entries)

• Additional information in the page table:
• Protection bits (read/write/execute)
• Dirty bit (set if page was modified)

• Not all pages of a logical address space must be resident in physical memory to
execute the process

• Access to pages not in physical memory causes a page fault which must be handled
by the operating system

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 220 / 373

Handling Page Faults

1. MMU detects a page fault and raises an interrupt

2. Operating system saves the registers of the process

3. Mark the process blocked (waiting for page)

4. Determination of the address causing the page fault

5. Verify that the logical address usage is valid

6. Select a free frame (or a used frame if no free frame)

7. Write used frame to secondary storage (if modified)

8. Load page from secondary storage into the free frame

9. Update the page table in the MMU

10. Restore the instruction pointer and the registers

11. Mark the process runnable and call the scheduler

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 221 / 373

Paging Characteristics

• Limited internal fragmentation (last page)

• Page faults are costly due to slow I/O operations

• Try to ensure that the “essential” pages of a process are always in memory

• Try to select used frames (victims) which will not be used in the future

• During page faults, other processes can execute

• What happens if the other processes also cause page faults?

• In the extreme case, the system is busy swapping pages into memory and does not
do any other useful work (thrashing)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 222 / 373

Multilevel Paging

p1 p2 d

outer page table

second level page table

p1

p2

physical memory

d

two−level 32−bit paging architecture

• Paging can be applied to page tables as well

• SPARC 32-bit architecture supports three-level paging

• Motorola 32-bit architecture (68030) supports four-level paging

• Caching essential to alleviate delays introduced by multiple memory lookups

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 223 / 373

Inverted Page Tables

physical memory

i d

inverted page table

dp

address
logical

physical
address

logical memory of process pid

frame

page

isearch

pid

pid p

• The inverted page table has one entry for each frame
• Page table size determined by size of physical memory
• Entries contain page address and process identification
• The non-inverted page table is stored in paged memory
• Lookups require to search the inverted page table

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 224 / 373

Translation Lookaside Buffers (TLBs)

cache mapping (p,d) −> (f,d)

physical memorylogical memory

frame

page

physical
address

f d

f

p

dp

address
logical

page table

translation lookaside buffer

• A TLB acts as a cache mapping logical addresses (p, d) to physical addresses (f , d)

• TLB lookup failures may be handled by the kernel in software

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 225 / 373

Combined Segmentation and Paging

• Segmentation and paging have different strengths and weaknesses

• Combined segmentation and paging allows to take advantage of the different
strengths

• Some architectures supported paged segments or even paged segment tables

• MMUs supporting segmentation and paging leave it to the operating systems
designer to decide which strategy is used

• Note that fancy memory management schemes do not work for real-time systems...

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 226 / 373

Section 28: Virtual Memory

25 Translation of Memory Addresses

26 Segmentation

27 Paging

28 Virtual Memory

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 227 / 373

Virtual Memory

• Virtual memory is a technique that allows the execution of processes that may not
fit completely in memory

• Motivation:
• Support virtual address spaces that are much larger than the physical address space

available
• Programmers are less bound by memory constraints
• Only small portions of an address space are typically used at runtime
• More programs can be in memory if only the essential data resides in memory
• Faster context switches if resident data is small

• Most virtual memory systems are based on paging, but virtual memory systems
based on segmentation are feasible

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 228 / 373

Loading Strategies

• Loading strategies determine when pages are loaded into memory:
• swapping :

Load complete address spaces (does not work for virtual memory)
• demand paging :

Load pages when they are accessed the first time
• pre-paging :

Load pages likely to be accessed in the future
• page clustering :

Load larger clusters of pages to optimize I/O

• Most systems use demand paging, sometimes combined with pre-paging

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 229 / 373

Replacement Strategies

• Replacement strategies determine which pages are moved to secondary storage in
order to free frames
• Local strategies assign a fixed number of frames to a process (page faults only

affect the process itself)
• Global strategies assign frames dynamically to all processes (page faults may affect

other processes)
• Paging can be described using reference strings:
w = r [1]r [2] . . . r [t] . . . sequence of page accesses
r [t] page accessed at time t
s = s[0]s[1] . . . s[t] . . . sequence of loaded pages
s[t] set of pages loaded at time t
x [t] pages paged in at time t
y [t] pages paged out at time t

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 230 / 373

Replacement Strategies

• First in first out (FIFO):
Replace the page which is the longest time in memory

• Second chance (SC):
Like FIFO but skip pages that have been used since the last page fault

• Least frequently used (LFU):
Replace the page which has been used least frequently

• Least recently used (LRU):
Replace the page which has not been used for the longest period of time

• Belady’s optimal algorithm (BO):
Replace the page which will not be used for the longest period of time

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 231 / 373

Belady’s Anomaly (FIFO Replacement Strategy)

| string | 1 2 3 4 1 2 5 1 2 3 4 5 | | string | 1 2 3 4 1 2 5 1 2 3 4 5 |

|---------+-------------------------| |---------+-------------------------|

| frame 0 | 1 1 1 4 4 4 5 5 5 5 5 5 | | frame 0 | 1 1 1 1 1 1 5 5 5 5 4 4 |

| frame 1 | 2 2 2 1 1 1 1 1 3 3 3 | | frame 1 | 2 2 2 2 2 2 1 1 1 1 5 |

| frame 2 | 3 3 3 2 2 2 2 2 4 4 | | frame 2 | 3 3 3 3 3 3 2 2 2 2 |

|---------+-------------------------| | frame 3 | 4 4 4 4 4 4 3 3 3 |

| faults | x x x x x x x x x | |---------+-------------------------|

| faults | x x x x x x x x x x |

• For the same reference string w = 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• FIFO with m = 3 frames leads to 9 page faults
• FIFO with m = 4 frames leads to 10 page faults

• Belady’s anomaly: Increasing memory may lead to an increase of page faults for
certain page replacement strategies.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 232 / 373

Stack Algorithms

• Every reference string w can be associated with a sequence of stacks such that the
pages in memory are represented by the first m elements of the stack

• A stack algorithm is a replacement algorithm with the following properties:

1. The last used page is on the top
2. Pages which are not used never move up
3. Pages below the used page do not move

• Let Sm(w) be the memory state reached by the reference string w and the memory
size m

• For every stack algorithm, the following holds true:

Sm(w) ⊆ Sm+1(w)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 233 / 373

LRU Algorithm

• LRU is a stack algorithm (while FIFO is not)

• LRU with counters:
• CPU increments a counter for every memory access
• Page table entries have a counter that is updated with the CPU’s counter on every

memory access
• Page with the smallest counter is the LRU page

• LRU with a stack:
• Keep a stack of page numbers
• Whenever a page is used, move its page number on the top of the stack
• Page number at the bottom identifies LRU page

• In general difficult to implement at CPU/MMU speed

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 234 / 373

Memory Management and Scheduling

• Interaction of memory management and scheduling:
• Processes should not get the CPU if the probability for page faults is high
• Processes must not remain in main memory if they are waiting for an event which is

unlikely to occur in the near future

• How to estimate the probability of future page faults?

• Does the approach work for all programs equally well?

• Fairness?

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 235 / 373

Locality

• Locality describes the property of programs to use only a small subset of the
memory pages during a certain part of the computation

• Programs are typically composed of several localities, which may overlap

• Reasons for locality:
• Structured and object-oriented programming (functions, small loops, local variables)
• Recursive programming (functional / declarative programs)

• Some applications (e.g., data bases or mathematical software handling large
matrices) show only limited locality

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 236 / 373

Working-Set Model

• The Working-Set Wp(t,T) of a process p at time t with parameter T is the set of
pages which were accessed in the time interval [t − T , t)

• A memory management system follows the working-set model if the following
conditions are satisfied:
• Processes are only marked runnable if their full working-set is in main memory
• Pages which belong to the working-set of a running process are not removed from

memory

• Example (T = 10):

w = . . . 2, 6, 1, 5, 7, 7, 7, 7, 5, 1, 6, 2, 3, 4, 1, 2, 3, 4, 4, 4, 3, 4, 3, 4, 4, 4, 1, 3, 2, 3, 4, 3, . . .

Wp(t1, 10) = {1, 2, 5, 6, 7} Wp(t2, 10) = {3, 4}

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 237 / 373

Working-Set Properties

• The performance of the working-set model depends on the parameter T :
• If T is too small, many page faults are possible and thrashing can occur
• If T is too big, unused pages might stay in memory and other processes might be

prevented from becoming runnable

• Determination of the working-set:
• Mark page table entries whenever they are used
• Periodically read and reset these marker bits to estimate the working-set

• Adaptation of the parameter T :
• Increase / decrease T depending on page fault rate

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 238 / 373

POSIX API (mmap, munmap, msync, mlock, munlock)

#include <sys/mman.h>

#define PROT_EXEC ... /* memory is executable */

#define PROT_READ ... /* memory is readable */

#define PROT_WRITE ... /* memory is writable */

#define PROT_NONE ... /* no access */

#define MAP_SHARED ... /* memory may be shared between processes */

#define MAP_PRIVATE ... /* memory is private to the process */

#define MAP_ANONYMOUS ... /* memory is not tied to a file descriptor */

void* mmap(void *start, size_t length, int prot, int flags, int fd, off_t offset);

int munmap(void *start, size_t length);

int msync(void *start, size_t length, int flags);

int mprotect(const void *addr, size_t len, int prot);

int mlock(const void *addr, size_t len);

int munlock(const void *addr, size_t len);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 239 / 373

Part 9: Communication

29 Signals

30 Pipes

31 Sockets

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 240 / 373

Inter-Process Communication

• An operating system has to provide inter-process communication primitives in the
form of system calls and APIs

• Signals:
• Software equivalent of hardware interrupts
• Signals interrupt the normal control flow, but they do not carry any data (except

the signal number)

• Pipes:
• Uni-directional channel between two processes
• One process writes, the other process reads data

• Sockets:
• General purpose communication endpoints
• Multiple processes, global (Internet) communication

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 241 / 373

Section 29: Signals

29 Signals

30 Pipes

31 Sockets

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 242 / 373

Signals

• Signals are a very limited IPC mechanism

• Signals are either
• synchronous or
• asynchronous to the program execution

• Basic signals are part of the standard C library
• Signals for runtime exceptions (division by zero)
• Signals created by external events
• Signals explicitly created by the program itself

• POSIX signals are more general and powerful
• Sending signals between processes
• Better control of signal delivery (blocking signals)
• Better control of handling behavior

• If in doubt, use the POSIX signal API to make code portable

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 243 / 373

C Library Signal API

#include <signal.h>

typedef ... sig_atomic_t;

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum, sighandler_t handler);

int raise(int signum);

#define SIGABRT ... /* abnormal termination */

#define SIGFPE ... /* floating-point exception */

#define SIGILL ... /* illegal instruction */

#define SIGINT ... /* interactive interrupt */

#define SIGSEGV ... /* segmentation violation */

#define SIGTERM ... /* termination request */

#define SIG_IGN ... /* handler to ignore the signal */

#define SIG_DFL ... /* default handler for the signal */

#define SIG_ERR ... /* handler returned on error situations */

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 244 / 373

POSIX Signal Delivery

• Signals start in the state pending and are
usually delivered to the process

• Signals can be blocked by processes

• Blocked signals are delivered when unblocked

• Signals can be ignored if they are not needed
delivered

pending

blocked ignored

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 245 / 373

POSIX Signal API

#include <signal.h>

typedef void (*sighandler_t)(int);

typedef ... sigset_t;

typedef ... siginfo_t;

#define SIG_DFL ... /* default handler for the signal */

#define SIG_IGN ... /* handler to ignore the signal */

#define SA_NOCLDSTOP ... /* do not create SIGCHLD signals when a child is stopped */

#define SA_NOCLDWAIT ... /* do not create SIGCHLD signals when a child terminates */

#define SA_ONSTACK ... /* use an alternative stack */

#define SA_RESTART ... /* restart interrupted system calls */

struct sigaction {

sighandler_t sa_handler; /* handler function */

void (*sa_sigaction)(int, siginfo_t *, void *); /* handler function */

sigset_t sa_mask; /* signals to block while executing handler */

int sa_flags; /* flags to control behavior */

};

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 246 / 373

POSIX Signal API

int sigaction(int signum, const struct sigaction *action,

struct sigaction *oldaction);

int kill(pid_t pid, int signum);

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signum);

int sigdelset(sigset_t *set, int signum);

int sigismember(const sigset_t *set, int signum);

#define SIG_BLOCK ...

#define SIG_UNBLOCK ...

#define SIG_SETMASK ...

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

int sigpending(sigset_t *set);

int sigsuspend(const sigset_t *mask);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 247 / 373

Properties of POSIX Signals

• Implementations can merge multiple identical signals

• Signals can not be counted reliably

• Signals do not carry any data / information except the signal number

• Signal functions are typically very short since the real processing of the signaled
event is usually deferred to a later point in time of the execution when the state of
the program is known to be consistent

• Variables modified by signals should be signal atomic

• fork() inherits signal functions, exec() resets signal functions (for security
reasons and because the process gets a new memory image)

• Threads in general share the signal actions, but every thread may have its own
signal mask

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 248 / 373

Signal Pattern: Flagging Behaviour Changes

#include <signal.h>

static volatile sig_atomic_t keep_going = 1;

static void

catch_signal(int signum)

{

keep_going = 0; /* defer the handling of the signal */

}

int

main(void)

{

signal(SIGINT, catch_signal);

while (keep_going) {

/* ... do something ... */

}

/* ... cleanup ... */

return 0;

}

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 249 / 373

Signal Pattern: Catching Terminating Signals

volatile sig_atomic_t fatal_error_in_progress = 0;

static void

fatal_error_signal(int signum)

{

if (fatal_error_in_progress) {

raise(signum);

return;

}

fatal_error_in_progress = 1;

/* ... cleanup ... */

signal(signum, SIG_DFL); /* install the default handler */

raise(signum); /* and let it do its job */

}

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 250 / 373

Section 30: Pipes

29 Signals

30 Pipes

31 Sockets

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 251 / 373

Processes, File Descriptors, Open Files, . . .

vnode / inode table

file descriptor

tables

process A process Cprocess B

stdin

stdout

stderr

0

1

2

foo

(maintains file offsets)

open file table

bar

foo

(maintains file metadata)

per process

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 252 / 373

Pipes at the Shell Command Line

head −10sort −k 5 −n −rls −l
stdin stdin stdinstdoutstdout

stderr stderr

shell

stdout

stderr

list the 10 largest files in the

current directory

ls -l | sort -k 5 -n -r | head -10

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 253 / 373

POSIX Pipes

#include <unistd.h>

int pipe(int filedes[2]);

int dup(int oldfd);

int dup2(int oldfd, int newfd);

#include <stdio.h>

FILE *popen(const char *command, const char *type);

int pclose(FILE *stream);

• The popen() and pclose() library functions are wrappers to open a pipe to a
child process executing the given command

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 254 / 373

Named Pipes

• Named pipes are file system objects and arbitrary processes can read from or write
to a named pipe (subject to file system permissions)

• Named pipes are created using the mkfifo() system call (or shell command)

• A simple example:

$ mkfifo pipe

$ ls > pipe &

$ less < pipe

• An interesting example:

$ mkfifo pipe1 pipe2

$ echo -n x | cat - pipe1 > pipe2 &

$ cat < pipe2 > pipe1

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 255 / 373

Section 31: Sockets

29 Signals

30 Pipes

31 Sockets

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 256 / 373

Sockets

• Sockets are abstract communication endpoints with a rather small number of
associated function calls

• The socket API consists of
• address formats for various network protocol families
• functions to create, name, connect, destroy sockets
• functions to send and receive data
• functions to convert human readable names to addresses and vice versa
• functions to multiplex I/O on several sockets

• Sockets are the de-facto standard communication API provided by operating
systems

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 257 / 373

Socket Types

• Stream sockets (SOCK STREAM) represent bidirectional communication endpoints
providing reliable byte stream service

• Datagram sockets (SOCK DGRAM) represent bidirectional communication endpoints
providing unreliable connectionless message service

• Reliable delivered message sockets (SOCK RDM) are bidirectional communication
endpoints providing reliable connectionless message service

• Sequenced packet sockets (SOCK SEQPACKET) are bidirectional communication
endpoints providing reliable connection-oriented message service

• Raw sockets (SOCK RAW) represent communication endpoints which can
send/receive (raw) interface layer datagrams

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 258 / 373

Generic Socket Addresses

#include <sys/socket.h>

struct sockaddr {

uint8_t sa_len /* address length (BSD) */

sa_family_t sa_family; /* address family */

char sa_data[...]; /* data of some size */

};

struct sockaddr_storage {

uint8_t ss_len; /* address length (BSD) */

sa_family_t ss_family; /* address family */

char padding[...]; /* padding of some size */

};

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 259 / 373

IPv4 Socket Addresses

#include <sys/socket.h>

#include <netinet/in.h>

typedef ... sa_family_t;

typedef ... in_port_t;

struct in_addr {

uint8_t s_addr[4]; /* IPv4 address */

};

struct sockaddr_in {

uint8_t sin_len; /* address length (BSD) */

sa_family_t sin_family; /* address family */

in_port_t sin_port; /* transport layer port number */

struct in_addr sin_addr; /* network layer IPv4 address */

};

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 260 / 373

IPv6 Socket Addresses

#include <sys/socket.h>

#include <netinet/in.h>

typedef ... sa_family_t;

typedef ... in_port_t;

struct in6_addr {

uint8_t s6_addr[16]; /* IPv6 address */

};

struct sockaddr_in6 {

uint8_t sin6_len; /* address length (BSD) */

sa_family_t sin6_family; /* address family */

in_port_t sin6_port; /* transport layer port number */

uint32_t sin6_flowinfo; /* network layer flow information */

struct in6_addr sin6_addr; /* network layer IPv6 address */

uint32_t sin6_scope_id; /* network layer scope identifier */

};

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 261 / 373

Mapping Names to Addresses 1/2

#include <sys/types.h>

#include <sys/socket.h>

#include <netdb.h>

struct addrinfo {

int ai_flags;

int ai_family;

int ai_socktype;

int ai_protocol;

size_t ai_addrlen;

struct sockaddr *ai_addr;

char *ai_canonname;

struct addrinfo *ai_next;

};

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 262 / 373

Mapping Names to Addresses 2/2

#define AI_PASSIVE ...

#define AI_CANONNAME ...

#define AI_NUMERICHOST ...

int getaddrinfo(const char *node, const char *service,

const struct addrinfo *hints, struct addrinfo **res);

void freeaddrinfo(struct addrinfo *res);

const char *gai_strerror(int errcode);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 263 / 373

Mapping Addresses to Names

#include <sys/types.h>

#include <sys/socket.h>

#include <netdb.h>

#define NI_NOFQDN ...

#define NI_NUMERICHOST ...

#define NI_NAMEREQD ...

#define NI_NUMERICSERV ...

#define NI_NUMERICSCOPE ...

#define NI_DGRAM ...

int getnameinfo(const struct sockaddr *sa, socklen_t salen,

char *host, size_t hostlen, char *serv, size_t servlen,

int flags);

const char *gai_strerror(int errcode);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 264 / 373

Connection-Less Communication

data

data

close()

socket()

recvfrom()

sendto()

sendto()

recvfrom()

socket()

bind()

bind()

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 265 / 373

Connection-Oriented Communication

bind()

listen()

accept()

data

connect()

write()

read()
data

connection release

read()

write()

close() close()

socket()

socket()

connection setup

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 266 / 373

Socket API Summary 1/3

#include <sys/types.h>

#include <sys/socket.h>

#include <unistd.h>

#define SOCK_STREAM ... /* stream socket */

#define SOCK_DGRAM ... /* datagram socket */

#define SOCK_RAW ... /* raw socket, requires privileges */

#define SOCK_RDM ... /* reliable delivered message socket */

#define SOCK_SEQPACKET ... /* sequenced packet socket */

#define AF_INET ... /* IPv4 address family */

#define AF_INET6 ... /* IPv6 address family */

#define PF_INET ... /* IPv4 protocol family */

#define PF_INET6 ... /* IPv6 protocol family */

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 267 / 373

Socket API Summary 2/3

int socket(int domain, int type, int protocol);

int bind(int socket, struct sockaddr *addr, socklen_t addrlen);

int connect(int socket, struct sockaddr *addr, socklen_t addrlen);

int listen(int socket, int backlog);

int accept(int socket, struct sockaddr *addr, socklen_t *addrlen);

ssize_t write(int socket, void *buf, size_t count);

int send(int socket, void *msg, size_t len, int flags);

int sendto(int socket, void *msg, size_t len, int flags,

struct sockaddr *addr, socklen_t addrlen);

ssize_t read(int socket, void *buf, size_t count);

int recv(int socket, void *buf, size_t len, int flags);

int recvfrom(int socket, void *buf, size_t len, int flags,

struct sockaddr *addr, socklen_t *addrlen);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 268 / 373

Socket API Summary 3/3

int shutdown(int socket, int how);

int close(int socket);

int getsockopt(int socket, int level, int optname,

void *optval, socklen_t *optlen);

int setsockopt(int socket, int level, int optname,

void *optval, socklen_t optlen);

int getsockname(int socket, struct sockaddr *addr, socklen_t *addrlen);

int getpeername(int socket, struct sockaddr *addr, socklen_t *addrlen);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 269 / 373

Multiplexing (select)

#include <sys/select.h>

typedef ... fd_set;

FD_ZERO(fd_set *set);

FD_SET(int fd, fd_set *set);

FD_CLR(int fd, fd_set *set);

FD_ISSET(int fd, fd_set *set);

int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,

struct timeval *timeout);

int pselect(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,

struct timespec *timeout, sigset_t sigmask);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 270 / 373

Non-blocking I/O (fcntl)

#include <unistd.h>

#include <fcntl.h>

#define F_GETFD ... /* get file descriptor flags */

#define F_SETFD ... /* set file descriptor flags */

#define O_NONBLOCK ... /* non-blocking I/O */

int fcntl(int fd, int cmd, ... /* arg */);

• I/O operations that would normally block fail with an EAGAIN error if O NONBLOCK

has been set on the file descriptor

• fcntl() can manipulate many more file descriptor properties

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 271 / 373

Part 10: File Systems

32 General File System Concepts

33 File System Programming Interface

34 File System Implementation

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 272 / 373

Section 32: General File System Concepts

32 General File System Concepts

33 File System Programming Interface

34 File System Implementation

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 273 / 373

File Types

• Files are persistent containers for the storage of data

• Unstructured files:
• Container for a sequence of bytes
• Applications interpret the contents of the byte sequence
• File name extensions may be used to identify content types (.txt, .c, .pdf)
• Some file formats use internal “magic numbers” in addition to extensions

• Structured files:
• Sequential files
• Index-sequential files
• B-tree files

=⇒ Only some operating systems support structured files

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 274 / 373

Special Files

• Files representing devices:
• Represent devices as files (/dev/mouse)
• Distinction between block and character device files
• Special operations to manipulate devices (ioctl)

• Files representing processes:
• Represent processes (and more) as files (/proc)
• Simple interface between kernel and system utilities

• Files representing communication endpoints:
• Named pipes (fifos) and local domain sockets
• Internet connections (/net/tcp) (Plan 9)

• Files representing graphical user interface objects:
• Plan 9 represents all windows of a GUI as files

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 275 / 373

Directories

• Hierarchical file system name spaces
• Files are the leaves of the hierarchy
• Directories are the nodes spanning the hierarchy

• Names of files and directories on one level of the hierarchy usually have to be
unique (beware of uppercase/lowercase differences and character sets)

• Absolute names are formed by concatenating directory and file names

• Directories may be realized
• as special file system objects or
• as regular files with special contents

=⇒ Embedded operating systems sometimes only support flat file name spaces, or only
read-only file systems, or no file systems at all

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 276 / 373

Unix Directory Structure

..

2

4 5

76

8 9

..

..

bin

etc

ls vi

usr vmunix

.

.

. .

..

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 277 / 373

Mounting

..

2

12

4

76

8 9

.. bin

etc

ls vi

.

. .
..

filesystem A
5

vmunix

.

usr

..
.

mount
filesystem B

..

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 278 / 373

Hard Links and Soft Links (Symbolic Links)

Definition (hard link)

A hard link is a directory entry that associates a name with a file system object. The
association is established when the link is created and fixed afterwards.

Definition (soft link)

A soft link or symbolic link is a directory entry storing a reference to a file system
object in the form of an absolute or relative path. The reference is resolved at runtime.

• Links make file system object accessible under several different names

• Soft links may resolve to different file system objects (or none) depending on the
current state of the file system

• Soft links can turn strictly hierarchical name spaces into directed graphs

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 279 / 373

File Usage Pattern

• File usage patterns heavily depend on the applications and the environment

• Typical file usage pattern of “normal” users:
• Many small files (less than 10K)
• Reading is more dominant than writing
• Access is most of the time sequential and not random
• Most files are short lived
• Sharing of files is relatively rare
• Processes usually use only a few files
• Distinct file classes

• Totally different usage pattern exist (e.g., databases)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 280 / 373

Processes and Files

operating system kernel space

open file
table

vnode inode

disk
control block

process
tor table

file descrip−

control block
process

tor table
file descrip−

control block
process

tor table
file descrip−

• Every process control block maintains a pointer to the file descriptor table

• File descriptor table entries point to an entry in the open file table

• Open file table entries point to virtual inodes (vnodes)

• The vnode points to the inode (if it is a local file)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 281 / 373

Special File Systems

• Process file systems (e.g., profcs)

• Device file systems (e.g., devfs, udev)

• File systems exposing kernel information (e.g., sysfs)

• Ephemeral file systems (e.g., tmpfs)

• Union mount file systems (e.g., unionfs, overlayfs)

• User space file systems (e.g., fuse)

• Auto mounting file systems (e.g., autofs)

• Network file systems (e.g., nfs, cifs/smb)

• Distributed file systems (e.g., afs, lustre)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 282 / 373

Section 33: File System Programming Interface

32 General File System Concepts

33 File System Programming Interface

34 File System Implementation

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 283 / 373

Standard File System Operations

#include <stdlib.h>

int rename(const char *oldpath, const char *newpath);

#include <unistd.h>

ssize_t write(int fd, const void *buf, size_t count);

ssize_t read(int fd, void *buf, size_t count);

int close(int fd);

int link(const char *oldpath, const char *newpath);

int unlink(const char *pathname);

int access(const char *pathname, int mode);

int symlink(const char *oldpath, const char *newpath);

int readlink(const char *path, char *buf, size_t bufsiz);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 284 / 373

Standard File System Operations

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

int open(const char *pathname, int flags);

int open(const char *pathname, int flags, mode_t mode);

int creat(const char *pathname, mode_t mode);

int mkfifo(const char *pathname, mode_t mode);

int stat(const char *file_name, struct stat *buf);

int fstat(int fd, struct stat *buf);

int lstat(const char *file_name, struct stat *buf);

int chmod(const char *path, mode_t mode);

int fchmod(int fd, mode_t mode);

int chown(const char *path, uid_t owner, gid_t group);

int fchown(int fd, uid_t owner, gid_t group);

int lchown(const char *path, uid_t owner, gid_t group);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 285 / 373

Standard Directory Operations

#include <sys/stat.h>

#include <sys/types.h>

int mkdir(const char *pathname, mode_t mode);

int rmdir(const char *pathname);

int chdir(const char *path);

int fchdir(int fd);

#include <dirent.h>

DIR *opendir(const char *name);

struct dirent *readdir(DIR *dir);

void rewinddir(DIR *dir);

int closedir(DIR *dir);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 286 / 373

File Locking Operations (1/2)

#include <fcntl.h>

#define F_RDLCK ... /* request a shared read lock */

#define F_WRLCK ... /* request an exclusive write lock */

#define F_UNLCK ... /* request to unlock */

#define SEEK_SET ... /* lock region relative to file start */

#define SEEK_CUR ... /* lock region relative to current position */

#define SEEK_END ... /* lock region relative to file end */

#define F_SETLK ... /* acquire/release a lock, fail if lock unavailable */

#define F_SETLKW ... /* acquire/release a lock, wait if lock unavailable */

#define F_GETLK ... /* investigate whether a lock is available */

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 287 / 373

File Locking Operations (2/2)

#include <fcntl.h>

struct flock {

// ...

short l_type; /* one of F_RDLCK or F_WRLCK or F_UNLCK */

short l_whence; /* one of SEEK_SET or SEEK_CUR or SEEK_END */

off_t l_start; /* starting offset for lock region */

off_t l_len; /* number of bytes of the lock region */

pid_t l_pid; /* PID of process blocking our lock (set by F_GETLK) */

...

};

int fcntl(int fd, int cmd, ...);

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 288 / 373

Memory Mapped Files

#include <sys/mman.h>

void* mmap(void *start, size_t length, int prot, int flags,

int fd, off_t offset);

int munmap(void *start, size_t length);

int msync(void *start, size_t length, int flags);

int mprotect(const void *addr, size_t len, int prot);

int mlock(const void *addr, size_t len);

int munlock(const void *addr, size_t len);

• Direct mapping of regular files into virtual memory

• Enables extremely fast input/output and data sharing

• Mapped files can be protected and locked (regions)

• Changes made in memory are written to files during unmap() or msync() calls

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 289 / 373

File System Events

• Modern applications like to monitor file systems for changes.

• There are many system specific APIs, such as
• inotify on Linux,
• kqueue on *BSD,
• File System Events on MacOS,
• ReadDirectoryChangesW on Microsoft Windows.

• The APIs differ significantly in their functionality and whether they scale up to
monitor large file system spaces.

• There are first attempts to build wrapper libraries that encapsulate system specific
APIs (see for example libfswatch).

• A simple command line tool is fswatch.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 290 / 373

Section 34: File System Implementation

32 General File System Concepts

33 File System Programming Interface

34 File System Implementation

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 291 / 373

Block Allocation Methods using Lists

• Linked list allocation example:

3 6 12 5 9 11 7 1 14

start of file "foo" start of file "bar"

• Indexed linked list allocation example:

0 2 31 4 5 7 8 9 11 126 10 13 14 15

6 12 59 −1 7114 −1

start of file "foo" start of file "bar"

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 292 / 373

Block Allocation Method using Index Nodes

..

...

...

...

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 293 / 373

Index Node File System Example

8

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

meta meta meta meta meta meta meta meta

"." 0

0".."

• Block device with 16 equal-sized blocks (numbered 0. . . 15)

• Blocks (0. . . 7) are reserved for inodes, the remaining blocks are data blocks

• The root directory is always found in inode 0
Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 294 / 373

Free-Space Management

• Free block lists:
• Manage free blocks in a linked free list
• Efficient if there are only few free blocks

• Free block bitmaps:
• Use a single bit for every block to indicate whether it is in use or not
• Bitmap can be held in memory to make allocations and deallocations very fast
• Sometimes useful to keep redundant bitmaps in order to recover from errors

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 295 / 373

Virtual File Systems (VFS)
u

s
e
r

s
p

a
c
e

virtual file system

ext3 btrfs fuse

C library C library

fuse library

...

block I/O

k
e
rn

e
l

implementation

file system

ls

• Abstract (virtual) file system
interface

• Simplifies support for many
different file systems

• Common functions
implemented at the virtual file
system interface

• Concrete file systems may
reside in user space or on
remote systems

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 296 / 373

Part 11: Devices

35 Goals and Design Considerations

36 Storage Devices and RAIDs

37 Storage Virtualization

38 Terminal Devices

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 297 / 373

Section 35: Goals and Design Considerations

35 Goals and Design Considerations

36 Storage Devices and RAIDs

37 Storage Virtualization

38 Terminal Devices

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 298 / 373

Design Considerations

• Device Independence
• User space applications should work with as many similar devices as possible

without requiring any changes
• Some user space applications may want to exploit specific device characteristics
• Be as generic as possible while allowing applications to explore specific features of

certain devices

• Efficiency
• Efficiency is of great concern since many applications are I/O bound and not CPU

bound

• Error Reporting
• I/O operations have a high error probability and proper reporting of errors to

applications and system administrators is crucial

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 299 / 373

Efficiency: Buffering Schemes

• Data is passed without any buffering from user space to the device (unbuffered I/O)

• Data is buffered in user space before it is passed to the device

• Data is buffered in user space and then again in kernel space before it is passed to
the device

• Data is buffered multiple times in order to improve efficiency or to avoid side
effects (e.g., flickering in graphics systems)

• Circular buffers can help to decouple data producers and data consumers without
copying data

• Vectored I/O (scatter/gather I/O) uses a single function call to write data from
multiple buffers to a single data stream or to read data from a data stream into
multiple buffers

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 300 / 373

Efficiency: I/O Programming Styles

• programmed input/output:
The CPU does everything (copying data to/from the I/O device) and blocks until
I/O is complete

• interrupt-driven input/output:
Interrupts drive the I/O process, the CPU can do other things while the device is
busy

• direct-memory-access input/output:
A DMA controller moves data in/out of memory and notifies the CPU when I/O is
complete, the CPU does not need to process any interrupts during the I/O process

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 301 / 373

Error Reporting

• Provide a consistent and meaningful (!) way to report errors and exceptions to
applications (and to system administrators)

• This is particularly important since I/O systems tend to be error prone compared to
other parts of a computer

• On POSIX systems, system calls report errors via special return values and a
(thread) global variable errno (errno stores the last error code and does not get
cleared when a system call completes without an error)

• Runtime errors that do not relate to a specific system call are reported to a logging
facility, usually via syslog on Unix systems

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 302 / 373

Representation of Devices

Definition (block device)

A block device is a device where the natural unit of work is a fixed length data block.

Definition (character device)

A character device is a device where the natural unit of work is a byte.

• Devices are identified by their
• type (block or character device)
• major device number, which identifies the responsible device driver
• minor device number, which identifies the device instance handled by the device

driver

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 303 / 373

Section 36: Storage Devices and RAIDs

35 Goals and Design Considerations

36 Storage Devices and RAIDs

37 Storage Virtualization

38 Terminal Devices

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 304 / 373

Storage Media

• Magnetic disks (floppy disks, hard disks):
• Data storage on rotating magnetic disks
• Division into tracks, sectors and cylinders
• Usually multiple (moving) read/write heads

• Solid state disks:
• Data stored in solid-state memory (no moving parts)
• Memory unit emulates hard disk interface

• Optical disks (CD, DVD, Blu-ray):
• Read-only vs. recordable vs. rewritable
• Very robust and relatively cheap
• Division into tracks, sectors and cylinders

• Magnetic tapes (or tesa tapes):
• Used mainly for backups and archival purposes
• Not further considered in this lecture

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 305 / 373

RAID

• Redundant Array of Inexpensive Disks (1988)

• Observation:
• CPU speed grows exponentially
• Main memory sizes grow exponentially
• I/O performance increases slowly

• Solution:
• Use lots of cheap disks to replace expensive disks
• Redundant information to handle high failure rate

• Common on almost all small to medium size file servers

• Can be implemented in hardware or software

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 306 / 373

RAID Level 0 (Striping)

• Striped disk array where the data is broken down into blocks and each block is
written to a different disk drive

• I/O performance is greatly improved by spreading the I/O load across many
channels and drives

• Best performance is achieved when data is striped across multiple controllers with
only one drive per controller

• No parity calculation overhead is involved

• Very simple design

• Easy to implement

• Failure of just one drive will result in all data in an array being lost

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 307 / 373

RAID Level 1 (Mirroring)

• Twice the read transaction rate of single disks

• Same write transaction rate as single disks

• 100% redundancy of data means no rebuild is necessary in case of a disk failure

• Transfer rate per block is equal to that of a single disk

• Can sustain multiple simultaneous drive failures

• Simplest RAID storage subsystem design

• High disk overhead and thus relatively inefficient

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 308 / 373

RAID Level 5 (Distributed Parity)

• Data blocks are written onto data disks

• Parity for blocks is generated and recorded in a distributed location

• Parity is checked on reads

• High read data transaction rate

• Data can be restored if a single disk fails

• If two disks fail simultaneously, all data is lost

• Block read transfer rate equal to that of a single disk

• Controller design is more complex

• Widely used in practice

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 309 / 373

Section 37: Storage Virtualization

35 Goals and Design Considerations

36 Storage Devices and RAIDs

37 Storage Virtualization

38 Terminal Devices

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 310 / 373

Logical Volume Management

• Physical Volume: A physical volume is a disk raw partition as seen by the
operating system (hard disk partition, raid array, storage area network partition)

• Volume Group: A volume group pools several physical volumes into one logical unit

• Logical Volume: A logical volume resides in a volume group and provides a block
device, which can be used to create a file system

=⇒ Separation of the logical storage layout from the physical storage layout

=⇒ Simplifies modification of logical volumes (create, remove, resize, snapshot)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 311 / 373

Logical Volume Management (Linux)

(e.g. virtual machine root filesystem)

PV

PV

PV

PV

PV

VG

PV

VG

LV

LV

LV

LV

LV

LV

...

...

(e.g. root filesystem)

(e.g. swap space)

PV = physical volume, VG = volume group, LV = logical volume

(e.g. home filesystem)

(e.g. virtual machine swap space)

(e.g. data filesystem)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 312 / 373

Networked Storage

• Storage Area Networks (SAN)
• A storage area network detaches block devices from computer systems through a

fast communication network
• Simplifies the sharing of storage between (frontend) computers
• Dedicated network protocols (Fibre Channel, iSCSI, . . .)
• Relative expensive technology

• Network Attached Storage (NAS)
• Access to a logical file system over the network
• Sharing of file systems between multiple computers over a network
• Many different protocols: NFS, SMB/CIFS, . . .

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 313 / 373

Section 38: Terminal Devices

35 Goals and Design Considerations

36 Storage Devices and RAIDs

37 Storage Virtualization

38 Terminal Devices

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 314 / 373

Traditional Character Terminal Devices

Terminal

Serial Line K
e

rn
e

l
U

s
e

rs
p

a
c

e

curses

e
d

it
o

r

termcap

tty

• Character terminals were connected via serial lines

• The device driver in the kernel represents the terminal to user space programs (via
a tty device file)

• Applications often use a library that knows about terminal capabilities to achieve
terminal device independence

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 315 / 373

Serial Communication (RS232)

• Data transfer via two lines (TX/RX) using different voltage levels

• A start bit is used to indicate the beginning of the serial transmission of a word

• Parity bits may be sent (even or odd parity) to detect transmission errors

• One or several stop bits may be used after each word to allow the receiver to
process the word

• Flow control can be implemented either using dedicated lines (RTS/CTS) or by
sending special characters (XON/XOFF)

• Common settings: 8 data bits, 1 stop bit, no parity

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 316 / 373

Terminal Characteristics

• Serial lines were traditionally used to connect terminals to a computer

• Terminals understand different sets of control sequences (escape sequences) to
control curser positioning or clearing of (parts of) the display

• Traditionally, terminals had different (often fixed) numbers of rows and columns
they could display

• Keyboards were attached to the terminal and terminals did send different key
codes, depending on the attached keyboard

• Teletypes were printers with an attached or builtin keyboard

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 317 / 373

Terminal Devices

• Unix systems represent terminals as tty devices.
• In raw mode, no special processing is done and all received characters are directly

passed on to the application
• In cooked mode, the device driver preprocesses received characters, generating

signals for control character sequences and buffering input lines
• In cbreak mode (rare mode), the device driver does not buffer characters but still

generates signals for some control characters sequences.

• Terminal capabilities are described in the (termcap, terminfo) databases, and the
TERM environment variable selects the terminal and thus the control sequences to
use

• Network terminals use the same mechanisms but are represented as pseudo tty
devices, usually called ptys.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 318 / 373

Portable and Efficient Terminal Control

• Curses is a terminal control library enabling the construction of text user interface
applications

• The curses API provides functions to position the cursor and to write at specific
positions in a virtual window

• The refreshing of the virtual window to the terminal is program controlled

• Based on the terminal capabilities, the curses library can find the most efficient
sequence of control codes to achieve the desired result

• The curses library also provides functions to switch between raw and cooked input
mode and to control function key mappings

• The ncurses implementation provides a library to create panels, menus, and input
forms.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 319 / 373

Pseudo Terminal Devices

(X11)

Shell

(xterm)

Terminal

/dev/ptmx /dev/pts/0/dev/tty0

(bash)

GUI Server

space

kernel

user

space

sockets

• The terminal device (/dev/pts/0) behaves like a traditional terminal device

• The pseudoterminal device (obtained by opening the pseudoterminal device pair
multiplexer /dev/ptmx) controls the interaction with the terminal device

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 320 / 373

Part 12: Virtualization

39 Terminology and Architectures

40 Namespaces and Resource Management

41 Docker and Kubernetes

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 321 / 373

Section 39: Terminology and Architectures

39 Terminology and Architectures

40 Namespaces and Resource Management

41 Docker and Kubernetes

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 322 / 373

Virtualization Concepts in Operating Systems

• Virtualization has already been seen several times in operating system components:
• virtual memory
• virtual file systems
• virtual block devices (LVM, RAID)
• virtual terminal devices (pseudo ttys)
• virtual network interfaces (not covered here)
• . . .

• What we are talking about now is running multiple operating systems on a single
computer concurrently.

• The basic idea is to virtualize the hardware, but we will see that there are
differences in what is actually virtualized.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 323 / 373

Emulation

• Emulation of processor architectures on different platforms
• Transition between architectures (e.g., PPC ⇒ Intel ⇒ ARM)
• Faster development and testing of software for embedded devices
• Development and testing of code for different target architectures
• Usage of software that cannot be ported to new platforms

• QEMU (http://www.qemu.org/)
• Full system emulation and user mode (process) emulation
• Support for many different processor architectures
• Dynamic translation to native code
• Open source license

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 324 / 373

http://www.qemu.org/

Type I (bare metal) Hardware Virtualization

• Virtualization of the physical hardware
• Running multiple operating systems concurrently
• Consolidation (replacing multiple physical machines by a single machine)
• Separation of concerns and improved robustness
• High-availability (live migration, tandem systems, . . .)

• Examples:
• VMware (http://www.vmware.com/)
• Kernel-based Virtual Machines (https://www.linux-kvm.org/)
• . . .

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 325 / 373

http://www.vmware.com/
https://www.linux-kvm.org/

Example: VMware

Hypervisor (e.g. VMware)

Operating

System

Hardware

System

Operating Operating

System

• VMware (USA)

• 1998 VMware founded

• VMware ESXi (Hypervisor)

• VMware vSphere

• VMware Workstation

• closed source

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 326 / 373

Example: KVM

Operating System + Hypervisor (e.g. KVM)

Operating

System

Hardware

Operating

System

• Qumranet (Israel)

• 2007 integration in Linux

• 2008 bought by Red Hat

• OS Kernel Extension

• QEMU for device emulation

• OpenStack, Amazon, . . .

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 327 / 373

Type II (hosted) Hardware Virtualization

• Virtualization on top of an operating system
• Running multiple operating systems concurrently
• Common solution for desktop systems
• Usually less efficient than type I virtualization

• Examples:
• VMware (http://www.vmware.com/)
• VirtualBox (https://www.virtualbox.org/)
• Parallels (http://www.parallels.com/)
• . . .

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 328 / 373

http://www.vmware.com/
https://www.virtualbox.org/
http://www.parallels.com/

Example: VirtualBox

Hypervisor (e.g. VirtualBox)

Hardware

Operating

System System

Operating

Operating System

• InnoTek (Germany)

• 2007 open source (GPL)

• 2008 bought by Sun

• 2010 bought by Oracle

• core open source (GPL)

• extensions closed source

• Linux, Solaris

• Windows, MacOS

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 329 / 373

Paravirtualization

• Minimal hypervisor controlling guest operating systems
• Minimal code complexity of the hypervisor
• Reasonably efficient solution
• Driver complexity moved to a single special guest operating system
• Simplified device abstractions for all other operating systems
• May require OS support and/or hardware support

• Examples:
• Xen (http://www.xenproject.org/)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 330 / 373

http://www.xenproject.org/

Example: Xen

Hypervisor (e.g. Xen)

Operating

System

Hardware

System

Operating Operating

System

• University of Cambridge (UK)

• 2003 release 1.0 open source

• 2004 XenSource founded

• 2007 bought by Citrix Systems

• 2013 Linux Foundation

• Mircokernel Design

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 331 / 373

OS-Level Virtualization (Container)

• Multiple isolated operating system user-space instances
• Efficient separation using namespaces and control groups
• Robustness with minimal performance overhead
• Reduction of system administration complexity
• Restricted to a single operating system interface

• Examples:
• Linux Container (LXC) (https://linuxcontainers.org/)
• Linux VServer (http://linux-vserver.org/)
• BSD Jails
• Solaris Zones

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 332 / 373

https://linuxcontainers.org/
http://linux-vserver.org/

Example: LXC

Operating System + Isolation Mechanisms (e.g. LXC)

Hardware

• 2008 initial release

• open source (LGPL, GPL)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 333 / 373

User-Level Virtualization

• Executing kernels as processes in user space
• Simplify kernel development and debugging
• Efficiency problems, rarely used in production
• Often restricted to a single operating system

• Examples:
• User-mode Linux (http://user-mode-linux.sourceforge.net/)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 334 / 373

http://user-mode-linux.sourceforge.net/

Example: UML

System (UML)

Operating System

Hardware

Operating

System (UML)

Operating

• 2003 integration in Linux

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 335 / 373

Section 40: Namespaces and Resource Management

39 Terminology and Architectures

40 Namespaces and Resource Management

41 Docker and Kubernetes

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 336 / 373

Linux Namespaces

Linux namespaces isolate all global system resources. Existing namespaces:

• control group namespaces (see later)

• system V IPC and message queue namespaces

• network namespaces

• mount point namespaces

• process id namespaces

• time namespaces

• user and group id namespaces

• hostname and NIS namespaces

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 337 / 373

Linux Control Groups

A control group (cgroup) is a collection of processes that are bound by a set of resource
limits. Control groups are hierarchical and control resources such as memory, CPU,
block I/O, or network usage.
Controller (subsystems) have been implemented to control the following resources:

• cpu scheduling and accounting

• cpu pinning (assigning specific CPUs to specific tasks)

• suspending or resuming tasks

• memory limits

• block I/O

• network packet tagging setting network traffic priorities

• namespaces

• performance analysis data collection

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 338 / 373

Section 41: Docker and Kubernetes

39 Terminology and Architectures

40 Namespaces and Resource Management

41 Docker and Kubernetes

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 339 / 373

Docker

• Open-source software to manage container

• Moby is the base component and written in Go

• Docker appeared in 2013 and is managed by Docker Inc.

• Container were initially using Linux container (LCX)

• Meanwhile Docker uses its own libcontainer framework

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 340 / 373

Docker Terminology

• An image is a read-only template of a container. An image consists of layers.
Images are portable and can be stored in repositories.

• A container is an active (running) instance of an image. An image can have many
concurrently running container.

• A layer is a part of an image, it may consist of a command or files that are added
to an image.

• A Dockerfile is a text file defining how an image is constructed.

• A repository is a collection of (versioned) images.

• A registry (like Docker Hub) manages repositories.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 341 / 373

Kubernetes (K8s)

• Kubernetes is an orchestrator automating the deployment, scaling, and
management of containerized applications on a cluster of hosts.

• Supporting several container tools, including Docker.

• Kubernetes appeared in 2014, initially developed by Google.

• Maintained by the Cloud Native Computing Foundation (CNCF).

• A core component is a key-value store called etcd.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 342 / 373

Kubernetes Terminology

• A pod consists of one or more containers that are co-located on a host machine.

• A service is a set of pods that work together.

• A replica set defines the number of pod instances that should be maintained.

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 343 / 373

Part 13: Distributed Systems

42 Definition and Models

43 Remote Procedure Calls

44 Distributed File Systems

45 Distributed Message Queues

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 344 / 373

Section 42: Definition and Models

42 Definition and Models

43 Remote Procedure Calls

44 Distributed File Systems

45 Distributed Message Queues

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 345 / 373

What is a Distributed System?

• A distributed system is one in which the failure of a computer you didn’t even know
existed can render your own computer unusable. (Lesley Lamport, 1992)

• A distributed system is several computers doing something together. (M.D.
Schroeder, 1993)

• An interconnected collection of autonomous computers, processes, or processors.
(G. Tel, 2000)

• A distributed system is a collection of processors that do not share memory or a
clock. (A. Silberschatz, 1994)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 346 / 373

Why Distributed Systems?

• Information exchange

• Resource sharing

• Increased reliability through replication

• Increased performance through parallelization

• Simplification of design through specialization

• Cost reduction through open standards and interfaces

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 347 / 373

Challenges

General challenges for the design of distributed systems:

• Efficiency

• Scalability

• Security

• Fairness

• Robustness

• Transparency

• Openness

Special design challenges (increasingly important):

• Context-awareness and energy-awareness

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 348 / 373

Distributed vs. Centralized

• Lack of knowledge of global state
Nodes in a distributed system have access only to their own state and not to the
global state of the entire system

• Lack of a global time frame
The events constituting the execution of a centralized algorithm are totally ordered
by their temporal occurance. Such a natural total order does not exist for
distributed algorithms

• Non-determinism
The execution of a distributed system is usually non-deterministic due to speed
differences of system components

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 349 / 373

Client-Server Model

client

client

server

client

client

• Clients requests services from servers

• Synchronous: clients wait for the response before they proceed with their
computation

• Asynchronous: clients proceed with computations while the response is returned by
the server

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 350 / 373

Proxies

client server

client

proxy

server

• Proxies can increase scalability

• Proxies can increase availability

• Proxies can increase protection and security

• Proxies and help solving versioning issues

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 351 / 373

Peer-to-Peer Model

peer

peer

peer

peer

peer

• Every peer provides client and server functionality

• Avoids centralized components

• Able to establish new (overlay) topologies dynamically

• Requires control and coordination logic on each node

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 352 / 373

Mobile Code

place

place

place

place

place

• Executable code (mobile agent) travels autonomously through the network

• At each place, some computations are performed locally that can change the state
of the mobile agent

• A mobile agent must be able to find a good trajectory

• Security (protection of places, protection of agents) is a challenging problem

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 353 / 373

Section 43: Remote Procedure Calls

42 Definition and Models

43 Remote Procedure Calls

44 Distributed File Systems

45 Distributed Message Queues

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 354 / 373

Remote Procedure Call Model

• Introduced by Birrel and
Nelson (1984)
• to provide communication

transparency and
• to overcome heterogeneity

• Stubs hide all communication
details

Access

Result

Client ServerClient
Stub

Server
Stub

Send
Access

Send
Result

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 355 / 373

Stub Procedures

stubclient ipc ipc stub server

interface interface

invoke pack

unpack

send

recv

recv

send

unpack

packreturn return

invoke

work

• Client stubs provide a local interface which can be called like any other local
procedure

• Server stubs provide the server interface which calls the server’s implementation of
the procedure provided by a programmer and returns any results back to the client

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 356 / 373

Marshalling

• Marshalling is the technical term for transferring data structures used in remote
procedure calls from one address space to another

• Serialization of data structures for transport in messages

• Conversion of data structures from the data representation of the calling process to
that of the called process

• Pointers can be handled to some extend by introducing call-back handles, which
can be used to make an call-back RPCs from the server to the client in order to
retrieve the data pointed to

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 357 / 373

RPC Definition Languages

client stub
source source

server stub procedure
implementation

client
implementation

procedure definition

RPC compiler

header

compiler compiler compilercompiler

serverclient

RPC definition language

implementation languageimplementation language

• Formal language to define the type signature of remote procedures

• RPC compiler generates client / server stubs from the formal remote procedure
definition

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 358 / 373

RPC Binding

• A client needs to locate and bind to a server in order to use RPCs

• This usually requires to lookup the transport endpoint for a suitable server in some
sort of name server:

1. The name server uses a well know transport address
2. A server registers with the name server when it starts up
3. A client first queries the name server to retrieve the transport address of the server
4. Once the transport address is known, the client can send RPC messages to the

correct transport endpoint

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 359 / 373

RPC Semantics

• May-be:
• Client does not retry failed requests

• At-least-once:
• Client retries failed requests, server re-executes the procedure

• At-most-once:
• Client may retry failed requests, server detects retransmitted requests and responds

with cached reply from the execution of the procedure

• Exactly-once:
• Client must retry failed requests, server detects retransmitted requests and responds

with cached reply from the execution of the procedure

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 360 / 373

Local vs. Remote Procedure Calls

• Client, server and the communication channel can fail independently and hence an
RPC may fail

• Extra code must be present on the client side to handle RPC failures gracefully

• Global variables and pointers can not be used directly with RPCs

• Passing of functions as arguments is close to impossible

• The time needed to call remote procedures is orders of magnitude higher than the
time needed for calling local procedures

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 361 / 373

Open Network Computing RPC

• Developed by Sun Microsystems (Sun RPC), originally published in 1987/1988

• Since 1995 controlled by the IETF (RFC 1790)

• ONC RPC encompasses:
• ONC RPC Language (RFC 5531)
• ONC XDR Encoding (RFC 4506)
• ONC RPC Protocol (RFC 5531)
• ONC RPC Binding (RFC 1833)

• Foundation of the Network File System (NFS) and widely implemented on Unix
systems

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 362 / 373

Section 44: Distributed File Systems

42 Definition and Models

43 Remote Procedure Calls

44 Distributed File Systems

45 Distributed Message Queues

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 363 / 373

Distributed File Systems

• A distributed file system is a part of a distributed system that provides a user with
a unified view of the files on the network

• Transparancy features (not necessarily all supported):
• Location transparency
• Access transparancy
• Replication transparency
• Failure transparency
• Mobility transparency
• Scaling transparency

• Recently: File sharing (copying) via peer-to-peer protocols

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 364 / 373

Design Issues

• Centralized vs. distributed data
• Consistency of global file system state
• If distributed, duplications (caching) or division

• Naming
• Tree vs. Directed Acyclic Graph (DAG) vs. Forest
• Symbolic links (file system pointers)

• File sharing semantics
• Unix (updates are immediately visible)
• Session (updates visible at end of session)
• Transaction (updates are bundled into transactions)
• Immutable (write once, change never)

• Stateless vs. stateful servers

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 365 / 373

Stateless vs. Stateful Servers

• Stateless Server:

+ Fault tolerance
+ No open/close needed (less setup time)
+ No data structures needed to keep state
+ No limits on open files
+ Client crashes do not impact the servers

• Stateful Server:

+ Shorter request messages
+ Better performance with buffering
+ Readahead possible
+ Idempotency is easier to achieve
+ File locking possible

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 366 / 373

Network File System Version 3

• Original Idea:
• Wrap the file system system calls into RPCs
• Stateless server, little transparency support
• Unix file system semantics
• Simple and straight-forward to implement
• Servers are dumb and clients are smart

• Stateless server

• Mount service for mounting/unmounting file systems

• Additional locking service (needs to be stateful)

• NFSv3 is defined in RFC 1813 (June 1995)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 367 / 373

Operating System Integration

NFS clientBSD FFS

VFS (cache)

TCP/UDP/IP TCP/UDP/IP BSD FFS

VFS (cache)NFS server

emacs

makecat

• Early implementations used user-space deamons

• NFS runs over UDP and TCP, currently TCP is preferred

• NFS uses a fixed port number (no portmapper involved)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 368 / 373

NFSv3 Example (Simplified!)

C: PORTMAP GETPORT mount # mount bayonne:/export/vol0 /mnt

S: PORTMAP GETPORT port

C: MOUNT /export/vol0

S: MOUNT FH=0x0222

C: PORTMAP GETPORT nfs # dd if=/mnt/home/data bs=32k \

S: PORTMAP GETPORT port # count=1 of=/dev/null

C: FSINFO FH=0x0222

S: FSINFO OK

C: GETATTR FH=0x0222

S: GETATTR OK

C: LOOKUP FH=0x0222 home

S: LOOKUP FH=0x0123

C: LOOKUP FH=0x0123 data

S: LOOKUP FH=0x4321

C: ACCESS FH=0x4321 read

S: ACCESS FH=0x4321 OK

C: READ FH=0x4321 at 0 for 32768

S: READ DATA (32768 bytes)

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 369 / 373

Related Work

• Distributed File Systems:
• Network File System Version 4 (NFSv4) (2003)
• Common Internet File System (CIFS) (2002)
• Andrew File System (AFS) (1983)
• . . .

• Distributed File Sharing:
• BitTorrent (2001)
• Gnutella (2000)
• Napster (1999)
• . . .

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 370 / 373

Section 45: Distributed Message Queues

42 Definition and Models

43 Remote Procedure Calls

44 Distributed File Systems

45 Distributed Message Queues

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 371 / 373

Typical Design Goals for Distributed Systems

• Distributed systems should be asynchronous (avoid blocking)

• Distributed systems should be designed to tolerate failures

• Distributed workflows should be adaptable at runtime (scaling up, scaling down)

• Distributed systems should be programming language agnostic

• Distributed systems should be deployable in a wide range of configurations (ranging
from all components on a single system to all components distributed over many
systems)

• Distributed systems should be designed to support program analysis and debugging

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 372 / 373

Message Passing and Message Queuing Frameworks

• Advanced Message Queuing Protocol (AMQ) is an open standard application layer
protocol for message-oriented middleware (core developed in 2004-2006)

• ZeroMQ (ØMQ) is an asynchronous messaging library for distributed and
concurrent applications. It provides message queues and it be used without a
dedicated message broker (core developed in 2007-2011, written in C++)

• nanomsg is a is a high-level socket library that provides several common
communication patterns that can be used over several transport mechanisms
(developed since 2011, written in C)

• MQTT . . .

Jürgen Schönwälder (Constructor University) Operating Systems 2022 CC-BY-NC-ND February 20, 2023 373 / 373

	Introduction
	Definition, Requirements and Services
	Fundamental Concepts
	Types of Operating Systems
	Operating System Architectures

	Hardware
	Computer Architecture and Processors
	Memory, Caching, Segments, Stacks
	Devices and Interrupts

	Processes and Threads
	Processes
	Threads

	Synchronization
	Race Conditions and Critical Sections
	Synchronization Mechanisms
	Semaphores
	Critical Regions, Condition Variables, Messages
	Synchronization Pattern
	Synchronization in C
	Synchronization in Java and Go

	Deadlocks
	Deadlocks
	Resource Allocation Graphs
	Deadlock Strategies

	Scheduling
	Scheduler
	Scheduling Strategies

	Linking
	Linker
	Libraries
	Interpositioning

	Memory
	Translation of Memory Addresses
	Segmentation
	Paging
	Virtual Memory

	Communication
	Signals
	Pipes
	Sockets

	File Systems
	General File System Concepts
	File System Programming Interface
	File System Implementation

	Devices
	Goals and Design Considerations
	Storage Devices and RAIDs
	Storage Virtualization
	Terminal Devices

	Virtualization
	Terminology and Architectures
	Namespaces and Resource Management
	Docker and Kubernetes

	Distributed Systems
	Definition and Models
	Remote Procedure Calls
	Distributed File Systems
	Distributed Message Queues

